桦木酸与不同分子二元系统单分子层的界面相行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桦木酸(betulinic acid, BA)是许多植物表皮蜡质的组成成分,与其他蜡质分子共同构成植物与外界环境相互作用的最外层屏障。桦木酸具有多种生物活性,其中抗癌活性是通过直接作用于线粒体膜而引起癌细胞凋亡,抗疟疾活性与其引起的红细胞膜形变有关。桦木酸在植物表皮蜡质中的作用以及对动物线粒体膜、红细胞膜的影响与其单分子层相行为密切相关。本论文从这三方面入手,首次对桦木酸以及桦木酸与不同分子组成的二元系统在空气-水界面上的单分子层相行为进行了系统研究,重点探讨了桦木酸与不同分子间的相互作用以及桦木酸分子结构对这些单分子层相行为的影响。主要内容及结论如下
     第一:利用Langmuir单分子层技术,通过表面膜压-面积测量、崩塌情况分析和崩塌前后两次压缩的比较,研究了桦木酸在空气-水界面上的单分子层相行为;通过与硬脂酸、硬脂醇和胆固醇对比以及ChemBio3D Ultra模拟,重点讨论了桦木酸分子结构对其界面相行为的影响和桦木酸分子在空气-水界面上的排布。研究结果表明:在空气-水界面上自由状态下桦木酸分子以极性较大的羧基与超纯水亚相结合,分子倾斜于水面;随单分子层压缩,桦木酸分子在界面上的相行为变化可以分成三个阶段。第一阶段:随表面膜压从0开始增加,不断有桦木酸分子由倾斜取向变成近似竖直取向,以极性较小的羟基指向水面;第二阶段:表面膜压超过约30 mN/m后,越来越多的桦木酸分子转变成近似竖直取向,相邻近似竖直桦木酸分子开始通过羧基间氢键相互结合形成二聚物;第三阶段:当表面膜压超过约48 mN/m时,几乎所有桦木酸分子均取近似竖直取向且以二聚物形式存在。最终表面膜压达到约50 mN/m时桦木酸单分子层崩塌。此外,通过Langmuir-Blodgett (LB)单分子层制备技术将空气-水界面上的桦木酸单分子层转移到云母表面,利用原子力显微镜进行了表面形貌观测。研究结果表明:低表面膜压下桦木酸单分子层存在两种高度不同的区域,对应不同的分子取向;高表面膜压下较高区域多成对出现,可能与近似竖直取向桦木酸分子二聚物的形成有关。
     第二:通过表面膜压-面积测量、可混合性分析、热力学稳定性分析以及可压缩性分析,研究了桦木酸分别与植物表皮蜡质成分硬脂酸、硬脂醇组成的二元系统在空气-水界面上的单分子层相行为,重点讨论了不同成分分子间的相互作用和不同桦木酸含量、不同压缩程度下二元系统单分子层结构的变化,对比分析了硬脂酸、硬脂醇不同亲水头基对二元系统单分子层相行为的影响。研究结果表明:(1)在空气-水界面上桦木酸分子与硬脂酸分子、硬脂醇分子均存在相互作用,具有可混合性。桦木酸含量较少、表面膜压较低时,混合单分子层更倾向于凝集,热力学上更趋于稳定,不同成分分子间易于相互吸引,混合单分子层有序性高于对应单一成分单分子层;桦木酸含量较多、表面膜压较高时,混合单分子层更倾向于扩张,更容易出现相分离,不同成分分子间趋于相互排斥,混合单分子层有序性低于单一成分单分子层。因此,少量桦木酸容易插入硬脂酸、硬脂醇区域,相互吸引形成更加有序的结构,低表面膜压下表现更为明显;而硬脂酸、硬脂醇难以插入桦木酸区域,尤其是在高表面膜压下。(2)与桦木酸/硬脂酸混合单分子层相比,桦木酸/硬脂醇混合单分子层有序性增加程度较小,随单分子层压缩进入扩张状态较早、扩张程度较大,相分离和不同成分分子间斥力作用出现较早且程度较大。因此,低表面膜压下桦木酸更易于和亲水头基为羧基的短链饱和脂肪族化合物相互作用,形成较稳定的结构。
     第三:通过表面膜压-面积测量、分析以及原子力显微镜观测研究了空气-水界面上桦木酸与线粒体膜特有脂质心磷脂二元系统的单分子层相行为。可混合性分析和ChemBio3D Ultra模拟表明:对桦木酸/心磷脂混合单分子层,表面膜压低于30 mN/m时桦木酸分子倾斜取向和近似竖直取向共存,表面膜压为30 mN/m时桦木酸分子仅取近似竖直倾向;热力学稳定性分析表明:桦木酸/心磷脂混合单分子层中存在相分离和斥力相互作用;可压缩性分析表明:表面膜压30-35 mN/m范围内(对应有生物学意义的生物膜脂质双分子层),20 mol%的桦木酸导致液态压缩相的心磷脂单分子层转变为液态压缩相+液态扩张相共存的桦木酸/心磷脂混合单分子层;原子力显微镜研究表明:表面膜压为30 mN/m时心磷脂分子形成均匀致密的单分子层,20 mol%的桦木酸导致心磷脂区域呈网状结构,随桦木酸含量增加心磷脂区域分子交联程度下降,逐渐变成树枝状结构,不断变细且越来越分散。因此,对应生理条件的较高表面膜压下,在心磷脂单分子层中引入桦木酸,桦木酸分子取近似竖直取向,羟基朝向水面,引起相分离,降低了心磷脂单分子层的有序性,与体内外实验中桦木酸引起的线粒体膜损伤和通透性增加一致。
     第四:通过Langmuir单分子层表面膜压-面积测量和分析研究了桦木酸与细胞膜鞘磷脂二元系统在空气-水界面上的单分子层相行为,重点讨论了桦木酸和鞘磷脂之间的相互作用以及不同比例的桦木酸对鞘磷脂单分子层的影响,并从分子结构的角度与胆固醇/鞘磷脂二元系统在界面上的相行为进行了比较。研究结果表明:在空气-水界面上桦木酸分子与鞘磷脂分子具有可混合性,仅桦木酸含量为40 mol%时混合单分子层稳定性略有增加,不同成分分子间存在微弱的引力作用,其他含量下桦木酸分子均引起相分离,不同成分分子相互排斥,且桦木酸占绝大多数时尤为强烈。在对应生理条件的较高表面膜压下,20 mol%的桦木酸导致鞘磷脂单分子层有序性略有降低,桦木酸含量达到40 mol%时鞘磷脂单分子层结构遭到严重破坏。与胆固醇增强鞘磷脂单分子层稳定性和有序性相比,桦木酸更倾向于对鞘磷脂单分子层起破坏作用。
     除了对桦木酸以及含桦木酸二元系统界面上的单分子层相行为进行了系统研究,本论文还研究了紫杉醇/DPPC(1,2-Dipalmitoyl-rac-glycero-3-phosphocholine,二棕榈酰磷脂胆碱)二元系统在空气-水界面上的单分子层相行为。紫杉醇透过细胞膜的药物吸收过程及其脂质体制备与紫杉醇/脂质相互作用密切相关,因此,通过Langmuir单分子层表面膜压-面积测量和分析重点研究了紫杉醇与细胞膜脂质DPPC之间的相互作用,并用原子力显微镜对其单分子层微观结构进行了观测。研究结果表明:在空气-水界面上紫杉醇与DPPC相互混合,不同成分分子相互排斥,导致混合单分子中出现相分离,破坏了脂质单分子层的稳定性,证实紫杉醇改变了细胞膜脂质分子的流动性。紫杉醇含量不超过40 mol%时对DPPC单分子层响较小,紫杉醇含量超过40 mol%后DPPC单分子层结构遭到严重破坏。紫杉醇含量为40 mol%时,不同成分分子间混合程度、斥力作用和混合单分子层中相分离程度均远超过其他混合比例,且随单分子层压缩这些现象越来越明显;其他紫杉醇含量下这些现象均随单分子层压缩增强到一定程度后开始减弱。
Betulinic acid (BA) is one of the compositions of various plant cuticular waxes and exhibits multiple biological activities, including anticancer and antimalarial activities. BA can directly induce mitochondrial membrane damage and trigger the mitochondrial pathway of apoptosis in cancer cells. The antimalarial activity of BA has been linked to its ability to cause alteration of erythrocyte membrane shape. The role of BA in plant cuticular waxes and the influence of BA on mammal mitochondrial membrane and erythrocyte membrane are strictly related with the phase behavior of its monolayer. Thus, the phase behaviors of BA monolayer and binary monolayers consisting of BA and different molecules from plant cuticular wax, mammal mitochondrial membrane and erythrocyte membrane have been studied for the first time in this paper. The main points are the interactions between BA and other molecules, and the effects of the structure of BA on the phase behaviors of these monolayers. The details are summarized as follows.
     (1) Using Langmuir technique, the phase behavior of BA monolayer has been studied by surface pressure-area (π-A) measurement, collapse analysis and compare of two compression before and after collapse at the air-water interface. The molecular arrangement of BA monolayer and the effect of the structure of BA on the phase behavior have been investigated through contrast with stearic acid (SA), octadecanol (OD) and cholesterol (Chol) and by ChemBio3D Ultra modeling. The results indicate that all BA molecules take tilted orientation with carboxylic group towards water without compression, and that the phase behavior of BA monolayer can be divided into three parts with compression. Part 1:With surface pressure increasing from 0, more and more BA molecules take nearly perpendicular orientation with hydroxyl group towards water instead of tilted orientation. Part 2:With surface pressure increasing from 30 mN/m, the ratio of BA molecules with nearly perpendicular orientation increases continually with BA monolayer compression and carboxylic groups of neighbour nearly perpendicular BA molecules start to be involved in hydrogen bonds to form dimers. Part 3:With surface pressure higher than 48 mN/m, almost all BA molecules take nearly perpendicular orientation and exist in dimers. BA monolayer collapses at about 50 mN/m. Besides, BA monolayer at the air-water interface has been transferred to mica substrates through Langmuir-Blodgett deposition for atomic force microscopy (AFM) observation. The coexistence of two distinct domains with differet thickness at lower surface pressure corresponds to the different orientations of BA molecules. The thicker domains appear in pairs at higher surface pressure might be related with the formation of dimers between neighbour nearly perpendicular BA molecules.
     (2) The phase behaviors of BA/SA monolayers and BA/OD monolayers have been studied byπ-A measurement, miscibility analysis, thermodynamic stability analysis and compressibility analysis at the air-water interface. The interactions between BA and SA or OD, and the change of the structure of these binary monolayers with different BA contents and different compression degrees have been emphasized in this research. The influences of the different hydrophilic groups of SA and OD on the phase behaviors of BA/SA monolayers and BA/OD monolayers have been compared. It has been suggested that BA molecules can interact with SA or OD molecules at the air-water interface, and these binary monolayers are miscible. With smaller BA content and at lower surface pressure, different components tend to attract with each other, and the binary monolayers tend to be condensed, more stable thermodynamically, and more ordered. With larger BA content and at higer surface pressure, different components tend to repulse with each other, phase separation occurs, and the binary monolayers tend to be expanded and more disordered. These results indicate that small amount of BA can integrate into SA or OD domains and different components attract with each other to form more ordered structures, especially at lower surface pressure; and that it's hard for SA or OD to be incorporated into BA domains, especially at higher surface pressure. Comparing with BA/SA monolayers, the increase in the ordering of BA/OD monolayers is smaller, and with compression expansion, phase separation and repulsion occur earlier and are more evident in BA/OD monolayers. These results indicate that BA tends to interact with the short-chain saturated aliphatic compound with carboxylic group to form more stable monolayer at lower surface pressure.
     (3) The phase behavior of binary monolayers consisting of BA and cardiolipin (CL, a unique phospholipid found only in mitochondrial membrane in mammal) has been studied byπ-A measurement and analyses at the air-water interface and by AFM observation transferred to mica substrates. Miscibility analysis and ChemBio3D Ultra modeling present that in BA/CL monolayers BA takes both tilted and nearly perpendicular orientations at surface pressure below 30 mN/m but only nearly perpendicular orientation at 30 mN/m. Thermodynamic stability analysis indicates that phase separation and repulsion occur in BA/CL monolayers. Compressibility analysis demonstrates that at 30 mN/m,20 mol% BA does markedly translate the liquid-condensed (LC) CL monolayer to BA/CL monolayer with the coexistence of LC and liquid-expanded (LE) phases. AFM observation shows that CL molecules form a homogeneous condensed monolayer at 30 mN/m; that 20 mol% BA leads CL domains to form dense net-like structures; and that CL domains transfer to branch-like structures and the branches become slimmer and thinner with BA content increasing. These results confirm that at high surface pressure corresponding to biologic situation, BA orients nearly perpendicularly, causes phase separation and decreases the ordering of CL monolayer, which is in agreement with the mitochondrial membrane damage and permeabilization induced by BA in vitro and in vivo.
     (4) The phase behavior of binary monolayers consisting of BA and sphingomyelin (SM, cell membrane phospholipid) has been studied byπ-A measurement and analyses at the air-water interface using Langmuir technique. The main points are the interaction between BA and SM, and the influence of different BA contents on BA/SM monolayers. The phase behavior of BA/SM monolayers has also been compared with BA/Chol monolayers from the molecular structure perspective. The results indicate that BA/SM monolayers are miscible. Only 40 mol% BA increases the thermodynamic stability of BA/SM monolayers and different conponents attract with each other. With other BA content, phase separation occurs and different components repulse with each other, especially with predominant BA content. At high surface pressure corresponding to biologic situation,20 mol% BA induces a slight decrease of the ordering of SM monolayer, and 40 mol% BA results in serious damage of the structure of SM monolayer. Comparing with the increase in the stability and the ordering of SM monolayer induced by Chol, BA tends to disrupt SM monolayer.
     Besides the study of binary monolayers consisiting of BA and different molecules, the phase behavior of binary monolayers consisiting of paclitaxel and dipalmitoyl phosphatidylcholine (DPPC, cell membrane phospholipid) has also been studied at the air-water interface. The absorption of paclitaxel through cell membrane and the preparation of paclitaxel liposome are closely related to the interaction between paclitaxel and lipids. The interaction between paclitaxel and DPPC has been studied byπ-A measurement and analyses using Langmuir technique, and the microstructure of the monolayers has been investigated by AFM observation. The results present that paclitaxel/DPPC monolayers are miscible, phase separation occurs and different components repulse with each other, which is consistent with the disturbance of cell membrane fluidity by paclitaxel. With paclitaxel content no more than 40 mol%, paclitaxel has a little influence on DPPC monolayer; more than 40 mol% paclitaxel results in disruption of the structure of DPPC monolayer. With 40 mol% paclitaxel, miscibility, phase separation and repulsion are most apparent and increase with monolayer compression. With other paclitaxel content, all these states increase at first and then decrease with monolayer compression.
引文
[1]Robert H. Cichewicz, Samir A. Kouzi. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection [J]. Medicinal Research Reviews,2004,24(1):90-114.
    [2]Yogeeswari Perumal, Sriram Dharmarajan. Betulinic acid and its derivatives:A review on their biological properties [J]. Current Medicinal Chemistry,2005,12(6): 657-666.
    [3]Margaret M. O'Connell, Michael D. Bentley, Christopher S. Campbell, Barbara J.W. Cole. Betulin and lupeol in bark from four white-barked berches [J]. Phytochemistry, 1988,27:2175-2176.
    [4]Cole B J W, Bentley M D, Hua Y. Triterpenoid extractives in the outer bark of Betula lenta (black birch) [J]. Holzforschung,1991,45:265-268.
    [5]Galgon T, Hoke D, Drager B. Identification and quantification of betulinic acid [J]. Phytochemical Analysis,1999,10:187-190.
    [6]Fumiko Abe, Tatsuo Yamauchi, Tsuneatsu Nagao, Junei Kinjo, Hikaru Okabe, Hiroo Higo, Hiroshige Akahane. Ursolic Acid as a Trypanocidal Constituent in Rosemary [J]. Biological & Pharmaceutical Bulletin,2002,25(11):1485-1487.
    [7]Klaus Weinges, Hartmut Schick. Dodecaacetylprodelphinidin B3 from the dried leaves of Ziziphus spina-christi [J]. Phytochemistry,1995,38(2):505-507.
    [8]V. S. Prakash Chaturvedula, Jennifer K. Schilling, Randall K. Johnson, David G. I. Kingston. New Cytotoxic Lupane Triterpenoids from the Twigs of Coussarea paniculata [J]. Journal of Natural Products,2003,66(3):419-422.
    [9]Darrick S. H. L. Kim, Zhidong Chen, van Tuyen Nguyen, John M. Pezzuto, Shengxiang Qiu, Zhi-Zhen Lu. A concise semi-synthetic approach to betulinic acid from betulin [J]. Synthetic communications,1997,27(9):1607-1612.
    [10]Krasutsky Pavel A., Carlson Robert M., Nesterenko Vitaliy V. Methods for manufacturing betulinic acid [P]. United States Patent 6407270.
    [11]马慧丽,姚军,陈慧.桦木酸制备的研究进展[J].现代中西医结合杂志,2005,14(4):551-553.
    [12]Qi-he Chen, Jing Liu, Hai-feng Zhang, Guo-qing He, Ming-liang Fu. The betulinic acid production from betulin through biotransformation by fungi [J]. Enzyme and Microbial Technology,2009,45(3):175-180.
    [13]E. Pisha, H. Chai, I.S. Lee, T.E. Chagwedera, N.R. Farnsworth, G.A. Cordell, C.W. Beecher, H.H. Fong, A.D. Kinghorn, D.M. Brown, M.C. Wani, M.E. Wall, T.J. Hieken, T.K. Das Gupta, J.M. Pezzuto. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis [J]. Nature Medicine,1995,1:1046-1051.
    [14]Simone Fulda, Irmela Jeremias, Hans H. Steiner, Torsten Pietsch, Klaus-Michael Debatin. Betulinic acid:A new cytotoxic agent against malignant brain-tumor cells [J]. International Journal of Cancer,1999,82(3):435-441.
    [15]A.R. Chowdhury, S. Mandal, N. Mittra, S. Sharma, S. Mukhopadhyay, H.K. Majumder. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives [J]. Medical Science Monitor,2002,8: 254-265.
    [16]Kessler J.H., Mullauer F.B., de Roo G.M., Medema J.P.. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types [J]. Cancer Letters,2007,251(1):132-145.
    [17]T. Fujioka, Y. Kashiwada, R.E. Kilkuskie, L.M. Cosentino, L.M. Ballas, J.B. Jiang, W.P. Janzen, I.S. Chen, K.H. Lee. Anti-AIDS agents.11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum and the anti-HIV activity of structurally related triterpenoids [J]. Journal of Natural Products,1994, 57:243-247.
    [18]F. Li, R. Goila-Gaur, K. Salzwedel, N. R. Kilgore, M. Reddick, C. Matallana, A. Castillo, D. Zoumplis, D. E. Martin, J. M. Orenstein, G. P. Allaway, E. O. Freed, and C. T. Wild. PA-457:A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(23):13555-13560
    [19]Gerhard Bringmann, Wael Saeb, Laurent Ake Assi, Guido Francois, A. S. Sankara Narayanan, Karl Peters, Eva-Maria Peters. Betulinic Acid:Isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, Antimalarial Activity, and Crystal Structure of the Benzyl Ester [J]. Planta Medica,1997,63:255-257.
    [20]J. C. P. Steele, D. C. Warhurst, G. C. Kirby, M. S. J. Simmonds. In vitro and In vivo evaluation of betulinic acid as an antimalarial [J]. Phytotherapy Research,1999, 13(2):115-119.
    [21]Pulok K. Mukherjee, Kakali Saha, J. Das, M. Pal, B. P. Saha. Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera [J]. Planta Medica,1997,63:367-369.
    [22]Schuhly Wolfgang, Heilmann Jorg, Calis Ihsan, Sticher Otto. New Triterpenoids with Antibacterial Activity from Zizyphus joazeiro [J]. Planta Medica,1999,65(8): 740-743.
    [23]C. Chandramu, Rao D. Manohar, David G. L. Krupadanam, Reddy V. Dashavantha. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. [J]. Phytotherapy Research,2003,17(2):129-134.
    [24]Giorgio Bianchi, Giovanna Vlahov, Caterina Anglani, Carla Murelli. Epicuticular wax of olive leaves [J]. Phytochemistry,1992,32(1):49-52.
    [25]Susana I. Pereira, Carmen S. R. Freire, Carlos Pascoal Neto, Armando J. D. Silvestre, Artur M. S. Silva. Chemical composition of the epicuticular wax from the fruits of Eucalyptus globulus [J]. Phytochemical Analysis,2005,16(5): 364-369.
    [26]Hendrik Bargel, Kerstin Koch, Zdenek Cerman, Christoph Neinhuis Evans. Structure-function relationships of the plant cuticle and cuticular waxes-a smart material? [J]. Functional Plant Biology,2006,33(10):893-910.
    [27]M. Riederer, L. Schreiber. Waxes-the transport barriers of plant cuticles. In:Waxes: Chemistry, Molecular Biology and Functions [M]. The Oily Press,1995:131-156.
    [28]Erhard E. Pfundel, Giovanni Agati, Zoran G. Cerovic.6. Optical properties of plant surfaces. In:Annual Plant Reviews:Biology of the Plant Cuticle [M]. Blackwell Publishing Ltd,2007:216-249.
    [29]W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta,1997,202(1):1-8.
    [30]Sanford D. Eigenbrode, Karl E. Espelie. Effects of plant epicuticular lipids on insect herbivores [J]. Annual Review of Entomology,1995,40:171-194.
    [31]Patrick Sieber, Martine Schorderet, Ulrich Ryser, Antony Buchala, Pappachan Kolattukudy, Jean-Pierre Metraux, Christiane Nawrath. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions [J]. The Plant Cell,2000,12(5): 721-738.
    [32]L. Kunst, A.L. Samuels. Biosynthesis and secretion of plant cuticular wax [J]. Progress in Lipid Research,2003,42(1):51-80.
    [33]P. E. Kolattukudy. Biopolyester membranes of plants:cutin and suberin [J]. Science, 1980,208(4447):990-1000.
    [34]Reinhard Jetter, Ljerka Kunst, A. Lacey Samuels.4. Composition of Plant Cuticular Waxes. In:Annual Plant Reviews:Biology of the Plant Cuticle [M]. Blackwell Publishing Ltd,2007:145-181.
    [35]Clare van Maarseveen, Reinhard Jetter. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves [J]. Phytochemistry,2009,70(7):899-906.
    [36]Wilhelm Barthlott, Christoph Neinhuis, David Cutler, Friedrich Ditsch, Iris Meusel, Inge Theisen, Hiltrud Wilhelmi. Classification and terminology of plant epicuticular waxes [J]. Botanical Journal of the Linnean Society,1998,126(3): 237-260.
    [37]Christopher E. Jeffree.2. The fine structure of the plant cuticle. In:Annual Plant Reviews:Biology of the Plant Cuticle [M]. Blackwell Publishing Ltd,2007: 11-125.
    [38]E. C. Reynhardt, M. Riederer. Structure and molecular dynamics of the cuticular wax from leaves of Citrus aurantium L [J]. Journal of Physics D:Applied Physics, 1991,24:478-486.
    [39]Carolina G. Casado,Antonio Heredia. Self-Association of Plant Wax Components: A Thermodynamic Analysis [M]. Biomacromolecules,2001,2 (2):407-409.
    [40]H.J. Ensikat, M. Boese, W. Mader, W. Barthlott, K. Koch. Crystallinity of plant epicuticular waxes:electron and X-ray diffraction studies [J]. Chemistry and Physics of Lipids,2006,144(1):45-59.
    [41]Gerd Vogg, Stephanie Fischer, Jana Leide, Eyal Emmanuel, Reinhard Jetter, Avraham A. Levy, Markus Riederer. Tomatoe fruit cuticular waxes and their effects on transpiration barrier properties:functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase [J]. Journal of Experimental Botany,2004,55(401):1401-1410.
    [42]Marina Zanon, Adriano Piris, Ilaria Bersani, Claudia Vegetti, Alessandra Molla, Alessia Scarito, Andrea Anichini. Apoptosis Protease Activator Protein-1 Expression Is Dispensable for Response of Human Melanoma Cells to Distinct Proapoptotic Agents [J]. Cancer Research,2004,64:7386-7394.
    [43]YingMeei Tan, Rong Yu, John M. Pezzuto. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation [J]. Clinical Cancer Research,2003,9(7):2866-2875.
    [44]Hubert Kasperczyk, Katia La Ferla-Briihl, Mike Andrew Westhoff, Lars Behrend, Ralf Michael Zwacka, Klaus-Michael Debatin, Simone Fulda. Betulinic acid as new activator of NF-κB:molecular mechanisms and implications for cancer therapy [J]. Oncogene,2005,24(46):6945-6956.
    [45]Valentina Zuco, Rosanna Supino, Sabina C. Righetti, Loredana Cleris, Edoardo Marchesi, Carlo Gambacorti-Passerini, Franca Formelli. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells [J]. Cancer Letters,2002, 175(1):17-25.
    [46]Rama Mukherjee, Manu Jaggi, Praveen Rajendran, Sanjay K. Srivastava, Mohammad J.A. Siddiqui, Anand Vardhan, Anand C. Burman. Synthesis of 3-O-acyl/3-benzylidene/3-hydrazone/3-hydrazine/17-carboxyacryloyl ester derivatives of betulinic acid as anti-angiogenic agents [J]. Bioorganic & Medicinal Chemistry Letters,2004,14(12):3169-3172.
    [47]Wojciech Rzeski, Andrzej Stepulak, Marek Szymanski, Marco Sifringer, Jozef Kaczor, Katarzyna Wejksza, Barbara Zdzisinska, Martyna Kandefer-Szerszen. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells [J]. Naunyn-Schmiedeberg's Archives of Pharmacology2006,373(1):11-20.
    [48]Simone Fulda, Claudia Friesen, Marek Los, Carsten Scaffidi, Walter Mier, Mary Benedict, Gabriel Nunez, Peter H. Krammer, Marcus E. Peter, Klaus-Michael Debatin. Betulinic Acid Triggers CD95 (APO-1/Fas)-and p53-independent Apoptosis via Activation of Caspases in Neuroectodermal Tumors [J]. Cancer Research,1997,57(21):4956-4964.
    [49]任文娟 白桦脂酸抑制大肠癌细胞增殖与迁移能力的研究[D]. 太原:山西医科大学,2010.
    [50]Yonghong Deng, John K. Snyder. Preparation of a 24-Nor-1,4-dien-3-one Triterpene Derivative from Betulin:A New Route to 24-Nortriterpene Analogues [J]. The journal of organic chemistry,2002,67(9):2864-2873.
    [51]H Ehrhardt, S Fulda, M Fiihrer, K M Debatin, I Jeremias. Betulinic acid-induced apoptosis in leukemia cells [J]. Leukemia,2004,18(8):1406-1412.
    [52]Keishi Hata, Kazuyuki Hori, Hironobu Ogasawara, Saori Takahashi. Anti-leukemia activities of Lup-28-al-20 (29)-en-3-one, a lupane triterpene [J]. Toxicology Letters,2003,143(1):1-7.
    [53]Ho Jeong Kwon, Joong Sup Shim, Jin Hee Kim, Hyun Young Cho, Young Na Yum, Seung Hee Kim, Jaehoon Yu. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells [J]. Japanese Journal of Cancer Research,2002,93(4):417-425.
    [54]Wolfgang Wick, Cornelia Grimmel, Bettina Wagenknecht, Johannes Dichgans, Michael Weller. Betulinic acid-induced apoptosis in glioma cells:a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing [J]. Journal of Pharmacology and Experimental Therapeutics, 1999,289(3):1306-1312.
    [55]I. Jeremias, H. H. Steiner, A. Benner, K.-M. Debatin, C. Herold-Mende. Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells [J]. Acta Neurochirurgica,2004,146(7):721-729.
    [56]M.L Schmidt, K.L Kuzmanoff, L Ling-Indeck, J.M Pezzuto. Betulinic acid induces apoptosis in human neuroblastoma cell lines [J]. European Journal of Cancer,1997, 33(12):2007-2010.
    [57]Simone Fulda, Klaus-Michael Debatin. Sensitization for anticancer drug-induced apoptosis by betulinic acid [J]. Neoplasia,2005,7(2):162-170.
    [58]袁文珏 桦木酸及桦木醇衍生物抗癌活性和诱导凋亡机理初步研究[D]. 长春:吉林大学,2009.
    [59]王晓宇人参皂苷Rh2提高肿瘤细胞对桦木酸敏感性的研究[D].长春:吉林大学,2010.
    [60]Gwon-Ryul Jung, Kyung-Jong Kim, Cheol-Hee Choi, Tae-Beum Lee, Song Iy Han, Hyo-Kyung Han, Sung-Chul Lim. Effect of betulinic acid on anticancer drug-resistant colon cancer cells [J]. Basic & Clinical Pharmacology and Toxicology,2007,101(4):277-285.
    [61]Simone Fulda, Guido Kroemer. Targeting mitochondrial apoptosis by betulinic acid in human cancers [J]. Drug Discovery Today,2009,14(17-18):885-890.
    [62]David E. Fisher. Apoptosis in cancer therapy:Crossing the threshold [J]. Cell,1994, 78(4):539-542.
    [63]Klaus-Michael Debatin. Cytotoxic Drugs, Programmed Cell Death, and the Immune System:Defining New Roles in an Old Play [J]. Journal of the National Cancer Institute,1997,89(11):750-751.
    [64]Carsten Scaffidi, Simone Fulda, Anu Srinivasan, Claudia Friesen, Feng Li, Kevin J. Tomaselli, Klaus-Michael Debatin, Peter H. Krammer, Marcus E. Peter. Two CD95 (APO-1/Fas) signaling pathways [J]. The EMBO Journal,1998,17: 1675-1687.
    [65]Jan Paul Medema, Carsten Scaffidi, Peter H. Krammer, Marcus E. Peter. Bcl-xL Acts Downstream of Caspase-8 Activation by the CD95 Death-inducing Signaling Complex [J]. The Journal of Biological Chemistry,1998,273: 3388-3393.
    [66]Anu Srinivasan, Feng Li, Angela Wong, Lalitha Kodandapani, Robert Smidt, Jr. Joseph F. Krebs, Lawrence C. Fritz, Joe C. Wu, Kevin J. Tomaselli. Bcl-xL Functions Downstream of Caspase-8 to Inhibit Fas-and Tumor Necrosis Factor Receptor 1-induced Apoptosis of MCF7 Breast Carcinoma Cells [J]. The Journal of Biological Chemistry,1998,273:4523-4529.
    [67]Lawrence H. Boise, Craig B. Thompson. Bcl-xL can inhibit apoptosis in cells that have undergone Fas-induced protease□activation [J]. Proceedings of the National Academy of Sciences of the United Statesa of Amrica,1997,94(8):3759-3764.
    [68]Thangaiyan Rabi, Sanjeev Shukla, Sanjay Gupta. Betulinic acid suppresses constitutive and TNFa-induced NF-κB activation and induces apoptosis in human prostate carcinoma PC-3 cells [J]. Molecular Carcinogenesis,2008,47(12): 964-973.
    [69]Fulda, S., Scaffidi, G., Susin, S.A., Krammer, P.H., Kroemer, G., Peter, M.E., Debatin, K.-M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid [J]. Journal of Biological Chemistry,1998, 273(51):33942-33948.
    [70]Fulda S., Susin S.A., Kroemer G., Debatin K.-M. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells [J]. Cancer Research,1998, 58(19):4453-4460.
    [71]J.M. Adams, S. Cory. The Bcl-2 apoptotic switch in cancer development and therapy [J]. Oncogene,2007,26(9):1324-1337.
    [72]Selzer E., Pimentel E., Wacheck V., Schlegel W., Pehamberger H., Jansen B., Kodym, R.. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells [J]. Journal of Investigative Dermatology,2000,114(5): 935-940.
    [73]Selzer E., Thallinger C., Hoeller C., Oberkleiner P., Wacheck V., Pehamberger H., Jansen B.. Betulinic acid-induced Mcl-1 expression in human melanoma-mode of action and functional significance [J]. Molecular Medicine,2002,8(12):877-884.
    [74]Thurnher D., Turhani D., Pelzmann M., Wannemacher B., Knerer B., Formanek M., Wacheck V., Selzer E.. Betulinic acid:a new cytotoxic compound against malignant head and neck cancer cells [J]. Head and Neck,2003,25(9):732-740.
    [75]R.D. Meng, W.S. El-Deiry. P53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-gamma [J]. Experimental Cell Research,2001,262(2):154-169.
    [76]Salti G.I., Kichina J.V., Das Gupta T.K., Uddin S., Bratescu L., Pezzuto J.M., Mehta R.G., Constantinou A.I.. Betulinic acid reduces ultraviolet-C-induced DNA breakage in congenital melanocytic naeval cells:evidence for a potential role as a chemopreventive agent [J]. Melanoma Research,2001,11(2):99-104.
    [77]Syrovets T., Buchele B., Gedig E., Slupsky J.R., Simmet T.. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases Ⅰ and Ⅱ a [J]. Molecular Pharmacology,2000,58(1):71-81.
    [78]Guido Kroemer, Naoufal Zamzami, Santos A. Susin. Mitochondrial control of apoptosis [J]. Immunology Today,1997,18(1):44-51.
    [79]Santos A. Susin, Naoufal Zamzami, Maria Castedo, Tamara Hirsch, Philippe Marchetti, Antonio Macho, Eric Daugas, Maurice Geuskens, Guido Kroemer. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease [J]. The Journal of Experimental Medicine,1996,184:1331-1341.
    [80]Simone Fulda, Klaus-Michael Debatin. Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors [J]. Medical and Pediatric Oncology,2000,35(6):616-618.
    [81]Wing-Keung Liua, Joyce C.K. Ho, Florence W.K. Cheung, Bonnie P.L. Liu, Wen-Cai Ye, Chun-Tao Che. Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line [J]. European Journal of Pharmacology,2004, 498(1-3):71-78.
    [82]D.V. Raghuvar Gopal, Archana A. Narkara, Y. Badrinath, K.P. Mishra, D.S. Joshi. Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl [J]. Toxicology Letters,2005,155(3):343-351.
    [83]D.V. Raghuvar Gopal, A.A. Narkar, Y. Badrinath, K.P. Mishra, D.S. Joshi. Protection of Ewing's sarcoma family tumor (ESFT) cell line SK-N-MC from betulinic acid induced apoptosis by a-DL-tocopherol [J]. Toxicology Letters,2004, 153(2):201-212.
    [84]Jon Holy, Oksana Kolomitsyna, Dmytro Krasutsky, Paulo J. Oliveira, Edward Perkins, Pavel A. Krasutsky. Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function [J]. Bioorganic & Medicinal Chemistry,2010,18(16):6080-6088.
    [85]Ismael Samudio, Marina Konopleva, Helene Pelicano, Peng Huang, Olga Frolova, William Bornmann, Yunming Ying, Randall Evans, Rooha Contractor, Michael Andreeff. A Novel Mechanism of Action of Methyl-2-cyano-3,12 Dioxoolean-1,9 Diene-28-oate:Direct Permeabilization of the Inner Mitochondrial Membrane to Inhibit Electron Transport and Induce Apoptosis [J]. Molecular Pharmacology, 2006,69(4):1182-1193.
    [86]Francoise Soler, Christele Poujade, Michel Evers, Jean-Christophe Carry, Yvette Henin, Anne Bousseau, Thierry Huet, Rudi Pauwels, Erik De Clercq, Jean-Francois Mayaux, Jean-Bernard Le Pecq, Norbert Dereu. Betulinic Acid Derivatives:A New Class of Specific Inhibitors of Human Immunodeficiency Virus Type 1 Entry [J]. Journal of Medicinal Chemistry,1996,39(5):1069-1083.
    [87]I-Chen Sun, Chin-Ho Chen, Yoshiki Kashiwada, Jiu-Hong Wu, Hui-Kang Wang, and Kuo-Hsiung Lee. Anti-AIDS Agents 49. Synthesis, Anti-HIV, and Anti-Fusion Activities of IC9564 Analogues Based on Betulinic Acid [J]. Journal of Medicinal Chemistry,2002,45 (19):4271-4275.
    [88]J F Mayaux, A Bousseau, R Pauwels, T Huet, Y Henin, N Dereu, M Evers, F Soler, C Poujade, E De Clercq. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells [J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91(9):3564-3568.
    [89]Sonia L. Holz-Smith, I-Chen Sun, Lei Jin, Thomas J. Matthews, Kuo-Hsiung Lee, Chin Ho Chen. Role of Human Immunodeficiency Virus (HIV) Type 1 Envelope in the Anti-HIV Activity of the Betulinic Acid Derivative IC9564 [J]. Antimicrobial Agents and Chemotherapy,2001,45(1):60-66.
    [90]Feng Li, Dorian Zoumplis, Claudia Matallana, Nicole R. Kilgore, Mary Reddick, Abdul S. Yunus, Catherine S. Adamson, Karl Salzwedel, David E. Martin, Graham P. Allaway, Eric O. Freed, Carl T. Wild. Determinants of activity of the HIV-1 maturation inhibitor PA-457 [J]. Virology,2006,356(1-2):217-224.
    [91]Sami Alakurtti, Taru Makela, Salme Koskimies, Jari Yli-Kauhaluoma. Pharmacological properties of the ubiquitous natural product betulin [J]. European Journal of Pharmaceutical Sciences,2006,29(1):1-13.
    [92]Yoshiki Kashiwada, Fumio Hashimoto, L. Mark Cosentino, Chin-Ho Chen, Patricia E. Garrett, Kuo-Hsiung Lee. Betulinic Acid and Dihydrobetulinic Acid Derivatives as Potent Anti-HIV Agents [J]. Journal of Medicinal Chemistry,1996, 39(5):1016-1017.
    [93]Li Huang, Xiong Yuan, Christopher Aiken, Chin Ho Chen. Bifunctional anti-human immunodeficiency virus type 1 small molecules with two novel mechanisms of action [J]. Antimicrobial Agents and Chemotherapy,2004,48(2): 663-665.
    [94]Li Huang, Phong Ho, Kuo-Hsiung Lee, Chin-Ho Chen. Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives [J]. Bioorganic & Medicinal Chemistry,2006,14(7):2279-2289.
    [95]George Duker-Eshun, Jerzy W. Jaroszewski, William A. Asomaning, Francis Oppong-Boachie, S. Brφgger Christensen. Antiplasmodial Constituents of Cajanus cajan [J]. Phytotherapy Research,2004,18:128-130.
    [96]Hanne L. Ziegler, Henrik Franzyk, Majid Sairafianpour, Mehrnoush Tabatabai, Mahboubeh D. Tehrani, Karim Bagherzadeh, Henry Hagerstrand, Dan St(?)rk, Jerzy W. Jaroszewski. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth:structure-activity relationships for betulinic acid analogues [J]. Bioorganic & Medicinal Chemistry,2004,12(1-2):119-127.
    [97]Matheus Santos de Sa, Jose Fernando Oliveira Costa, Antoniana Ursine Krettli, Mariano Gustavo Zalis, Gabriela Lemos de Azevedo Maia, Ivana Maria Fechine Sette, Celso de Amorim Camara, Jose Maria Barbosa Filho, Ana Maria Giulietti-Harley, Ricardo Ribeiro dos Santos, Milena Botelho Pereira Soares. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice [J]. Parasitology Research,2009, 105(1):275-279.
    [98]Kirk, K.. Membrane transport in the malaria-infected erythrocyte [J]. Physiological Reviews,2001,81(2):495-537.
    [99]Fiona K. Glenister, Ross L. Coppel, Alan F. Cowman, Narla Mohandas, Brian M. Cooke. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells [J]. Blood,2002,99(3):1060-1063.
    [100]A. P. Simoes, G. N. Moll, B. Beaumelle, H. J. Vial, B. Roelofsen, J. A. F. Op den Kamp. Plasmodium knowlesi induces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes [J]. Biochimica et Biophysica Acta-Biomembranes,1990,1022(2): 135-145.
    [101]G. Pasvola, R.J.M. Wilson. Red cell deformability and invasion by malaria parasites [J]. Parasitology Today,1989,5(7):218-221.
    [102]Shih-Chun Liu, Jiri Palek, Scott J. Yi, Pilarin E. Nichols, Laura H. Derick, Shyh-Shin Chiou, Dominick Amato, James D. Corbett, Michael R. Cho, David E. Golan. Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis:Role of the mutant band 3 protein in band 3 oligomerization and retention by the membrane skeleton [J]. Blood,1995,86(1): 349-358.
    [103]Hanne L. Ziegler, Thomas Hφgh Jensen, Jette Christensen, Dan St(?)rk, Henry Hagerstrand, Archibald A. Sittie, Carl Erik Olsen, Trine Staalsφ, Patrick Ekpe, Jerzy W. Jaroszewski. Possible artefacts in the in vitro determination of antimalarial activity of natural products that incorporate into lipid bilayer: Apparent antiplasmodial activity of dehydroabietinol, a constituent of Hyptis suaveolens [J]. Planta Medica,2002,68(6):547-549.
    [104]Maria A. Proytcheva, MD. Issues in Neonatal Cellular Analysis [J]. American Journal of Clinical Pathology,2009,131(4):560-573.
    [105]A. R. Dluzewski, k. Rangachari, R. J. M. Wilson and W. B. Gratzer. Relation of red cell membrane properties to invasion by Plasmodium falciparum [J]. Parasitology,1985,91:273-280.
    [106]K. K. Sein, M. Aikawa. The prime role of plasma membrane cholesterol in the pathogenesis of immune evasion and clinical manifestations of falciparum malaria [J]. Medical Hypotheses,1998,51(2):105-110.
    [107]Sabine Lauer, Jeffrey Van Wye, Travis Harrison, Heather McManus, Benjamin U. Samuel, N.Luisa Hiller, Narla Mohandas, Kasturi Haldar. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection [J]. The EMBO Journal,2000,19:3556-3564.
    [108]Benjamin U. Samuel, Narla Mohandas, Travis Harrison, Heather McManus, Wendell Rosse, Marion Reid, Kasturi Haldar. The Role of Cholesterol and Glycosylphosphatidylinositol-anchored Proteins of Erythrocyte Rafts in Regulating Raft Protein Content and Malarial Infection [J]. The Journal of Biological Chemistry,2001,276:29319-29329.
    [109]Kasturi Haldar, Benjamin U. Samuel, Narla Mohandas, Travis Harrison and Natalia L. Hiller. Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network [J]. International Journal for Parasitology, 2001,31(12):1393-1401.
    [110]Maria del Carmen Recio, Rosa Maria Giner, S. Manez, J. Gueho, H. R. Julien, K. Hostettmann, J. L. Rios. Investigations on the Steroidal Anti-Inflammatory Activity of Triterpenoids from Diospyros leucomelas [J]. Planta Medica,1995, 61(1):9-12.
    [111]Ana-Isabel Huguet, Maria del Carmen Recio, Salvador Manez, Rosa-Maria Giner, Jose-Luis Rios. Effect of triterpenoids on the inflammation induced by protein kinase C activators, neuronally acting irritants and other agents [J]. European Journal of Pharmacology,2000,410(1):69-81.
    [112]Raju Gautam, Sanjay M. Jachak. Recent Developments in Anti-Infammatory Natural Products [J]. Medicinal Research Reviews,2009,29(5):767-820.
    [113]Philippe Bernard, Thomas Scior, Bruno Didier, Marcel Hibert, Jean-Yves Berthon. Ethnopharmacology and bioinformatic combination for leads discovery: Application to phospholipase A2 inhibitors [J]. Phytochemistry,2001,58(6): 865-874.
    [114]Yasunari Takada, Bharat B. Aggarwal. Betulinic acid suppresses carcinogen-induced NF-κB activation through inhibition of IicBa kinase and p65 phosphorylation:Abrogation of cyclooxygenase-2 and matrix metalloprotease-9 [J]. The Journal of Immunology,2003,171(6):3278-3286.
    [115]V. Viji, B. Shobha, S.K. Kavitha, M. Ratheesh, K. Kripa, A. Helen. Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-κB in peripheral blood mononuclear cells [J]. International Immunopharmacology,2010, 10(8):843-849.
    [116]Shi Yong Ryu, Min-Ho Oak, Seok-Keun Yoon, Dong-Im Cho, Gyurng-Soo Yoo, Tae-Sung Kim, Kyeong-Man Kim. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris [J]. Planta Medica,2000,66(4):358-360.
    [117]Jucelia Pizzetti Beninca, Juliana Bastos Dalmarco, Moacir Geraldo Pizzolatti, Tania Silvia Frode. Analysis of the anti-inflammatory properties of Rosmarinus officinalis L. in mice [J]. Food Chemistry,2011,124(2):468-475.
    [118]M. Hernandez-Perez, R.E. Lopez-Garcia, R.M. Rabanal, V. Darias and A. Arias. Antimicrobial activity of Visnea mocanera leaf extracts [J]. Journal of Ethnopharmacology,1994,41(1-2):115-119.
    [119]Sonia C. Hess, Rosenei L. Brum, Neli K. Honda, Alexandre B. Cruz, Eliane Moretto, Rosana B. Cruz, Irene Messana, Franco Ferrari, Valdir Cechinel Filho and Rosendo A. Yunes. Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae) [J]. Journal of Ethnopharmacology.1995, 47(2):97-100.
    [120]Andre Nick, Anthony D. Wright, Topul Rali, Otto Sticher. Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships [J]. Phytochemistry,1995,40(6):1691-1695.
    [121]Wachter GA, Valcic S, Flagg ML, Franzblau SG, Montenegro G, Suarez E, Timmermann BN. Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile [J]. Phytomedicine,1999,6(5):341-345.
    [122]Marvin J. Nunez, Carolina P. Reyes, Ignacio A. Jimenez, Laila Moujir, Isabel L. Bazzocchi. Lupane Triterpenoids from Maytenus Species [J]. Journal of Natural Products,2005,68 (7):1018-1021.
    [123]J.D. Djoukeng, E. Abou-Mansour, R. Tabacchi, A.L. Tapondjou, H. Bouda and D. Lontsi. Antibacterial triterpenes from Syzygium guineense (Myrtaceae) [J]. Journal of Ethnopharmacology,2005,101(1-3):283-286.
    [124]Luc Meva'a Mbaze, Herve Martial P. Poumale, Jean Duplex Wansi, Jean Alexandre Lado, Shamsun Nahar Khan, Muhammad Choudhary Iqbal, Bonaventure Tchaleu Ngadjui, Hartmut Laatsch. a-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae) [J]. Phytochemistry,2007,68(5):591-595.
    [125]Stephane Fontanay, Marion Grare, Josephine Mayer, Chantal Finance, Raphael Emmanuel Duval. Ursolic, oleanolic and betulinic acids:Antibacterial spectra and selectivity indexes [J]. Journal of Ethnopharmacology,2008,120(2):272-276.
    [126]L.J. Shai, L.J. McGaw, M.A. Aderogba, L.K. Mdee, J.N. Eloff. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. leaves [J]. Journal of Ethnopharmacology,2008,119(2): 238-244.
    [127]G.Y. Zuo, G.C. Wang, Y.B. Zhao, G.L. Xu, X.Y. Hao, J. Han, Q. Zhao. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRS A) [J]. Journal of Ethnopharmacology,2008,120(2):287-290.
    [128]Dimitroula Tsiri, Nektarios Aligiannis, Konstantia Graikou, Caroline Spyropoulos, Ioanna Chinou. Triterpenoids from Eucalyptus camaldulensisDehnh [J]. Tissue Cultures Helvetica Chimica Acta,2008,91 (11):2110-2114.
    [129]Bruno Ndjakou Lenta, Ferdinand Tantangmo, Krishna Prasad Devkota, Jean Duplex Wansi, Jean Rodolphe Chouna, Rene Cosme Fongang Soh, Beate Neumann, Hans-Georg Stammler, Etienne Tsamo, Norbert Sewald. Bioactive Constituents of the Stem Bark of Beilschmiedia zenkeri [J]. Journal of Natural Products,2009,72(12):2130-2134.
    [130]Shi Yong Ryu, Chong-Kyo Lee, Chong Ock Lee, Hae Soo Kim, Ok Pyo Zee. Antiviral triterpenes from Prunella vulgaris [J]. Archives of Pharmacal Research, 1992,15(3):242-245.
    [131]N. I. Pavlova, O. V. Savinova, S. N. Nikolaeva, E. I. Borcko, O. B. Flekhtcr Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses [J]. Fitoterapia,2003,74(5):489-492.
    [132]Leena Pohjala, Sami Alakurtti, Tero Ahola, Jari Yli-Kauhaluoma, Pivi Tammela. Betulin-Derived Compounds as Inhibitors of Alphavirus Replication [J]. Journal of Natural Products,2009,72(11):1917-1926.
    [133]N.M. Enwerem, J.I. Okogun, C.O. Wambebe, D.A. Okorie, P.A. Akah. Antihelmintic activity of the stem bark extracts of Berlina grandiflora and one of its active principles, betulinic acid [J]. Phytomedicine,2001,8(2):112-114.
    [134]Francinete R. Campos, Ana H. Januario, Lisandra V. Rosas, Samara K.R. Nascimento, Paulo S. Pereira, Suzelei C. Franca, Milade S.C. Cordeiro, Miriam P. A. Toldo, Sergio Albuquerque. Trypanocidal activity of extracts and fractions of Bertholletia excelsa [J]. Fitoterapia,2005,76(1):26-29.
    [135]Shabana Channa, Ahsana Dar, Muhammad Yaqoob, Shazia Anjum, Zia Sultani, Atta-ur-Rahman. Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera [J]. Journal of Ethnopharmacology,2003,86(1): 27-35.
    [136]Yingying Chen, Runguang Sun, Bo Wang. Monolayer behavior of binary systems of betulinic acid and cardiolipin:Thermodynamic analyses of Langmuir monolayers and AFM study of Langmuir-Blodgett monolayers [J]. Journal of Colloid and Interface Science,2011,353(1):294-300.
    [137]Carolina G. Casado, Antonio Heredia. Specific heat determination of plant barrier lipophilic components:biological implications [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2001,1511(2):291-296.
    [138]Pawel Wydro, Katarzyna Hac-Wydro. Thermodynamic description of the interactions between lipids in ternary Langmuir monolayers:the study of cholesterol distribution in membranes [J]. The Journal of Physical Chemistry B 2007,111(10):2495-2502.
    [139]I. Rey Gomez-Serranillos, J. Minones Jr., P. Dynarowicz-Latka, J. Minones, E. Iribarnegaray, Miltefosine-cholesterol interactions:a monolayer study [J]. Langmuir,2004,20(3):928-933.
    [140]Katarzyna Hac-Wydro, Patrycja Dynarowicz-Latka. Interaction between nystatin and natural membrane lipids in Langmuir monolayers-The role of a phospholipid in the mechanism of polyenes mode of action [J]. Biophysical Chemistry,2006, 123(2-3):154-161.
    [141]W. Herbert Morrison III, Ronald Holser, Danny E. Akin. Cuticular wax from flax processing waste with hexane and super critical carbon dioxide extractions [J]. Industrial Crops and Products,2006,24(2):119-122.
    [142]T.C. Sindhu Kanya, L. Jaganmohan Rao, M.C. Shamanthaka Sastry. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries [J]. Food Chemistry,2007,101(4): 1552-1557.
    [143]Aris P. Christodoulou, Henri L. Rosano.17. Effect of pH and Nature of Monovalent Cations on Surface Isotherms of Saturated C16 to C22 Soap Monolayers. In:Molecular Association in Biological and Related Systems [M]. AMERICAN CHEMICAL SOCIETY,1968:210-234.
    [144]Oliver Beforta, Dietmar Mobius. Molecular organization in mixed monomolecular films and Langmuir-Blodgett layers of alkylaminostyryl-pyridinium dyes and stearic acid [J]. Thin Solid Films,1994, 243(1-2):553-558.
    [145]Rute I. S. Romao, Amelia M. Goncalves da Silva. Phase behaviour and morphology of binary mixtures of DPPC with stearonitrile, stearic acid, and octadecanol at the air-water interface [J]. Chemistry and Physics of Lipids,2004, 131(1):27-39.
    [146]Etsu Takano, Yoriko Ishida, Makio Iwahashi. Surface Chemical and Morphological Study on Monolayers of Cholesterol, Cholestanol, and Their Derivatives Conjugated with Amino Acid [J]. Langmuir,1997,13(21): 5782-5786.
    [147]Munemori Kodama, Osamu Shibata, Shohei Nakamura, Sannamu Lee, Gohsuke Sugihara. A monolayer study on three binary mixed systems of dipalmitoyl phosphatidyl choline with cholesterol, cholestanol and stigmasterol [J]. Colloids and Surfaces B:Biointerfaces,2004,33(3-4):211-226.
    [148]Katarzyna Hac-Wydro, Pawel Wydro. The influence of fatty acids on model cholesterol/phospholipid membranes [J]. Chemistry and Physics of Lipids,2007, 150(1):66-81.
    [149]Magne Knag, Katerina Bilkova, Egil Gulbrandsen, Per Carlsen, Johan Sjoblom. Langmuir-Blodgett films of dococyltriethylammonium bromide and octadecanol on iron. Deposition and corrosion inhibitor performance in CO2 containing brine [J]. Corrosion Science,2006,48(9):2592-2613.
    [150]Ana C.T. Teixeira, Pedro Brogueira, Anabela C. Fernandes, Amelia M.P.S. Goncalves da Silva. Phase behaviour of binary mixtures involving tristearin, stearyl stearate and stearic acid:thermodynamic study and BAM observation at the air-water interface and AFM analysis of LB films [J]. Chemistry and Physics of Lipids,2008,153(2):98-108.
    [151]Christophe Ybert, Weixing Lu, Gunter Moller, Charles M Knobler. Kinetics of phase transitions in monolayers:collapse [J]. Journal of Physics:Condensed Matter,2002,14(19):4753-4762.
    [152]M A Valdes-Covarrubias, R D Cadena-Nava, E Vasquez-Martinez, D Valdez-Perez, J Ruiz-Garcia. Crystallite structure formation at the collapse pressure of fatty acid Langmuir films [J]. Journal of Physics:Condensed Matter, 2002,16(22):S2097-S2107.
    [153]Patrycja Dynarowicz-Latka, Anantharaman Dhanabalan, Osvaldo N. Oliveira Jr. Modern physicochemical research on Langmuir monolayers [J]. Advances in Colloid and Interface Science,2001,91(2):221-293.
    [154]Herman E. Ries Jr. Stable ridges in a collapsing monolayer [J]. Nature,1979, 281(5279):287-289.
    [155]Herman E. Ries, Hewson Swift. Twisted double-layer ribbons and the mechanism for monolayer collapse [J]. Langmuir,1987,3(5):853-855.
    [156]L.M. Ilharco, A.R. Garcia, A.M. Fidalgo, R. Barros, A.F. Vale, J. Lopes da Silva, A. M. Goncalves da Silva. A Transmission FTIR Spectroscopic Study on Mixed Langmuir-Blodgett Films of Cadmium Heptadecanoate-Chloro/ Bromohexadecane [J]. Langmuir,1995,11:2745-2750.
    [157]A. M. Goncalves da Silva, J. C. Guerreiro, N. G. Rodrigues, T. O. Rodrigues. Mixed Monolayers of Heptadecanoic Acid with Chlorohexadecane and Bromohexadecane:Effects of Temperature and of Metal Ions in the Subphase [J]. Langmuir,1996,12(18):4442-4448.
    [158]Shigemi Nagadome, Nozomi S. Suzuki, Yauko Mine, Takeo Yamaguchi, Hiromichi Nakahara, Osamu Shibata, Chien-Hsiang Chang, Gohsuke Sugihara. Monolayers (Langmuir films) behavior of multi-component systems composed of a bile acid with different sterols and with their 1:1 mixtures [J]. Colloids and Surfaces B:Biointerfaces,2007,58(2):121-136.
    [159]Aneliya N. Zdravkova, J.P.J.M. van der Eerden. Phase behaviour in binary mixed Langmuir Blodgett monolayers of triglycerides [J]. Journal of Crystal Growth, 2007,307(1):192-202.
    [160]Chen Qibin, Liang Xiaodong, Wang Shaolei, Xu Shouhong, Liu Honglai, Hu Ying. Cationic Gemini surfactant at the air/water interface [J]. Journal of Colloid and Interface Science,2007,314(2):651-658.
    [161]Antonio Heredia. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2003,1620(1-3):1-7.
    [162]Ana C.T. Teixeira, Anabela C. Fernandes, Ana R. Garcia, Laura M. Ilharco, Pedro Brogueira, Amelia M.P.S. Goncalves da Silva. Microdomains in mixed monolayers of oleanolic and stearic acids:thermodynamic study and BAM observation at the air-water interface and AFM and FTIR analysis of LB monolayers [J]. Chemistry and Physics of Lipids,2007,149(1-2):1-13.
    [163]G. Brezesinski, D. Vollhardt, K. Iimura, H. Colfen. Structural Features of Mixed Monolayers of Oleanolic Acid and Stearic Acid [J]. The Journal of Physical Chemistry C,2008,112(40):15777-15783.
    [164]Aneta D. Petelska, Zbigniew A. Figaszewski. The equilibria of phosphatidylcholine-fatty acid and phosphatidylcholine-amine in monolayers at the air/water interface [J]. Colloids and Surfaces B:Biointerfaces,2011,82(2): 340-344.
    [165]Patrycja Dynarowicz-Latka, Katarzyna Kita. Molecular interaction in mixed monolayers at the air/water interface [J]. Advances in Colloid and Interface Science,1999,79(1):1-17.
    [166]I. S. Costinl, G. T. Barnes. Two-component monolayers.Ⅱ. Surface pressure-area relations for the octadecanol-docosyl sulphate system [J]. Journal of Colloid and Interface Science,1975,51(1):106-121.
    [167]George L. Gaines. Chapter 6, Insoluble Monolayers at Liquid/Gas Interfaces [M]. Wiley-Interscience,1966.
    [168]D. A. Cadenhead, F. Muller-Landau. Molecular accommodation and molecular interactions in mixed insoluble monomolecular films [J]. Journal of Colloid and Interface Science,1980,78(1):269-270.
    [169]M. C. Phillips, P. Joos. The collapse pressures and miscibilities of mixed insoluble monolayers [J]. Colloid & Polymer Science,1970,238(1-2):499-505.
    [170]K.J. Bacon, G.T. Barnes. Two-component monolayers IV. The excess enthalpies and entropies of mixing in the octadecanol-docosyl sulfate system [J]. Journal of Colloid and Interface Science,1978,67(1):70-77.
    [171]F.C. Goodrich. In Proceedings Second International Congress of Surface Activity [M]. Butterworth,1957:85.
    [172]Davies, J.T., Rideal, E.K.. Interfacial Phenomena [M]. Academic Press,1963.
    [173]N.Watanabe, A.Watanabe, Y. Tamai, Hyomen oyobi Kaimen (Surface and Interface) [M]. Kyouritu Shuppan,1973:58-60.
    [174]Salvador Ramos, Rolando Castillo. Langmuir monolayers of C17, C19, and C21 fatty acids:Textures, phase transitions, and localized oscillations [J]. Journal of Chemical Physics,1999,110(14):7021-7030.
    [175]Si-shen Feng. Interpretation of Mechanochemical Properties of Lipid Bilayer Vesicles from the Equation of State or Pressure-Area Measurement of the Monolayer at the Air-Water or Oil-Water Interface [J]. Langmuir,1999,15(4): 998-1010.
    [176]Lingyun Zhao, Si-Shen Feng. Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane [J]. Journal of Colloid and Interface Science,2005,285(1): 326-335.
    [177]Silvia Perez-Lopez, Marina Nieto-Suarez, Concepcio Mestres, M. Asuncion Alsina, Isabel Haro, Nuria Vila-Romeu. Behaviour of a peptide sequence from the GB virus C/hepatitis G virus E2 protein in Langmuir monolayers:Its interaction with phospholipid membrane models [J]. Biophysical Chemistry,2009,141(2-3): 153-161.
    [178]Stephanie Nichols-Smith, Shia-Yen Teh, Tonya L. Kuhl. Thermodynamic and mechanical properties of model mitochondrial membranes [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2004,1663(1-2):82-88.
    [179]Nathalie Vernoux, Ofelia Maniti, Francoise Besson, Thierry Granjon, Olivier Marcillat, Christian Vial. Mitochondrial creatine kinase adsorption to biomimetic membranes:A Langmuir monolayer study [J]. Journal of Colloid and Interface Science,2007,310(2):436-445.
    [180]Derek Marsh. Lateral pressure in membranes [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1996,1286(3):183-223.
    [181]MacDonald. R. C.. The relationship and interactions between lipid bilayer vesicles and lipid monolayers at the air/water interface. In Vesicles [M]. Marcel Dekker,1996:43.
    [182]Katarzyna Hac-Wydro, Patrycja Dynarowicz-Latka. The Impact of Sterol Structure on the Interactions with Sphingomyelin in Mixed Langmuir Monolayers [J]. The Journal of Physical Chemistry B,2008,112(36):11324-11332.
    [183]Katarzyna Hac-Wydro, Pawel Wydro, Patrycja Dynarowicz-Latka, Maria Paluch. Cholesterol and phytosterols effect on sphingomyelin/phosphatidylcholine model membranes-Thermodynamic analysis of the interactions in ternary monolayers [J]. Journal of Colloid and Interface Science,2009,329(2):265-272.
    [184]Slim Azouzi, Karim El Kirat, Sandrine Morandat. The Potent Antimalarial Drug Cyclosporin A Preferentially Destabilizes Sphingomyelin-Rich Membranes [J]. Langmuir,2010,26(3):1960-1965.
    [185]Karp G.. Cell and Molecular Biology:Concepts and Experiments [M]. Wiley&Son,2005, Chapter 4.
    [186]M. Raimund, H. Kubinyi, G. Folkers. Drug-Membrane Interactions [M]. Weinheim,2002.
    [187]Rowinsky E. K.. Update on the antitumor activity of paclitaxel in clinical trials [J]. The Annals of Pharmacotherapy,1994,28(5):18-22.
    [188]Anil K. Singla, Alka Garg, Deepika Aggarwal. Paclitaxel and its formulations International [J]. Journal of Pharmaceutics,2002,235(1-2):179-192.
    [189]Marcus Schmitt-Sody, Sebastian Strieth, Senat Krasnici, Birgitta Sauer, Brita Schulze, Michael Teifel, Uwe Michaelis, Kurt Naujoks, Marc Dellian Neovascular. Targeting Therapy:Paclitaxel Encapsulated in Cationic Liposomes Improves Antitumoral Efficacy [J]. Clinical Cancer Research,2003,9(6): 2335-2341.
    [190]孟淑燕,周彩存,粟波,李玮.长循环紫杉醇纳米脂质体的合成及其活性评估[J].现代生物医学进展,2009,9(13):2407-2409.
    [191]Sathyamangalam V. Balasubramanian, Robert M. Straubinger. Taxol-Lipid Interactions:Taxol-Dependent Effects on the Physical Properties of Model Membranes [J]. Biochemistry,1994,33(30):8941-8947.
    [192]Howard Brockman. Lipid monolayers:why use half a membrane to characterize protein-membrane interactions? [J]. Current Opinion in Structural Biology,1999, 9(4):438-443.
    [193]邓穗平,欧阳健明.缺陷LB膜诱导草酸钙晶体的生长[J].化学学报,2007,65(8):683-687.
    [194]张萍超声介导脂质体微泡对大鼠血管平滑肌细胞生物学行为影响的研究[D].重庆:第三军医大学,2005.
    [195]F. Bordi, C. Cametti, C. Di Venanzio, S. Sennato, S. Zuzzi. Influence of temperature on microdomain organization of mixed cationic-zwitterionic lipidic monolayers at the air-water interface [J]. Colloids and Surfaces B:Biointerfaces, 2008,61(2):304-310.
    [196]G. As. Georgiev, E. Kutsarova, A. Jordanova, R. Krastev, Z. Lalchev. Interactions of Meibomian gland secretion with polar lipids in Langmuir monolayers [J]. Colloids and Surfaces B:Biointerfaces,2010,78(2):317-327.
    [197]David D. Baldyga, Richard A. Dluhy. On the use of deuterated phospholipids for infrared spectroscopic studies of monomolecular films:a thermodynamic analysis of single and binary component phospholipid monolayers [J]. Chemistry and Physics of Lipids,1998,96(1-2):81-97.
    [198]Zoard Tibor Krasznai, Judit Peli-Szabo, Eniko Nemeth, Laszlo Balkay, Gabor Szabo, Katalin Goda, Laszlo Galuska, Lajos Tron, Tamas Major, Zoltan Hernadi. Paclitaxel modifies the accumulation of tumor-diagnostic tracers in different ways in P-glycoprotein-positive and negative cancer cells [J]. European Journal of Pharmaceutical Sciences,2006,28(3):249-256.
    [199]Tzung-Han Chou, I-Ming Chu, Chien-Hsiang Chang. Interaction of paclitaxel with DSPC in monolayers at the air/water interface at different temperatures [J]. Colloids and Surfaces B:Biointerfaces,2002,25(2),147-155.
    [200]Lingyun Zhao, Si-Shen Feng. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes [J]. Journal of Colloid and Interface Science,2004,274(1),55-68.
    [201]R. Seoane, J. Minones, O. Conde, E. Iribarnegaray, M. Casas. Interactions between amphotericin B and sterols in monolayers. Mixed films of amphotericin B-cholesterol [J]. Langmuir,1999,15(17):5567-5573.
    [202]P. Dynarowicz-Latka, R. Seoane, J. Minones Jr., M. Velo, J. Minones. Study of penetration of amphotericin B into cholesterol or ergosterol containing dipalmitoyl phosphatidylcholine Langmuir monolayers [J]. Colloids and Surfaces B:Biointerfaces,2003,27(2-3):249-263.
    [203]J. Minones, Jr., J. Minones, O. Conde, J. M. Rodriguez Patino, P. Dynarowicz-Latka. Mixed Monolayers of Amphotericin B-Dipalmitoyl Phosphatidyl Choline:Study of Complex Formation [J]. Langmuir,2002,18(7): 2817-2827.
    [204]Katarzyna Hac-Wydro, Patrycja Dynarowicz-Latka. Nystatin in Langmuir monolayers at the air/water interface [J]. Colloids and Surfaces B:Biointerfaces, 2006,53(1):64-71.
    [205]M. I. Sandez Macho, A. Gil Gonzalez, A. Suarez Varela. Mixed Monolayers of Cyclosporin-A and Phospholipids at the Air-Water Interface [J]. Journal of Colloid and Interface Science,2001,235(2):241-246.
    [206]Lars Negelmann, Sandra Pisch, Uwe Bornscheuer, Rolf D. Schmid. Properties of unusual phospholipids. Ⅲ:Synthesis, monolayer investigations and DSC studies of hydroxy octadeca(e)noic acids and diacylglycerophosphocholines derived therefrom [J]. Chemistry and Physics of Lipids,1997,90(1-2):117-134.
    [207]Jose J. Benitez, Jose A. Heredia-Guerrero, Antonio Heredia. Self-Assembly of Carboxylic Acids and Hydroxyl Derivatives on Mica. A Qualitative AFM Study [J]. The Journal of Physical Chemistry C,2007,111(26):9465-9470.
    [208]Jose J. Bentez, Jose A. Heredia-Guerrero, Francisco M. Serrano, Antonio Heredia. The Role of Hydroxyl Groups in the Self-Assembly of Long Chain Alkylhydroxyl Carboxylic Acids on Mica [J]. The Journal of Physical Chemistry C,2008, 112(43):16968-16972.
    [209]Gerald Brezesinski, Dieter Vollhardt. Model Studies of the Interfacial Ordering of Oleanolic Acid in the Cuticula [J]. ChemPhysChem,2008,9(12):1670-1672.
    [210]Sai-Long Xu, Shu-Xia Yin, Han-Pu Liang, Chen Wang, Li-Jun Wan, Chun-Li Bai. Identification of the Preferential-Bonding Effect of Disubstituted Alkane Derivatives Using Scanning Tunneling Microscopy [J]. The Journal of Physical Chemistry B,2004,108(2):620-624.
    [211]Ruthven N.A.H. Lewis, Ronald N. McElhaney. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009,1788(10):2069-2079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700