心肌缺血预适应上调新基因Mipu1的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌指是一种能与DNA结合的结构域,为锌指蛋白中的半胱氨酸和/或组氨酸与二价的锌离子结合形成的一种特定的二级结构。锌指蛋白可以通过与双链DNA、单链DNA及RNA的结合发挥转录调节及RNA剪接等功能。根据与锌离子结合的氨基酸的不同,锌指蛋白可以分为许多亚家族,其中C_2H_2(或Kruppel)型锌指蛋白是其最大的亚家族,它的锌指序列的特征为CX_2CX_3FX_5LX_2HX_3H;两个锌指之间的保守序列为TGEKP(Y/F)X(X代表在保守氨基酸之间的任意氨基酸)。而C_2H_2型锌指蛋白又可以根据其N端含有的结构域分成4大类:FAX(finger-associated boxes)型,FAR(finger-associatedrepeats)型,POZ(pox virus and zinc fingers,also known as Zin)和KRAB(Kruppel-associated box)型。
     含KRAB结构域的锌指蛋白也称KRAB型锌指蛋白(KRAB-containingzinc finger protein,KZNF),占人类基因组中所有锌指蛋白(799种)的约三分之一(290种),是哺乳动物中最大的转录调控因子家族,其中超过220种在胚胎发育、细胞分化、细胞转化及细胞周期的调控中发挥重要功能,其表达水平随时间和空间的不同而变化。
     Mipu1是本室从经历短暂缺血-再灌注的大鼠心肌中分离克隆的新基因,Genbank登录号为AY221750。其ORF的全长为1827bp,编码608个氨基酸。其编码肽链的N-端含一KRAB结构域,C-端含14个C_2H_2型锌指,故为一典型的KRAB/C_2H_2型锌指蛋白。本室近年研究发现,Mipu1基因在缺血-再灌注心肌中表达明显升高;Mipu1过表达可减轻去血清对C_2C_(12)细胞的生长抑制作用,在去血清应激状态下具有促细胞生长及修复损伤的功能;Mipu1过表达可明显抑制氧化应激(H_2O_2处理)导致的LDH释放率和细胞凋亡发生率,具有细胞保护功能。本文拟进一步阐明Mipu1的功能及结构-功能关系。
     为了探讨新基因Mipu1的DNA结合活性,我们首先构建了Mipu1的多个原核和真核表达质粒。利用原核表达质粒pGEX-Mipu1,诱导表达并纯化了Mipu1的融合蛋白GST-Mipu1。将GST-Mipul固定在Glutathione-Sepharose上后,从随机寡核苷酸文库中筛选到了一个Mipu1共同的DNA结合序列5’-TGTCTTATCGAA-3’。经化学合成包含这一序列的探针,末端同位素标记后进行EMSA发现,GST-Mipu1能与探针结合,并呈剂量依赖性,但纯化的GST蛋白不能与探针结合;GST-Mipu1与探针的结合信号能被非标记探针(冷探针)竞争,但不能被含突变核心序列(CTTA)的冷探针竞争。在EMSA的结合缓冲液中加入EDTA,则融合蛋白与探针的结合作用被废除。这些结果说明,5’-TGTCTTATCGAA-3’是Mipu1的特异性DNA结合位点(Mipul DNAbinding site,MDBS),其结合作用具有锌离子依赖性,其中CTTA为结合位点的核心序列。
     为了进一步揭示Mipul与DNA的结合作用,我们表达与纯化了不包含KRAB结构域及KRAB与锌指之间的连接序列,仅包含14个锌指的融合蛋白GST-ZF。化学合成包含Mipul的特异性结合位点的探针,并用生物素进行末端标记。Target detection asssay显示,探针能与融合蛋白GST-Mipul和GST-ZF结合,但不能与GST结合,并且上述结合作用具有锌离子依赖性。
     为探讨Mipul中锌指结构域的功能,我们将Mipul的14个锌指分成二大段,表达与纯化了只包含部分锌指的融合蛋白,即GST-ZFl(包含1-8个锌指)和GST-ZF2(包含9-14个锌指)。Target detection asssay显示,只有其中的GST-ZF2能与探针结合。
     为了进一步探讨Mipul是否具有转录因子功能,将含三个MDBS的寡核苷酸序列插入报告基因载体pGL3-promoter构建了重组报告基因载体pGL3-promoter-MDBS,并将三个MDBS核心序列突变构建了突变的重组报告基因载体pGL3-promoter-MDBS~(mut)。将pGL3-promoter-MDBS和pGL3-promoter-MDBS~(mut)分别与Mipul的真核表达质粒pcDNA3.1-Mipul共转染小鼠巨噬细胞株Raw264.7或小鼠肌原细胞株C_2C_(12),经荧光素酶测定发现,Mipul的过表达能抑制pGL3-promoter-MDBS的荧光素酶活性,并呈剂量依赖性,但不能抑制pGL3-promoter-MDBS_(mut)的荧光素酶活性,表明Mipul具有转录抑制功能。
     将Mipul开放阅读框的全长,或KRAB结构域或锌指(ZF)结构域分别与绿色荧光蛋白(GFP)融合,构建了pEGFP-Mipul、pEGFP-KRAB及pEGFP-ZF三个真核表达质粒。将它们导入C_2C_(12),12小时后将细胞置荧光显微镜下观察。结果显示,Mipul的全长和KRAB定位于核,而空载体和ZF在细胞中呈散在分布。
     本文进一步对Mipul调控的靶基因进行了初步分析。根据Mipul的DNA结合位点,经生物信息学分析发现,多个促凋亡基因启动子区含有该结合位点的核心序列。将其中Bax基因启动子的全长标上生物素后,Target detection assay显示,生物素标记的Bax的全长启动子能与GST-ZF及GST-ZF2相互作用,表明Bax是Mipul的潜在靶基因之一。
     综上所述,本研究得到如下结论:①Mipul是一个DNA位点特异性的核酸结合蛋白,其特异性的结合位点为5’-TGTCTTATCGAA-3’,核心序列为CTTA,C-末端的六个锌指为其与DNA结合所足够与必需;②Mipul是一个核蛋白,其核定位信号位于KRAB结构域或KRAB与锌指之间的连接序列中;③Mipul是一个转录抑制因子,可能通过抑制促凋亡基因的表达而抑制细胞凋亡,在细胞凋亡的发生过程中发挥调控作用。
Zinc fingers are of importance by binding to specific DNA sequences with characteristics of forming a secondary structure in which cysteines and/or histidines coordinate zinc ions. Zinc finger proteins function by binding to double-stranded DNA (dsDNA), single-stranded DNA or RNA in transcriptional control and splicing of RNA. According to the amino acid residues that coordinate zinc ion, zinc finger proteins are classified into a lot of sub-families, among which the subfamily of C2H2 (Kruippel) zinc fmger proteins is the largest, with zinc finger CX2CX3FX5LX2HX3H and conserved linker sequence TGEKP(Y/F)Ⅹ(whereⅩdenotes any amino acid). C2H2 zinc finger proteins can be further divided into 4 groups by their domains at the N-terminus, including FAⅩ(finger-associated boxes), FAR (finger-associated repeats), POZ (pox virus and zinc fingers, also known as Zin) and KRAB (Kruppel-associated box).
     Zinc finger proteins containing KRAB domain (also known as KRAB-containing zinc finger proteins) account for about one-thirds (209) of total zinc finger proteins (799) arranged in human genome, forming the largest family of transcriptional factors. 220 of KRAB-containing zinc finger proteins express differentially in different tissures and developmental stages, functioning importantly in the control of embryo development, cellular differentiation, cellular transformation and cell cycle.
     Mipul is a new gene cloned in our lab from transiently ischemic and reperfused rat heart (Genbank accession number AY221750) that was up-regulated after transient myocardial ischemia/reperfusion. It has an open reading frame of 1827 bp, encoding a 608 amino acid polypeptide with an N-terminal KRAB domain and 14 C-terminal C2H2 ZinC fingers. Preliminary study has shown that over-expression of Mipul in C2C12 myogenic cells were more resistant to oxidative injury when compared with the control, as indicated by lower LDH release and apoptosis occurrence in Mipul-overexpressed cells than in the control cells, and that overexpression of Mipul could alleviate cellular growth arrest in the stress induced by a seral withdrawal. The present study is to clarify the function and structure-function relationship of Mipul.
     In order to investigate the DNA binding activity of Mipul, we first constructed more than ten Mipul bacterial and eukaryotic expression plasmids. Using the bacterial expression plasmid pGEX-Mipul we prepared Mipul fusion protein GST-Mipul. GST-Mipul was immobilized on glutathione-bound Sepharose beads to capture specific oligonucleotide sequences from a random oligonucleotide library, and a consensus sequence (5'-TGTCTTATCGAA-3') was obtained.To determine if the consensus was specific Mipul DNA binding site, a probe containing the consensus sequence was synthesized and ~(32)p end- labelled. EMSA showed that GST-Mipul can bind to the probe in a protein concentration dependent and zinc dependent manner while GST can not. Mutation analysis showed that nonlabelled wild type (wt) probe was good competitor, but the nonlabelled mutant probe with putative core base substitution at the consensus sequence could not compete with the wt labeled probe. These results suggest that the consensus sequence 5'-TGTCTTATCGAA-3' is specific Mipul DNA binding site (MDBS), in which CTTA is the core sequence.
     To further study the Mipul-DNA interaction, a truncated Mipul fusion protein GST-ZF containing 14 zinc fingers (ZF) but without the KRAB domain and the linker was expressed and purified. A probe containing MDBS was also synthesized and biotin-labelled. Target detection assay showed that GST-Mipul and GST-ZF can interact with the probe in a zinc dependent manner while GST protein can not, which is consistent with the results above in EMSA, suggesting that the consensus sequence is Mipul DNA binding site, and the zinc finger region of Mipul is necessary and sufficient for its DNA binding activity.
     To further study the structure-function relationship of Mipul, two more truncated Mipul fusion proteins were prepared: GST-ZF1 which consisted of zinc fingers 1-8, and GST-ZF2 which was composed of 9-14 zinc fingers. Target detection assay also showed that GST-ZF2 can bind to above biotin-labelled probe while GST-ZF1 can not, suggesting that the last 6 zinc fingers of Mipul is required and sufficient for its DNA binding.
     To clarify the potential function of Mipul as a transcription factor, an oligonucleotide fragment containing 3 MDBSs was chemically synthesized and inserted into pGL3-promoter vector to produce pGL3-promoter-MDBS, and the mutant reporter plasmid pGL3-promoter-MDBS~(mut) was also constructed with mutant core sequence (TCTTA→AGCGC). Co-transfection of Raw 264.7 cells with pGL3-promoter-MDBS and pcDNA3.1-Mipul showed that Mipul overexpression reduced the reporter activity of pGL3-promoter-MDBS reproducibly, but Co-transfection of Raw 264.7 cells with pGL3-promoter-MDBS~(mut) and pcDNA3.1-Mipul showed that Mipul overexpression failed to reduce the reporter activity of pGL3-promoter-MDBS~(mut), suggesting that Mipul suppressed promoters containing MDBS.
     Full-length ORF (Mipul) or the KRAB region plus the linker sequence (KRAB) or 14 zinc fingers (ZF) of Mipulwas fused with EGFP, respectively. C_2C_(12) cells were transfected with the pEGFP recombinant plasmids overnight, and observed under a fluorescence microscopy. Although the cells transfected with pEGFP empty vector or pEGFP-ZF had a generalized fluorescence distribution in the cytoplasm and nucleus, the cells transfected with either pEGFP-Mipul or pEGFP-KRAB showed distinct nuclear fluorescence localization. Thus, the ZF domain was not required for nuclear localization, whereas the presence of the KRAB region and/or the remaining 57 amino acids of the linker region appeared to be sufficient for directing nuclear localization of Mipul.
     We further analyzed the possible target genes of Mipul and found that many apoptosis-related genes contain MDBS or its core sequence at their promoters by using bioinformatic techniques. It was found that Bax, an important proapoptotic gene, contains several MDBSs, and biotin-labelled Bax promoter could bind to GST-ZF and GST-ZF2.
     It was concluded that:①Mipul is a DNA binding protein that binds to the specific sequence 5'-TGTCTTATCGAA-3', with CTTA as the core sequence;②Mipul is a nuclear protein that is localized to the nucleus through its KRAB domain or the linker adjacent to its zinc finger region; ③Mipul is a transcriptional repressor that may repress apoptosis by repressing the expression of proapoptotic genes which may up-regulate in myocardial ischemia-reperfusion injury.
引文
[1] Williams RS. Benjamin IJ. Protective responses in the ischemic myocardium. Journal of Clinical Investigation. 106(7): 813-8, 2000
    [2] Bolli R. The late phase of preconditioning. Circulation Research. 87(11): 972-83, 2000
    [3] Das DK, Maulik N, Morara I: Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 27: 181-93, 1995
    [4] Deindl E, Schaper W: Gene expression after Short periods of coronary occlusion. Mol Cell Biochem 186: 43-51, 1998
    [5] Depre C. Tomlinson JE. Kudej RK. et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci U S A 98(16): 9336-41, 2001
    [6] 袁灿,张华莉,刘英等:一个新的心肌缺血-再灌上调基因Mipl的克隆与特性研究.生物化学与生物物理进展,31:231-236,2003
    [7] Zawia NH: transcriptional involvement in neurotoxicity. Toxicol Appl Pharmacol. 190(2): 177-88, 2003
    [8] Simpson RJY, Cram ED, Czolij R et al: CCHX zinc finger derivatives retain the ability to bind Zn(Ⅱ) and mediate protein-DNA interaction. J Biol. Chem.. 278(30): 28011-28018, 2003
    [9] Gou DM, Wang J, Gao L et al: Identification and functional analysis of a novel human KRAB/C_2H_2 zinc finger gene ZNF300. Biochim Biophys Acta. 1676(2): 203-9, 2004
    [10] Nolte RT, Conlin RM, Harrison SC et al: Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor ⅢA complex. Proc Natl Acad Sci U S A. 95(6): 2938-43, 1998
    [11] Krishna SS, Majumdar I, Grishin NV: Structural classification of zinc fingers: Survey and summary. Nucleic Acids Res. 31(2): 532-50, 2003
    [12] Peng HZ, Begg GE, Harper SL et al: Biochmical analysis of the Kruppel-associated box(KRAB)transcriptional repression domain. J Biol. Chem. 275(24): 18000-18010, 2000
    [13] Sakai T, Hino K, Wada Set al: Identification of the DNA binding specificity of the human ZNF219 protein and its function as a transcriptional repressor. DNA Res. 10(4): 155-65, 2003
    [14] Krebs CJ, Larkins LK, Price R et al: Regulator of sex-limitation (Rsl) encodes a pair of KRAB zinc-finger genes that control sexually dimorphie liver gene expression. Genes Dev. 17(21): 2664-74, 2003
    [15] Fahnenstich J, Nandy A, Milde-Langoseh K et al: Promyeloeytie leukaemia zinc finger protein (PLZF) is a glueoeortieoid-and progesterone-induced transcription factor in human endometrial stromal cells and myometrial smooth muscle cells. Mol Hum Reprod. 9(10): 611-23, 2003
    [16] Pavletich NP, Pabo CO: Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A, Science. 252: 809-817, 1991
    [17] Zweidler-Mekay PA, Grimes HL, Flubaeher MM et al: Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor. Mol. Cell. Biol. 16(8): 4024-4034, 1996
    [18] Jheon AH, Ganss B, Cheifetz S et al: Characterization of a novel KRAB/C_2H_2 zinc finger transcription factor involved in bone development. J Biol. Chem. 276(21): 18282-18289, 2001
    [19] Gao L, Sun C, Qiu HL et al: Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library, Bioehem. Biophy. Res. Comm. 325: 1145-1152, 2004
    [20] 袁灿,王秋鹏,刘瑛,王建设,陈广文,刘梅冬,肖献忠.新基因Mipul的过表达对去血清培养条件下C2C12细胞的生长周期的影响.医学临床研究.21(8):837-839,2004
    [21] 袁灿,吕青兰,陈广文,刘瑛,王尧玲,刘海军,邹江,肖献忠.大鼠心肌缺血预适应诱导表达上调基因的筛选和鉴定.生物化学与生物物理进展.31(5):1-5,2004
    [22] Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun. 355(2): 318-23, 2007
    [23] Funnell AP, Maloney CA, Thompson LJ, Keys J, Tallack M, Perkins AC, Crossley M. Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Mol Cell Biol. 27(7): 2777-90, 2007
    [24] Zhang A, Zhang M, Wang Y, Xie H, Zheng S. Calcitriol prolongs recipient survival by inducing expression of zinc-finger protein A20 and inhibiting its downstream gene following rat orthotopic liver transplantation. Immunopharmacol Immunotoxicol. 28(4): 591-600, 2006
    [25] Fukuba H, Yamashita H, Nagano Y, Jin HG, Hiji M, Ohtsuki T, Takahashi T, Kohriyama T, Matsumoto M. Siah-1 facilitates ubiquitination and degradation of factor inhibiting HIF-lalpha (FIH). Biochem Biophys Res Commun. 353(2): 324-9, 2007
    [26] Fukuda T, Kanomata K, Nojima J, Urakawa I, Suzawa T, Imada M, Kukita A, Kamijo R, Yamashita T, Katagiri T. FGF23 induces expression of two isoforms of NAB2, which are corepressors of Egr-1. Biochem Biophys Res Commun. 353(1): 147-51, 2007
    [27] Horiba M, Martinez LB, Bueseher JL, Sato S, Limoges J, Jiang Y, Jones C, Ikezu T. OTK18, a zinc-finger protein, regulates human immunodeficiency virus type 1 long terminal repeat through two distinct regulatory regions. J Gen Virol. 88(Pt 1): 236-41, 2007
    [28] Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 35(1): 100-12, 2007
    [29] Mori T, Sasaki J, Aoyama Y, Sera T. Regulation of cancer-related growth factor expression by artificial zinc-finger proteins. Nucleic Acids Symp Ser (Oxf). (50): 291-2, 2006
    [30] Kim S, Choi K, Park C, Hwang HJ, Lee I. SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. Plant Cell. 18(11): 2985-98, 2006
    [31] Huang C, Jia Y, Yang S, Chen B, Sun H, Shen F, Wang Y. Characterization of ZNF23, a KRAB-containing protein that is downregulated in human cancers and inhibits cell cycle progression. Exp Cell Res. 313(2): 254-63, 2007
    [32] Li Y, Du X, Li F, Deng Y, Yang Z, Wang Y, Pen Z, Wang Z, Yuan W, Zhu C, Wu X. A novel zinc-finger protein ZNF436 suppresses transcriptional activities of AP-1 and SRE. Mol Biol Rep. 33(4): 287-294, 2006
    [33] Nallamsetty S, Waugh DS. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc. 2(2): 383-91, 2007
    [34] Chattopadhaya S, Tan LP, Yao SQ. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat Protoc. 1(5): 2386-98, 2006
    [35] Arnau J, Lauritzen C, Pedersen J. Cloning strategy, production and purification of proteins with exopeptidase-cleavable His-tags. Nat Protoc. 1(5): 2326-33, 2006
    [36] Wu WY, Mee C, Califano F, Banki R, Wood DW. Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc. 1(5): 2257-62, 2006
    [37] Cheng Q, Stone-Elander S, Arner ES. Tagging recombinant proteins with a Sel-tag for purification, labeling with electrophilic compounds or radiolabeling with 11C. Nat Protoc. 1(2): 604-13, 2006
    [38] QIA express, the complete system. QIAexress Brochure. Qiagen
    [39] Yang J, Guo SY, Pan FY, Geng HX, Gong Y, Lou D, Shu YQ, Li CJ. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5. Protein Expr Purif. 53(1): 1-8, 2007
    [40] Chaudhari A, Mahfouz M, Fialho AM, Yamada T, Granja AT, Zhu Y, Hashimoto W, Schlarb-Ridley B, Cho W, Das Gupta TK, Chakrabarty AM. Cupredoxin-cancer interrelationship: azurin binding with EphB2, interference in EphB2 tyrosine phosphorylation, and inhibition of cancer growth. Biochemistry. 46(7): 1799-810, 2007
    [41] Piermarini PM, Kim EY, Boron WF. Evidence against a direct interaction between intracellular carbonic anhydrase Ⅱ and pure C-terminal domains of SLC4 bicarbonate transporters. J Biol Chem. 282(2): 1409-21, 2007
    [42] Sandmann T, Jakobsen JS, Furlong EE. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc. 1(6): 2839-55, 2006
    [43] Chen J. Serial analysis of binding elements for human transcription factors. Nat Protoc. 1(3): 1481-93, 2006
    [44] Zeitlinger J, Zinzen RP, Stark A, Kellis M, Zhang H, Young RA, Levine M. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev. 21(4): 385-90, 2007
    [45] Lee DK, Park JW, Kim YJ, Kim J, Lee Y, Kim J, Kim JS. Toward a functional annotation of the human genome using artificial transcription factors. Genome Res. 13(12): 2708-16, 2003
    [46] Sisido M. Extension of biochemical functions by the introduction of nonnatural amino acids and artificial nucleic acid analogs. Nucleic Acids Symp Ser. (44): 275-6, 2000
    [47] Boireau W, Duncan AC, Pompon D. Bioengineering and characterization of DNA-protein assemblies floating on supported membranes. Methods Mol Biol. 300: 349-68, 2005
    [48] Sattler U, Calsou P, Boiteux S, Salles B. Detection of oxidative base DNA damage by a new biochemical assay. Arch Biochem Biophys. 376(1): 26-33; 2000
    [49] Berezovski MV, Musheev MU, Drabovich AP, Jitkova JV, Krylov SN. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides. Nat Protoc. 1(3): 1359-69, 2006
    [50] Hong WW, Yen YH, Wu SC. Enhanced antibody affinity to Japanese encephalitis virus E protein by phage display. Biochem Biophys Res Commun. 356(1): 124-8, 2007
    [51] Peng L, Stephens BJ, Bonin K, Cubicciotti R, Guthold M. A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Microsc Res Tech. 70(4): 372-381, 2007
    [52] Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. 27(6): 289-301, 2006
    [53] Jarosch F, Buchner K, Klussmann S. In vitro selection using a dual RNA library that allows primerless selection. Nucleic Acids Res. 34(12): e86, 2006
    [54] Kojima T, Yamane T, Nakano H. In vitro selection of DNA binding sites for transcription factor, PhaR, from Paracoccus denitrificans using genetic library on microbeads and flow cytometry. J Biosci Bioeng. 101(5): 440-4, 2006
    [55] Clemens KR, Zhang P, Liao X, McBryant SJ, Wright PE, Gottesfeld JM. Relative contributions of the zinc fingers of transcription factor ⅢA to the energetics of DNA binding. J Mol Biol. 244(1): 23-35, 1994
    [56] Fairall L, Schwabe JW, Chapman L, Finch JT, Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature. 366(6454): 483-7, 1993
    [57] Nardelli J, Gibson TJ, Vesque C, Charnay P. Base sequence discrimination by zinc-fmger DNA-binding domains. Nature. 349(6305): 175-8, 1991
    [58] Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by zinc fingers. Nucleic Acid Res. 22: 3397-3405, 1994
    [59] Suzuki M, Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Proc. Natl. Acad. Sci. U. S. A. 91: 12357-12361, 1994
    [60] Liu Z, Mao F, Gao JT, Yan B, Wang P, Qu Y, Xu Y. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential. Nucleic Acid Res. 33(2): 546-558, 2005
    [61] Ikuta T, Kawajiri K. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor. Exp Cell Res. 312(18): 3585-94, 2006
    [62] Quinlan KG, Nardini M, Verger A, Francescato P, Yaswen P, Corda D, Bolognesi M, Crossley M. Specific recognition of ZNF217 and other zinc finger proteins at a surface groove of C-terminal binding proteins. Mol Cell Biol. 26(21): 8159-72, 2006
    [63] Esposito S, Baglivo I, Malgieri G, Russo L, Zaccaro L, D'Andrea LD, Mammucad M, Di Blasio B, Isernia C, Fattorusso R, Pedone PV. A novel type of zinc finger DNA binding domain in the Agrobacterium tumefaciens transcriptional regulator Ros. Biochemistry. 45(34): 10394-405, 2006
    [64] Tsai RYL, Reed RR. Identification of DNA recognition sequences and protein interaction domain of the multiple-Zn-finger protein Roaz. Mol Cell Biol. 18(11): 6447-6456, 1998
    [65] Shin SY, Lee JH, Min B, Lee YH. The translation inhibitor anisomycin induces Elk-1-mediated transcriptional activation of egr-1 through multiple mitogen-activated protein kinase pathways. Exp Mol Med. 38(6): 677-85, 2006
    [66] Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 35(1): 100-12, 2007
    [67] Shao H, Zhu C, Zhao Z, Guo M, Qiu H, Liu H, Wang D, Xue L, Gao L, Sun C, Li W. KRAB-containing zinc finger gene ZNF268 encodes multiple alternatively spliced isoforms that contain transcription regulatory domains. Int J Mol Med. 18(3): 457-63, 2006
    [68] Schnabl B, Hu K, Muhlbauer M, Hellerbrand C, Stefanovic B, Brenner DA, Scholmerich J. Zinc finger protein 267 is up-regulated during the activation process of human hepatic stellate cells and functions as a negative transcriptional regulator of MMP-10. Biochem Biophys Res Commun. 335(1): 87-96, 2005
    [69] Liu F, Zhu C, Xiao J, Wang Y, Tang W, Yuan W, Zhao Y, Li Y, Xiang Z, Wu X, Liu M. A novel human KRAB-containing zinc-finger gene ZNF446 inhibits transcriptional activities of SRE and AP-1. Biochem Biophys Res Commun. 333(1): 5-13, 2005
    [70] Hatta M, Yoshimum Y, Deyama Y, Fukamizu A, Suzuki K. Molecular characterization of the zinc finger transcription factor, Osterix. Int J Mol Med. 17(3): 425-30, 2006
    [71] Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4(10): 231, 2003
    [72] Gommans WM, Haisma HJ, Rots MG. Engineering Zinc finger protein transcription factors: the therapeutic relevance of switching endogenous gene expression on or off at command. J. Mol. Biol. 354: 507-519, 2005
    [73] Sera T. Inhibition of virus DNA replication by artificial zinc finger proteins. J. Virol. 79(4): 2614-2619, 2005
    [74] Eberhardy SR, Goncalves J, Coelho S, Segal DJ, Berkhout B, Barbas CF, 3rd. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J. Virol. 80(6): 2873-2883, 2006
    [1] Collins T, Stone J R, Williams A J. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol. 21: 3609-3615, 2001
    [2] Urrutia R. KRAB-containing zinc-finger repressor proteins. Ge-nome Biol. 4: 231, 2003
    [3] Witzgall R, O'Leary E, Leaf A, Onaldi D, Bonventre JV. The Kruppel-associated box-A(KRAB-A) domain of zinc finger pro-teins mediates transcriptional repression. Proc Natl Acad Sci USA. 91: 4514-4518, 1994
    [4] Looman C, Abdnk M, Mark C, Hellman L. KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol. 19: 2118-2130, 2002
    [5] Gebelein B, Urrutia R: Sequence-specific transcriptional repres-sion by KS1, a multiple-zinc-finger-Kruppel-associated box protein. Mol Cell Biol. 21: 928-939, 2001
    [6] Vissing H, Meyer W K, Aagaard L, Tommerup N, Thiesen H J. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. Febs Lett. 369: 153-157, 1995
    [7] Edelstein L C, Collins T. The SCAN domain family of zinc fin-ger transcription factors. Gene. 359: 1-17, 2005
    [8] Thiesen H J. The KOX zinc finger genes: genome wide mapping of 368 ZNF PAC clones with zinc finger gene clusters predomi-nantly in 23 chromosomal loci are confirmed by human se-quences annotated in EnsEMBL. Cytogenet Genome Res. 98: 147-153, 2002
    [9] Hamilton A T, Huntley S, Kim J, Branscomb E, Stubbs L. Line-age-specific expansion of KRAB zinc-finger transcription factor genes: implications for the evolution of vertebrate regulatory networks. Cold Spring Harb Symp Quant Biol. 68: 131-140, 2003
    [10] Friedman J R, Fredericks W J, Jensen D E, Speicher D W, Huang X P, Neilson E G, Rauscher F J 3rd. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10: 2067-2078, 1996
    [11] Bellefroid E J, Poncelet D A, Lecocq P J, Revelant O, Martial J A. The evolutionarily conserved Kruppel-associated box domain de-fines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci USA. 88: 3608-3612, 1991
    [12] Gou DM, Wang J, Gao L et al: Identification and functional analysis of a novel human KRAB/C_2H_2 zinc finger gene ZNF300. Biochim Biophys Acta. 1676(2): 203-9, 2004
    [13] Nolte RT, Conlin RM, Harrison SC et al: Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor ⅢA complex. Proc Natl Acad Sci U S A. 95(6): 2938-43, 1998
    [14] Zawia NH: transcriptional involvement in neurotoxicity. Toxicol Appl Pharmacol. 190(2): 177-88, 2003
    [15] Krishna SS, Majumdar I, Grishin NV: Structural classification of zinc fingers: Survey and summary. Nucleic Acids Res. 31(2): 532-50, 2003
    [16] Lu D, Searles MA. Klug A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature, 426: 96-100, 2003
    [17] Mackay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem. Sci. 23: 1-4, 1998
    [18] Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70: 313-340, 2001
    [19] Klug A. Zinc finger peptides for the regulation of gene expression. J. Mol. Biol. 293: 215-218, 1999
    [20] Choo Y, Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc. Natl Acad. Sci. USA, 91: 11168-11172, 1994
    [21] Isalan M, Klug A, Choo Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry, 37:12026-12033, 1998
    [22] Isalan M, Choo Y, Klug A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl Acad. Sci. USA, 94: 5617-5621, 1997
    [23] Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D, Barbas CF 3rd. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. 42(7): 2137-48,2003
    [24] Kim S S, Chen Y M, O'Leary E, Witzgall R, Vidal M, Bonventre J V. A novel member of the RING finger family, KRIP-1, associ-ates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA. 93: 15299-15304,1996
    [25] Moosmann P, Georgiev 0, Le Douarin B, Bourquin J P, Schaffner W. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24: 4859-4867, 1996
    [26] Schultz D C, Ayyanathan K, Negorev D, Maul G G, Rauscher F J 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16(8): 919-932, 2002
    [27]Yang J J. A novel zinc finger protein, ZZaPK, interacts with ZAK and stimulates the ZAK-expressing cells re-entering the cell cy-cle. Biochem Biophys Res Commun. 301(1): 71-77, 2003
    [28] Cammas F, Herzog M, Lerouge T, Chambon P, Losson R. As-sociation of the transcriptional corepressor TIFlbeta with het-erochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev. 18: 2147-2160, 2004
    [29] Jheon A H, Ganss B, Cheifetz S, Sodek J. Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J Biol Chem. 276(21): 18282-18289, 2001
    [30] Tanaka K, Tsumaki N, Kozak C A, Matsumoto Y, Nakatani F, Iwamoto Y, Yamada Y. Kruppel-associated box-zinc finger protein, NT2, represses cell-type-specific promoter activity of the alpha 2(XI) collagen gene. Mol Cell Biol. 22: 4256-4267, 2002
    [31] Yun J, Lee W H. Degradation of transcription repressor ZBRKl through the ubiquitin-proteasome pathway relieves repression of Gadd45a upon DNA damage. Mol Cell Biol. (20): 7305-7314, 2003
    [32] Liu C, Levenstein M, Chen J, Tsifrina E, Yonescu R, Griffin C, Civin C I, Small D. SZF1: a novel KRAB-zinc finger gene ex-pressed in CD34+ stem/progenitor cells. Exp Hematol. 27: 313-325, 1999
    [33] Katoh 0, Oguri T, Takahashi T, Takai S, Fujiwara Y, Watanabe H. ZK1, a novel Kruppel-type zinc finger gene, is induced following exposure to ionizing radiation and enhances apoptotic cell death on hematopoietic cells. Biochem Biophys Res Commun. 249: 595-600,1998
    [34]Schnabl B, Hu K, Muhlbauer M, Hellerbrand C, Stefanovic B, Brenner D A, Scholmerich J. Zinc finger protein 267 is up-regulated during the activation process of human hepatic stel-late cells and functions as a negative transcriptional regulator of MMP-10. Biochem Biophys Res Commun. 335: 87-96,2005
    [35] Ou Y, Wang S, Cai Z, Wang Y, Wang C, Li Y, Li F, Yuan W, Liu B, Wu X, Liu M. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1. Biochem Biophys Res Commun. 333: 1034-1044, 2005
    [36] Jing Z, Liu Y, Dong M, Hu S, Huang S. Identification of the DNA binding element of the human ZNF333 protein. J Biochem Mol Biol. 37: 663-670, 2004
    [37] Hering T M, Kazmi N H, HuynhTD, Kollar J, Xu L, HunyadyAB, Johnstone B. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470. Exp Cell Res. 299: 137-147, 2004
    [38] Nielsen A L, Jorgensen P, Lerouge T, Cervino M, Chambon P, Losson R. Nizpl, a novel multitype zinc finger protein that in-teracts with the NSD1 histone lysine methyl transferase through a unique C2HR motif. Mol Cell Biol. 24: 5184-5196, 2004
    [39] Mori T, Sasaki J, Aoyama Y, Sera T. Regulation of cancer-related growth factor expression by artificial zinc-finger proteins. Nucleic Acids Symposium Series. (50): 291-292, 2006
    [40] Mino T, Hatono T, Matsumoto N, Mori T, Mineta Y, Aoyama Y, Sera T. Inhibition of DNA replication of human papillomavirus by artificial zinc finger proteins. J Virol. 80(11): 5405-12,2006
    [41] Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Surver and summary zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33(18): 5978-5990, 2005
    [42]Sera T. Inhibition of virus DNA replication by artificial zinc finger proteins. J. Virol. 79(4): 2614-2619, 2005
    [43] Eberhardy SR, Goncalves J, Coelho S, Segal DJ, Berkhout B, Barbas CF, 3rd. Inhibition of human immunodeficiency virus type 1 replication with artificial transcription factors targeting the highly conserved primer-binding site. J. Virol. 80(6): 2873-2883, 2006
    [44] Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc. 1(3):1637-52, 2006
    [45] Gao J, Liu YG, Zhou Y, Boxer LM, Woolley FR, Zingaro RA. Artificial Zinc(II) Complexes Regulate Cell Cycle and Apoptosis-Related Genes in Tumor Cell Lines. Chembiochem. 8(3): 332-340, 2007
    [46] Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH. Regulation of Arabidopsis thaliana 4-coumarate:coenzyme-A ligase-1 expression by artificial zinc finger chimeras. Plant Biotechnol J. 4(1): 103-14, 2006
    [47] Kang JS. Correlation between functional and binding activities of designer zinc-finger proteins. Biochem J. 403(1): 177-82,2007
    [48] Park KS, Kim JS. Engineering of GAL1 promoter-driven expression system with artificial transcription factors. Biochem Biophys Res Commun. 351(2): 412-7, 2006
    [49] Deuschle U, Meyer WK, Thiesen H J. Tetracycline-reversible silencing of eukaryotic promoters. Mol Cell Biol. 15: 1907-1914, 1995
    [50] Kuhnel F, Zender L, Wirth T, Schulte B, Trautwein C, Manns M, Kubicka S. Tumor-specific adenoviral gene therapy: transcrip-tional repression of gene expression by utilizing p53-signal transduction pathways. Cancer Gene Ther. 11: 28-40, 2004
    
    [51] Reynolds L, Ullman C, Moore M, Isalan M, West M J, Clapham P, Klug A, Choo Y. Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci USA. 100: 1615-1620, 2003
    
    [52] Chan D, Wilson T J, Xu D, Cowdery H E, Sanij E, Hertzog P J, Kola I. Transformation induced by Ewing' s sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1. Br J Cancer. 88: 137-145, 2003
    
    [53] Yaghmai R, Cutting G R. Optimized regulation of gene expres-sion using artificial transcription factors. Mol Ther. 5: 685-694, 2002
    
    [54] Fredericks W J, Ayyanathan K, Herlyn M, Friedman J R, Rauscher F J 3rd. An engineered PAX3-KRAB transcriptional repressor inhibits the malignant phenotype of alveolar rhabdo-myosarcoma cells harboring the endogenous PAX3-FKHR onco-gene. Mol Cell Biol. 20: 5019-5031, 2000
    
    [55] Lund C V, Blancafort P, Popkov M, Barbas C F 3rd. Promoter-targeted phage display selections with preassembled syn-thetic zinc finger libraries for endogenous gene regulation. J Mol Biol. 340(3): 599-613, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700