锌指结构转录因子Osterix在氟性骨损伤骨周化骨中的分子作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟性骨损伤(fluoride bone injury, FBI)骨周化骨是一种特殊的异位骨化形式(Heterotopic ossification,HO),其主要临床表现为广泛性骨质增生/硬化、骨软化、骨质疏松、骨间膜、肌键和韧带钙化等。国内外关于FBI的研究大多集中在氟(fluoride, F)对骨细胞的损伤方面,对F导致骨关节硬化方面的研究较少,而后者才是导致慢性FBI患者致瘫致残的重要原因。
     成纤维细胞(fibroblast,FB)起源于胚胎间充质干细胞(mesenchymal stem cells, MSCs),具有多分化潜能,在在F的刺激作用或某些病理条件下,这些FB还可进一步向成骨细胞(osteoblast, OB)转化,进一步在非骨组织内发生钙化,引起HO。因此,本实验选择具有成骨潜能的FB作为研究对象,通过建立体外染F模型,并对不同染F剂量组和时间段的染氟成纤维细胞(fibroblast exposed to fluoride, FBEF)的活力和增殖活性进行了初步鉴定,并在此基础上,进一步研究了F对锌指结构转录因子Osterix(Osx)和骨钙素(Osteocalcin, Ocn)转录和表达的影响。初步分析了:1)引起FB向成骨表型转换的最佳染F时间剂量;2)Osx和Ocn在此转换过程中转录或表达的变化情况,分析引起二者变化的最佳染F时间和剂量,并进一步分析二者转录或表达之间的相关性;3)检测Osx和Cbfα1在职业性F暴露人群中的表达水平;4)探讨Osx和Cbfα1在FBI骨周化骨过程中的作用机制,进一步阐明F-FB-FBI骨周化骨三者之间的关系。
     本研究主要由以下三部分组成:
     第一部分不同染氟剂量组和染氟时间段染氟成
     纤维细胞的增殖活性
     目的:建立体外传代培养小鼠FB L929染F模型,探讨F对小鼠FB L929活力和增殖活性的影响,为第二部分的试验确定合适的染F剂量和染F时间。方法:传代培养的小鼠FB L929分别预设七个染F剂量组:0.0001、0.001、0.01、0.1、1、10、20mg/L,9个染F时间段:1、2、4、8、12、24、48、72、96h,采用台盼蓝排斥试验法,观察不同染F剂量组和不同染F时间段FB的存活情况;用MTT法测定FBEF的增殖活性。
     结果:1)细胞活力:与对照组相比,0.1、1、10和20mg/L剂量组活细胞率明显下降(p<0.05),仅20mg/L剂量组的活细胞率小于50%;2)细胞增殖活性:0.0001mg/L和0.001mg/L剂量组,几乎在各染F时间段FB的增殖活力均增加(p<0.05),其中在12、24和48细胞活性增加比较明显(p<0.05);0.01mg/L和0.1mg/L剂量组,只有12、24、48和72h细胞活性增加(p<0.05),其余各组均随染F时间的延长和染F剂量的增加,细胞增殖活性呈现明显下降趋势。
     结论:1)F对FB的活力有抑制作用,染F剂量与FB活细胞率呈现明显的剂量-效应关系;2)F对FB的增殖活性的影响呈现一定的剂量-时间-效应关系,即短时间-低剂量的F明显增强FB的增殖活力,随着染F剂量的增加和染F时间的延长,FB的增殖活力明显减弱。确定后续实验的染F剂量为0.0001、0.001、0.01、0.1、1、10mg/L,染F时间为2、4、8、12、24、48、72、96h。
     第二部分锌指结构转录因子Osterix和骨钙素在染氟成纤维细胞中的表达
     目的:检测Osx和Ocn基因在FBEF中的转录和蛋白表达,探讨Osx和Ocn在FBI骨周化骨中作用机制。
     方法:1)Osx和Ocn蛋白的检测:将传代培养小鼠FB L929分别暴露于以下6个不同的染F剂量组:0.0001、0.001、0.01、0.1、1、10mg/L,分别按8个时间段进行染F:2、4、8、12、24、48、72、96h,分别采用Western blot和Elisa法,分别检测Osx和Ocn蛋白在每个染F时间段和染F剂量组的FBEF中的表达量;2)Osx和Ocn mRNA基因的检测:将传代培养小鼠FB L929分别暴露于以下6个不同的染F剂量组:0.0001、0.001、0.01、0.1、1、10mg/LNaF,分别染F 24、48、72h后,提取各个剂量组和染F时间段的mRNA进行逆转录,然后采用荧光实时定量PCR的方法,对各个剂量组和染F时间段的mRNA进行相对定量。
     结果:1)Osx蛋白的检测结果:①与对照组相比:染F 12和48h,0.0001和1mg/L剂量组Osx表达量升高比较明显(p<0.05);染F 24h,0.0001、0.01和0.1 mg/L剂量组Osx表达量明显升高(p<0.05);染F 72h,1和10mg/L剂量组Osx表达量明显升高(p<0.05);染F 96h,仅在0.001mg/L剂量组Osx表达量明显升高(p<0.05);②与8h相比:染F 12h的0.0001和1mg/L剂量组和染F 48h的1mg/L剂量组Osx表达量明显升高(p<0.05);染F 24h时几乎所有剂量组的Osx表达量均明显升高(p<0.05);染F 72~96h时大部分剂量组的Osx表达量均明显降低(p<0.05);总的来看,在各染F剂量组Osx表达量在24h时达最高,其余剂量组,随着染F时间的延长Osx蛋白的表达量呈逐渐降低的趋势;2)Ocn蛋白的检测结果:①与0 mg/L组相比,染F 24h,0.001、0.1和10mg/L剂量组的Ocn浓度显著性增高(p<0.05);染F 48~96h,10mg/L剂量组的Ocn浓度明显升高(p<0.05);②与8h相比,染F 24h的大部分剂量组和染F 72h的10mg/L剂量组的Ocn浓度呈明显升高(p<0.05);染F 48~96h,各剂量组中的Ocn浓度呈明显下降趋势;总的来看,各剂量组的Ocn浓度随着染F时间的延长有降低的趋势,个别剂量组在24h时则明显上升;3)Osx mRNA基因的检测结果:染F 24和48h时,各个剂量组Osx mRNA的转录水平均呈增高趋势,尤其在1和10mg/L剂量组中增加比较明显(p<0.05);染F 72h时Osx mRNA的转录水平总体呈现下降趋势,仅在1和10mg/L剂量组转录水平有所增加;4)Ocn mRNA基因的检测结果:染F 24h,Ocn mRNA的转录水平较对照组明显增高(p<0.05);染F 48h,各剂量组的Ocn mRNA转录水平总体呈现先下降后升高的趋势;染F 72h,各个剂量组Ocn mRNA的转录水平则呈现先升高后下降的趋势,但Ocn mRNA的转录水平均较对照组高。结论:1)F可促进Osx和Ocn基因在FBEF的转录和表达,而且Osx和Ocn基因的转录和表达呈现时间-效应关系,24h的0.0001mg/L剂量组和48h的1mg/L剂量组是引起Osx蛋白表达的最佳条件,引起Osx mRNA转录的最佳时间-剂量则为24h和48h的10mg/L剂量组;2)染F可刺激FB向OB的转化,并促进Osx基因的转录和表达,并进一步促进成骨标志性基因Ocn的转录和表达,Osx基因可能是FBI骨周化骨过程中重要的调控基因。
     第三部分锌指结构转录因子Osterix和核心转录因子Cbfα1在不同职业性氟负荷人群中的检测
     目的:在蛋白表达水平上,观察Osx和Cbfα1在不同职业性F负荷人群中的表达,探讨Osx和Cbfα1在FBI骨周化骨中的作用机制。
     方法:选取湖北某铝业集团连续工作5年以上的男性工人为研究对象,然后根据F负荷(血F和尿F浓度)将观察对象分为三组:对照组(血F<0.16mg/L且尿F<2mg/L),低F负荷组(0.16mg/L≤血F<0.25mg/L且2mg/L≤尿F<4mg/L)和高F负荷组(0.25mg/L≤血F且4mg/L≤尿F),采用Elisa法分别检测血清Osx和Cbfα1的含量。
     结果:1)血氟和尿氟检测结果:中F负荷组和高F负荷组的尿F浓度与对照组相比明显升高(p<0.05),而血清F仅在高F负荷组升高较明显(p<0.05);与中F负荷组相比,高F负荷组的血清F和尿F均明显升高(p<0.05);2)血清Osx和Cbfα1检测结果:①与对照组相比,中F负荷组的血清Osx浓度明显升高(p<0.05),而血清Cbfα1升高却不太明显;②与中F负荷组相比,高F负荷组血清Osx和Cbfα1的浓度均明显降低(p<0.05)。
     结论:Osx和Cbfα1基因可能是FBI骨周化骨过程中两个比较重要的调控基因,而且血清Osx变化较Cbfα1更明显,在成骨过程中更具特异性。因此,可以初步推测血清Osx和Cbfα1可能是FBI早期损伤诊断的参考指标,尤其是Osx可能是FBI骨周化骨过程中重要的调控点之一。
Ossification around bone in fluoride bone injury(FBI) is a special kind of heterotopic ossification(HO), and its main clinical manifestation include extensive hyperostosis osteosclerosis, osteomalacia, osteoporosis, and calcification of interosseous membrane, muscle Tendon and ligament, and so on, which may be the important factor leading to paralysis and mutilation. At home and abroad, there are many reports on FBI, most of which focus on the bone cells injuried by fluoride(F), but neglect that the pathomechanism of arthrosclerosis caused by F, which is the main risk factor seriously endangering the life of people's health.
     Fibroblast (FB), is derived from embryo mesenchyme cell with multi-differentiation potential. Under the stimulation of F or other pathological conditions, they can be transformated into osteoblasts(OB), which could promote calcification in the non-bone tissue, a kind of HO. Therefore, we choose FB, with osteogenic potential, as experimental subject, establish model of F expousure in vitro, and preliminarily identify the vitality and proliferative activity of FB exposed to fluoride(FBEF) at different times and doses of F-expousure. And on this basis, we detect the transcription and expression of Osterix(Osx) and Osteocalcin (Ocn) at the given time-and dose-F exposure group, to find and analyse the following: 1) optimal time and dose of F exposure in F giving rise to the conversion from FB to OB phenotype; 2) in this process of conversion, to analyse the changes of transcription or expression of Osx and Ocn, and find the best time and dose of their change point caused by F exposure, and the relationship between Osx and Ocn in the level of transcription or expression; 3) inspect and measure the expression level of Osx and Cbfα1 protein in the occupational fluoride exposure crowd; 4) investigate the molecular mechanism of Osx and Cbfα1 in causing ossification around bone of FBI, and interpret the relationship of F-FB-FBI.
     This study is composed by the following three parts:
     Part I The proliferative activity of different doses and times of fluoride exposure
     Objective To investigate the effect of F on the viability and proliferation activity of FB, and determine the appropriate dose and time of F exposure for the second part of the test, we establish the model of subculturing mouse FB L929 exposed to F in vitro. Methods Subculturing mouse FB L929 in vitro, which were respectively exposed to seven pre-seted F-dose group, that is 0.0001, 0.001, 0.01, 0.1, 1, 10, 20 mg/L, and nine F exposure time, that is 1, 2, 4, 8, 12, 24, 48, 72, 96h. We use the test of trypanblau exclusion and MTT to observe survival condition and proliferative activity of FBEF at the abrove seted group. Results 1) viability: compared with the control group, the survival condition of FB in the dose of 0.1, 1, 10 and 20mg/L significantly decrease (p <0.05), except 20mg/L group, in which the viability of FB is under 50%; 2) Activity of proliferation: compared with the control group, in the group of 0.0001 and 0.001mg/L, the proliferation activity of FB takes on increase almost at all time (p <0.05), especial in the time group of 12, 24 and 48h, increase is obvious (p <0.05); while in the group of 0.01 and 0.1mg/L, the obvious increase trend is found only in 12, 24, 48 and 72h (p <0.05), in the rest group, activity of FB proliferating is under a clear downward trend with the increase of F-dose and prolong F exposure time. Conclusion 1) F plays a role of inhibition on the vitality of FB, and there is a clear dose-response relationship between the dose of F and the survival conditional of FB; and 2) it is the same with the activity of FB proliferation, which also shows on a certain dose-time-effect relationship, that is, F significantly enhanced the vitality of FB proliferation in short period of F exposure time and a low dose of F, otherwise decrease with the increase F exposure time and F dose. Except the dose of 20 mg/L and the time for F exposure 1h, the rest groups are all chosen in the follow-up experiment.
     Part II The expression of Zinc finger transcription factor Osterix and Osteocalcin in fibroblast exposed to fluoride
     Objective Detection of the transcription and protein expression of Osx and Ocn gene in FBEF, to investigate the molecular mechanism of Osx and Ocn gene in ossification around bone of FBI. Methods The diction of Osx and Ocn protein: Subculturing mouse FB L929 in vitro, and then exposing them to the above seted dose group and F exposure time, using the method of Western blot and Elisa to respectively detect the expression of Osx and Ocn, and the method of fluorescence real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) to relative quantificate the level of transcription of Osx and Ocn mRNA, but we only choose three F exposed time group and all F dose groups to detect. Results 1) The results of Osx protein:①Compared with the control group, Osx protein significantly increase in follow-up group(p <0.05), the group 0.0001 and 1mg/L with F exposure 12 and 48h, the group 0.0001, 0.01 and 0.1 mg/L with F exposure 24h, the group 1 and 10mg/L with F exposure 72h, and the group 0.001mg/L with F exposure 96h;②Compared with the group with F exposed 8h, Osx protein significantly increases in follow-up group(p <0.05), the group 0.0001 and 1mg/L with F exposed 12h, the group 1mg/L with F exposed 48h, and all the groups with F exposed 24h; but in most of groups with F exposed 96h, Osx protein significantly decreases (p <0.05); Overall, the expression of Osx protein in all dose groups reached the highest at F exposed 24h, and then gradually decreases with F dose increasing and F exposed time prolonging; 2) The results of Ocn protein:①Compared with the 0 mg/L group, Ocn protein significantly increases in follow-up group(p <0.05), the group 0.001, 0.1 and 10mg/L with F exposed 24h, the group 10mg/L with F exposed 48 ~ 96h ;②Compared with the group with F exposed 8h, Ocn protein significantly increases in the majority of groups with F exposed 24h, and the 10mg/L with most F exposed 72h, but the concentration of Ocn significantly downward in all groups with F exposed 48 ~ 96h; Overall, the concentration of Ocn shows decrease trend in all the dose groups with the extension of F exposure, only few groups significantly increase when FB is exposed to F 24h; 3) The transcription level of Osx mRNA: Compared with the control group, Osx mRNA increases in all groups and time groups, especially in the group 1 and 10mg/L with F exposed 24 and 48h, increasing obviously (p <0.05); 4) The transcription level of Ocn mRNA: Compared with the control group, the change trend is almost the same with that of Osx mRNA, only when FB is exposed to F 72h, the former increases at first and then shows a downward trend, while the latter Osx mRNA decreases all the time, but the level of transcription Ocn mRNA and Osx mRNA are higher than the control group.
     Conclusion 1) F can promote the transcription and expression of Osx and Ocn gene in FBEF, and the effect shows a time-effect relationship; 2) the group 0.0001mg/L at 24h and the group 1mg/L at 48h are the best conditions to promote the expression Osx, and the group 10mg/L at 24 and 48h to the transcription level of Osx mRNA; 3) F can stimulate FB convert into OB, promote the transcription and expression of Osx gene, and then further promote the transcription and expression of Ocn, which belongs to the OB special marker genes; 4) Osx gene is likely to be an important regulatory factor in the course of FBI.
     Part III The detection of Zinc finger transcription factor Osterix and core transcription factor Cbfα1 in different fluoride burden groups
     Objective In the level of gene expression, to detect the concentration of serum Osx and Cbfα1 in different occupational crowd of fluoride exposure, to investigate the molecular mechanism of Osx and Cbfα1 in ossification around bone of fluoride bone injury. Methods Choose male people who have worked more than five years in the Aluminum plant in Hubei Province. According to the concentrations of their serum F and urine F, the subjects are divided into three groups: control group (serum-F<0.16mg/L and urineF<2 mg/L), low-load group fluoride (0.16mg/L≤serum-F<0.25mg/L and 2mg/L≤urine-F <4mg/L) and high-F load group (0.25mg/L≤serum-F and 4mg/L≤urine-F). The concentration of serum Osterix and cbfα1 are detected by the method of Elisa. Results 1) The result of serum-F and urine-F: Compared to the control group, the urine-F significantly increases in both low and high fluorine burden group (p <0.05), but and the serum-F significantly increases only in high group (p <0.05); Compared to the low group, both serum-F and urine-F significantly increase in high group (p <0.05). 2) The result of serum Osx and Cbfα1: Compared to the control group, both serum Osx and Cbfα1 in low group increase, but there is significant statistical significance to the serum Osx (p <0.05); Compared to the low group, both serum Osx and Cbfα1 significantly decrease in high group (p <0.05). Conclusion In the process of ossification around bone of FBI, Osx and Cbfα1 may be two more important controlling genes than other transcription factors. At the same time, we also found that the change of serum Osx is more sensitive and specific than that of Cbfα1 in the process of regulation in ossification. Therefore, it can be initially assumed that serum Osx and Cbfα1 may be a reference indicator for early diagnosis of FBI, and especially Osx may be one of important control points in the causing of ossification around bone of FBI.
引文
1. Ducy P, Karsenty G. Two distinct osteoblast-speeific cis-acting elements control expression of a mouse osteocalcin gene.Mol Cell Biol, 1995, 15(4):1858-1869.
    2.曾家顺,李龙,莫英曼,等. BMP-2和BMP-7在氟中毒大鼠膝关节滑膜中的表达[J].中国地方病学杂志.2009,28(1):28-31.
    3. Nakashima K, Zhou X, de Crombrugghe B et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002, 108:17-19.
    4. Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun 2006:341: 1257-1265.
    5. S.Sun, Z.Wang, Y Hao. Osterix overexpression enhances osteoblast differentiation of muscle satellite cells in vitro. Int.J.Oral Maxillofac Surg.2008, 37:350-356.
    6.梁君慧,陈风琴,成小梅.氟骨症患者骨密度与血清骨钙素和生化指标的相关分析[J].中国地方病学杂志, 2002,21(4):304-305.
    7. Boguslawski G, Hale LV, YU XP, et al. Activation of osteocalcin transcription involves interaction of protein kinase A-and protein kinase C-dependent pathways. Biol Chem, 2000, 275:999-1006.
    8. Xiao G. Jiang D, Gopalakrishnan R, et al. Fibroblast growth factory 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. Biol Chem, 2002, 277: 36181-36187.
    9.骆泉丰,王兴,梁成等.成纤维细胞样细胞转化为成骨细胞的实验研究[J].中华口腔医学杂志(口腔生物医学研究). 2005, 40(4):327-330.
    10. Veron MH, Couble ML, Magloire H.Selective inhibition of collagen synthesis by fluoride in human pulp fibroblasts in vitro. Calcif Tissue Int. 1993;53(1):38-44.
    11. Oguro A, Cervenka J, Horii K. Effect of sodium fluoride on chromosomal ploidy and breakage in cultured human diploid cells (IMR-90): an evaluation of continuous and short-time treatment. Pharmacol Toxicol. 1995,76(4):292-6.
    12.李广生,井玲.关注氟化物的剂量-效应问题[J].中国地方病学杂志,2004,23(2):1-2.
    13. Fan D,Chen Z,Wang D,et al.Osterix is a key target for echanical signals in human thoracic ligament flavum cells.J Cell Physiol. 2007, 211(3):577-584.
    14. Matsubara T, Kida K, Yamaguchi A, et al. BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008, 283(43):29119-25.
    15. Kaback LA, Soung do Y, Naik A, et al. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Bio chem. 2008 Sep 1,105(1):219-26.
    16. Zhang C, Cho K, Huang Y, Lyons JP, et al. Inhibition of Wnt signaling by the osteoblast-specific transcription factor osterix. Proc Natl Acad Sci U S A. 2008 May 13,105(19):6936-41.
    17. Ulsamer A, Ortu?o MJ, Ruiz S, et al. BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Biol Chem. 2008 Feb 15,283(7):3816-26.
    18. Cao Y, Jia SF, Chakravarty G, et al. The osterix transcription factor down-regulates interleukin-1 alpha expression in mouse osteosarcoma cells. Mol Cancer Res. 2008 Jan, 6(1):119-26.
    19. Kaback LA, Soung do Y, Naik A, et al. osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. J Cell Physiol. 2008 Jan, 214(1):173-82.
    20. Ali MM, Yoshizawa T, Ishibashi O, et al. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci. 2007 Aug 1,120(Pt 15):2565-73.
    21. Zheng L, Iohara K, Ishikawa M, et al. Runx3 negatively regulates osterix expression in dental pulp cells. Biochem J. 2007 Jul 1, 405(1):69-75.
    22. Tu Q, Valverde P, Li S,et al. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng. 2007 Oct, 13(10):2431-40.
    23. Hatta M, Yoshimura Y, Deyama Y,et al. Molecular characterization of the zinc finger transcription factor osterix. Int J Mol Med. 2006 Mar, 17(3):425-30.
    24. Lee JY, Lee YM, Kim MJ, et al. Methylation of the mouse DIx5 and Osx gene promoters regulates cell type-specific gene expression. Mol Cell.2006, 22: 182–188.
    25. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108: 17–29.
    26. Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of the zinc finger osterix/Sp7 gene. Gene 2006, 372: 62–70.
    27. Kazuhisa Nakashima, Xin Zhou, Gary Kunkel, et al. The novel zinc Finger- containing transcription factor osterix is required for osteoblast differentiation and bone formation.cell, 2002, 108:17-29.
    28. Huihua Fu, Bruce Doll, Tim McNelis, et al. Osteoblast differentiation in vitro and in vivo promoted by osterix. Wiley Periodicals, Inc.2007, 770-778.
    29. Nicholas J. Timpson1, Jon H. Tobias2, J. Brent Richards, et al. Common variants in the region around osterix are associated with bone mineral density and growth in childhood. Human Molecular Genetics, 2009, 18(8): 1510-1517.
    30. Sato I, Sunohara M, Sato T. Quantitative analysis of extracellular matrix proteins in hypertrophic layers of the mandibular condyle and temporal bone during human fetal development. Cells Tissues Organs, 1999, 165(2):81-90.
    31. Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989, 69(3):990-1047.
    32. Thiede MA, Smock SL, Petersen DN,et al. Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelet.Endocrinology,1994,135(3):929 -937.
    33. Ichikawa H, Itota T, Torii Y, et al.Osteocalcin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems. Brain Res. 1999, 838(1-2):205-209.
    34. Benayahu D, Shamay A, Wientroub S. Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes. Biochem Biophys Res Commun, 1997, 231(2):442-446.
    35.王萧枫,高根德.强直脊柱炎成纤维细胞分泌骨钙素的实验研究[J].中国矫形外科杂志2002,9(4):367-369.
    36.张兴凯,杨庆铭,邓廉夫,等.骨质疏松成骨细胞生物学特征的体外研究[J].中国骨质疏松杂志,2004, 10(1):48-51.
    37. Gruber R, Baron M, Busenlechner D, et al. Proliferation and osteogenic differentiation of cells from cortical bone cylinders, bone particles from mill, and drilling dust. J Oral Maxillofac Surg 2005,63:238-243.
    38. Montjovent MO, Burri N, Mark S, et al. Fetal bone cells for tissue engineering. Bone 2004,35:1323-1333.
    39. Thomas DM, Johnson SA, Sims NA, et al. Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 2004, 167:925-934.
    40. Ishigaki R, Takagi M, Igarashi M, et al. Gene expression and immunohistochemical localization of osteonectin in association with early bone formation in the developing mandible. Histochem J 2002, 34:57-66.
    41.李丹,王育珊,李广生,等.氟对大鼠成骨细胞Runx2表达的影响[J].中国地方病学杂志.2008, 27(4):368-370.
    42.井玲,齐玲,李广生,等.氟对成纤维细胞和成骨细胞核心结合因子α1表达的影响[J].中国地方病学杂志,2006, 25(6):629-632.
    43. Ayse B, Celil, Jeffrey O.Hollinger, et al. Osx Transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling.Cellular Biochemistry.2005, 95:518- 528.
    44. LeeMH, Kwon TG, ParkHS, et a.l BMP-2-induced osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys ResCommun, 2003, 309(3): 689.
    45. Akiyama H, Chaboissier MC, Martin JF, et a.l The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. GenesDev, 2002, 16(21): 2813.
    46. NakashimaK, Crombrugghe B. Transcriptional mechanisms in osteoblast differentia-tion and bone formation. TrendsGenet,2003,19(8):458.
    47. LEE.KABACK, DO Y.SOUNG, AMISH NAIK, et al. Osterix/Sp7 regulates mesenchymal stem cell mediated endochondral ossification. Cell Physiol.2008, 214:173-182.
    48. Naha shima K, Zhou X, Kunkel G, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast diferentiation and bone formation L CeU, 2002,108:7-29.
    49. Thirunavukkarasu K, MahajanM, McLarren KW, et al. Two domains unique to osteoblast-specific transcription factor Osf2 /Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. MolCellBiol,1998, 18(5):4197.
    50. Xiang QY,Liang YX,Chen BH,et al.Serum fluoride and dental fluorosis in two villages in china.Fluoride,2004,37(1):305-305.
    51. Krook L, Minor RR. Fluoride and alkaline phosphatase. Fluoride 1998, 31:177-82.
    52.董世武,应大君,段小军,等.核心结合因子a1骨髓间充质干细胞成骨成骨细胞标志基因表达的影响[J].中国修复重建外科杂志.2005,19:746-750.
    53.徐道志,詹红生,赵咏芳.成骨细胞分化与骨骼发育的转录因子Cbfα1/ Runx2[J].中医正骨.2006,18:61-63.
    54. KomoriT. Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab. 2003, 21(4): 193.
    55. Ling Wu, Yao Wu, Yunfeng Lin, et al. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Mol Cell Biochem. 2007, 301:83-92.
    56.刘宏伟,黄长青,张海娟,等.地方性氟骨症骨周软组织钙化的放射学观察[J].中国地方病防治杂志.2007,22(4):279-280.
    1. Frank J. A new concept of the effect of fluoride on bone. Fluoride, 12(4):195-20.
    2.任立群,李广生,孙波.不同钙含量饲养条件下氟中毒对大鼠骨转换的影响[J].中华病理学杂志,1997,26(5):277-280.
    3.张文岚,薛立娟,崔亚南,等.不同剂量氟对大鼠成骨细胞激活与BMP-4、BMP-2、和Smad-4表达的影响[J].中国地方病学杂志,2006,25(2):125-128.
    4.张伟国,王丽珍,刘正.氟对鼠颅骨成骨细胞基质蛋白表达的影响[J],上海口腔医学, 1998,7:94-98.
    5.张文岚,崔亚南,高申,等.过摄入氟后激活的成骨细胞系原癌基因的表达[J].中华预防医学杂志,2003,37(4):246-250.
    6.井玲,齐玲,李彤,等.氟对成纤维细胞和成骨细胞核心结合因子α1表达的影响[J].中国地方病学杂志.2006,25(6):629-632.
    7. Krook L, Minor RR. Fluoride and alkaline phosphatase. Fluoride 1998, 31:177-82.
    8. Bely M, Ferencz G. Itai K, et al. Experimental osteofluorosis and arthrofluorosis in rats. Fluoride, 1997, 30(2):113-114.
    9.任立群,李广生.不同钙含量饲养条件下氟中毒大鼠对骨转换的影响[J].中华病理学杂志,1997,26(5):277-280.
    10.谭皓,刘克俭,鲁翠荣,等.氟致骨相损伤早期诊断指标的实验研究[J].工业卫生与职业病,2005,31(3):149~152.
    11.刘晓秋,孙波,李广生.家兔慢性氟中毒骨骼病理与形态计量学研究[J].中国地方病学杂志,2002,20(5):335-338.
    12. Faccini JM, Teotia SPS. Histopathology assesment of endemic skeletal fluorosis. Calcified Tissue Res, 1974,16:45-47.
    13. Teotia SPS, Teotia M, Teotia NPS. Skeletal fluorosis: roentgenologicaland
    histopathological study. Fluoride, 1976,9(2):91-98.
    14.任立群,李广生.钙营养对氟的骨骼毒性的影响[J].中国地方病防治杂志, 1999,14(1):3-5.
    15. Liu BC, Xu ZL, Miao Q,et al. Expression of type II collagen gene and structural change in bone tissues of rats with experimental fluorosis. Zhonghua Yu Fang Yi Xue Za Zhi. 2003:37(4):243-5.
    16.刘秉慈,许增禄,缪庆,等.实验性氟中毒骨组织中Ⅱ型胶原基因表达及结构的改变[J].中国预防医学杂志.2003, 37(4):243-245.
    17.傅可为,刘晓雁,汤瑞琦,孙美乐,沈雁峰,孙玉富,庞永旬;氟对鸡胚肢软骨细胞毒作用及铜对其拮抗效应的研究[J];中国地方病防治杂志;1995,2:123-124.
    18. Bely M, Ferencz G, Itai K,et al. Experimental osteofluorosis and arthrofluorosis in rats. Fluoride, 1997,30(2):113-114.
    19. Xiang Z, Aubin JE, Inman RD.Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol, 2003, 15:387-393.
    20. G.Karsenty, E.F. Wagner, Dev. Reaching a genetic and molecular understanding of skeletal development. Cell, 2002,2 (4):389–406.
    21. T. Komori. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006, 99(5):1233-1239.
    22. Okzaki K, Sandell L.J. Extracellular matrix gene regulation. Clin Orthop, 2004,4 27(suppl):123s-128s.
    23. Saito T, Ogawa M, Hata Y, et al. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts.J Endod, 2004,30:205-208.
    24. Zheng H, Guo Z, Ma Q, et al. Cbfa1/osf2 transduced bone marrow stromal cell facilitate bone formation in vitro and in vivo. Calcif Tissue Int, 2004,7:194-203.
    25. G. Xiao, D. Jiang, P. Thomas, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000, 275(6): 4453-4459.
    26. T. Fujita, Y. Azuma, R. Fukuyama, et al. Runx2 induces osteoblast and chondrocytedifferentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol, 2004,166:(1) 85-95.
    27. J. Pratap, M. Galindo, S.K. Zaidi, et al. Cell growth regulatory role of Runx2 during proliferative expansion of pmosteoblasts.Cancer Res, 2003,63(17):5357-5362.
    28. G.S. Stein, J.B. Lian, A.J. van Wijnen, et al. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004, 23(24):4315-4329.
    29. Z. Maruyama, C.A. Yoshida, T. Furuichi, et al. Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev Dynam, 2007,236(7):1876-1890.
    30. W. Liu, S. Toyosawa, T. Furuichi, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures.J Cell Biol, 2001,155(1):157-166.
    31. G. Dobreva, M.Chahrour,M.Dautzenberg, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell, 2006, 125(5):971-986.
    32. S. Kim, T. Koga, M. Isobe, et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 2003,17 (16):1979–1991.
    33. Zhou G, Zheng Q, Engin F, et al. Dominance of Sox9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA. 2006, 103(50):19004-09.
    34. K. Schmidt, T. Schinke, M. Haberland, et al. The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation. J Cell Biol. 2005,168 (6):899–910.
    35. Zaidi SK, Sullivan AJ, Medina R, et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J, 2004,23 (4):790-99.
    36. C.J. Lengner, H.A. Steinman, J. Gagnon, et al. Osteoblast differentiation and skeletal development are regulated by mdm2-p53 signaling. J Cell Biol, 2006,172(6):909–921.
    37. X. Wang, H.Y. Kua, Y. Hu, et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling.J.Cell Biol, 2006,172(1):115-25.
    38. Hong JH, Hwang ES, McManus MT, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 2005,309 (5737):1074-78.
    39. Kanatani N, Fujita T, Fukuyama R, et al. Cbf beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol. 2006,296 (1):48–61.
    40. YW Zhang, N Yasui, K. Ito, et al. A Runx2/PEBP2 alpha A/Cbfα1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA, 2000,97(19):10549–54.
    41. M Phimphilai, Z Zhao, H Boules, et al. BMP signaling is required for Runx2- dependent induction of the osteoblast phenotype.J Bone Miner. 2006, 21(4):637-646.
    42. A. Javed, J.S. Bae, F. Afzal, et al. Structural coupling of Smad and Runx2 for execution of the BMP2 osteogenic signal. J. Biol Chem, 2008,283(13):8412-22.
    43. JJ Westendorf. Transcriptional co-repressors of Runx2. J Cell Biochem, 2006,98 (1) :54–64.
    44. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002,108 (1):17-29.
    45. Ling Wu, Yao Wu, Yunfeng Lin, et al. Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix.Mol Cell Biochem, 2007,301:83-92.
    46. Celil AB, Hollinger JO, Campbell PG. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem, 2005,95 (3):518-528.
    47. RF Robledo, L Rajan, X Li, et al. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes & Dev, 2002,16 (9):1089–1101.
    48. Levi G, Mantero S, Barbieri O, et al. Msx1 and Dlx5 act independently in development of craniofacial skeleton, but converge on the regulation of BMP signaling in palate formation. Mech. Dev, 2006,123 (1):3–16.
    49. Ma L, Golden S, Wu L, et al. The molecular basis of Boston-type craniosynostosis: the pro148-to-his mutation in the N-terminal arm of the Msx2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mol Genet, 1996,5:1915-1920
    50. Satokata I., Ma I., Ohshima H, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet, 2000, 24 (4):391-395.
    51. MQ Hassan, A Javed, M I. Morasso, et al. Dlx3 Transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol, 2004,24(20):9248-9261.
    52. Ichida F, Nishimura R, Hata K, et al. Reciprocal roles of Msx2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem, 2004,279 (32):34015–34022.
    53. Lee MH, Kim YJ, Yoon WJ, et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem, 2005,280 (42):35579-35587.
    54. MP Lynch, C Capparelli, JL Stein, et al. Apoptosis during bone-like tissue development in vitro. J Cell Biochem, 1998, 68 (1):31-49.
    55. Ishii M, Merrill AE, Chan YS, et al. Msx2 and twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development, 2003, 130 (24):6131-6142.
    56. Lee MH, Kin YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biok Chem, 2003, 278(36):34387-34394.
    57. TadicT, Dodig M, Ereeg I, etal. Overexpression of Dlx5 in chicken calvarial cells accelerates osteoblastic differentiation. J Bone Miner Res 2002; 17(6):1008-1014.
    58. N Holleville, S Mate′os, M Bontoux, et al. Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Development Biol, 2007,304 (2):860-874.
    59. Lee MH, Kwon TG, Park HS, et al. BMP-2-inducned osterix expression is mediated by Dlx5 but is independent of Runx2. Biehem BioPhys Res Cornmun, 2003,309:689-694.
    60. EF Wagner Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis. 2002,61 (Suppl2):ii40–ii42.
    61. Machwate M, Jullienne A, Moukhtar M, et al. Temporal variation of c-fosproto-oncogene expression during osteoblast differentiation and osteogenesis in developing rat bone. J Cell Biochem.1995,57 (1):62-70.
    62. Jochum W, David JP, Elliott C, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat. Med, 2000,6(9):980–984 (Erratum in: Nat.Med. 2000; 6(12):1412).
    63. Sabatakos G., Sims NA, Chen J, et al.Overexpression of deltafos-b transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med, 2000, 6(9):985-990.
    64. Eferl R, Hoebertz A, Schilling AF, et al. The fos-related antigen fra-1 is an activator of bone matrix formation. EMBO J, 2004, 23(14):2789-2799.
    65. Kenner L, Hoebertz A, Beil T, et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 2004,164(4):613–623.
    66. Stein GS, Lian JB, Stein JL, et al. Transcriptional control of osteoblast growth and differentiation. Physiol Rev, 1996, 76 (2):593-629.
    67. Chinenov Y, Kerppola TK. Close encounters of many kinds: fos-jun interactions that mediate transcription regulatory specificity. Oncogene, 2001, 20(19):2438–2452.
    68. Komori T, Yagi H, Nomura S. Targeted disruption of Cbfα1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts.Cell, 1997 89:755-764.
    69. Otto F, Thornell A.P, Crompton T. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997,89:765-771.
    70. Selvamurugan N., Ihalimati M.R., Tyson D.R., et al. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase a-dependent transactivation of core binding factor. JBiolChem, 2000,275:5037-5042.
    71. Xiao G, Jiang D., Thomas P., etal. MAPK Pathways active and phosphorylatethe osteoblast-specific transcription factor. J Biol Chem, 2000,275:4453ee4459.
    72. McLarren KW, Lo R, Grbavec D, et al. The manunalian basic helix loop helix Protein HES-1 binds to and modulates the transaetivating function of the runt-related factor Cbfal. J Biol Chem, 2000,7275(1):530-38.
    73. Karsenty G, Wagner EF. Reaching a genetie and molecular understanding of skeletaldevelopment. Dev Cell, 2002,2:389-406.
    74. Sekiya I, Tsuji K., et al. Sox9 enhanees aggrecan gene promoter/enhancer activity and is up-regulated by retinoie acid in aeartilage-derived eell line, TC6. J Biol Chem, 2000, 275:10738-10744.
    75. Xie WF, Zhang X, et al. Trans-aetivation of the mouse eartilage-derived retinoie acid-sensitive protein gene by Sox9. J Bone Miner Res, 1999,14:757-763.
    76. AKyama H, Lyons JP, et al. Interaetions between Sox9 and catenin control ehondrocyte differentiation. Genes Dev, 2004,18:1072-1087.
    77. Murakami S, Lefebvre V, de Crembrugghe B potent inhibition of the master chondrogenie faetor Sox9 gene by interleukin-1and tumor neerosis faetorα. J Biol Chem, 2000,275:3687-3692.
    78. Sitcheran R, Cogswell PC, Baldwin Jr AS NF-Kb, et al. Mediates inhibition of mesenchymal eell differentiation through a posttranseriptional gene sileneing meehanism. Genes Dev, 2003,17:2368-2373.
    79. Ayse B, Celil, Jeffrey O.Hollinger, et al. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling.Cellular Biochemistry.2005, 95:518-528.
    80. Tingjiao Liu, Yuhao Gao, Kei Sakamoto, et al. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J.Cell.Physiol. 2007,211:728-735.
    81. Mi-Hye Lee, Tae-Geon Kwon, Hyo-Sang Park, et al. BMP-2-induced osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 2003, 309: 689-694.
    82. Lee MH, Kin YJ, Kim HJ, et al. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biok Chem , 2003, 278(36):34387-34394.
    83. Mi-Hye Lee, Tae-Geon Kwon, Hyo-Sang Park, et al. BMP-2-induced osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 2003, 309: 689-694.
    84. Yagi K, Tsuji K, Nifuji A, et al. Bone morphogenetic protein-2 enchances osterix gene expression in chondrocytes. J Cell Biochem, 2003,88:1077-1083.
    85. Kazuhisa Nakashima, Xin Zhou, Gary Kunkel, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.cell, 2002, 108:17-29.
    86. Saita Y, Takagi T, Kitahara K, et al. Lack of schnurri-2 expression associates with reduced bone remodeling and osteopenia. J Biol Chem, 2007,282 (17):12907–12915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700