Liguzinediol通过作用于肌浆网钙释放发挥正性肌力作用及其心脏安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探索Liguzinediol (LZDO)对正常大鼠离体心脏正性肌力作用的机理,并评价其心脏安全性。
     方法:
     1.大鼠Langendorff离体心脏灌流:
     采用常规大鼠Langendorff离体心脏灌流技术,记录左心室收缩功能。分析LZDO以及LZDO在α1、β、D1、H1受体阻滞剂,磷酸二酯酶、Na+-K+-ATP酶、Na+-ca2+交换抑制剂,L-型钙通道阻滞剂,兰尼碱受体、肌浆网钙泵抑制剂存在的条件下,对左心室收缩压(LVSP)、左心室舒张末期压(LVEDP)、左心室内压最大上升速率(+dp/dtmax)、左心室内压最大下降速率(-dp/dtmax)、心率(HR)的作用。
     2. GPCR受体活性测定技术:
     我们选取了与心肌收缩力有关的31个GPCR受体,分析LZDO对它们的作用。
     3.大鼠心脏乳头肌动作电位记录:
     采用常规大鼠离体乳头肌动作电位记录技术,记录乳头肌动作电位的各参数。分析LZDO对动作电位复极50%水平的时程(APD50)和90%水平的时程(APD90)的作用。
     4.全细胞电流钳记录技术:
     采用膜片钳全细胞电流钳技术,记录大鼠左心室单个肌细胞的动作电位的各参数。分析LZDO对动作电位复极50%水平的时程(APD50)和90%水平的时程(APD90)的作用。
     5.全细胞电压钳记录技术:
     应用膜片钳全细胞电压钳技术,分析LZDO对L-型钙电流的作用,探讨LZDO正性肌力作用的机制;分析LZDO对hNav1.5电流、hERG电流的作用,对其进行心脏安全性评价。
     6.细胞内钙成像技术:
     采用细胞内钙成像的方法研究LZDO对心肌细胞内钙释放的作用。
     7.在体和离体心电图技术:
     采用常规豚鼠在体和离体心电图技术,研究LZDO对豚鼠心电图的P-R间期和QTc间期的影响。
     结果:
     1. LZDO剂量依赖性地增加大鼠离体左心室收缩力,其正性肌力作用能被L-型钙通道阻滞剂、兰尼碱受体抑制剂、肌浆网钙泵抑制剂所完全阻断:LZDO能显著地增加左心室收缩压(LVSP)、左心室舒张末期压(LVEDP)、左室内压最大上升速率(+dp/dtmax)、左室内压最大下降速率(-dp/dtmax),但并不显著性地改变心率。在α1受体阻滞剂哌唑嗪(Prazosin1μM)、β受体阻滞剂普萘洛尔(Propranolol1μM)、多巴胺D1受体阻滞剂(SCH233901μM)、H1受体阻滞剂非索那定(Fexofenadine1μM)、磷酸二酯酶抑制剂IBMX(5μM)、Na+-K+-ATP酶抑制剂哇巴因(Ouabain1μM)、Na+-Ca2+交换抑制剂(KB-R79431μM)存在的条件下,LZDO100μM仍能显著地增加上述功能指标(P<0.05)。L-型钙通道阻滞剂尼莫地平(Nimodipine1μM)、L-型钙通道阻滞剂维拉帕米(Verapamil1μM)、兰尼碱受体抑制剂钉红(Ruthenium red5μM)、肌浆网钙泵抑制剂毒胡萝卜素(Thapsigargin2μM)能完全阻断LZDO100μM的正性肌力作用(P>0.05),显示LZDO的正性肌力作用是通过L-型钙通道、兰尼碱受体和肌浆网钙泵所介导的。
     2. LZDO对GPCR受体无显著性的激活作用:
     实验结果显示,LZDO100μM对31个GPCR受体无显著性的激活作用。
     3. LZDO对正常大鼠乳头肌动作电位无显著性作用:
     LZDO100μM对大鼠乳头肌动作电位的复极50%水平的时程(APD50)和90%水平的时程(APD90)无显著性作用(P>0.05)。
     4. LZDO对正常大鼠心肌细胞动作电位无显著性作用:
     LZDO100μM对大鼠左心室单个肌细胞动作电位的复极50%水平的时程(APD50)和90%水平的时程(APD90)无显著性作用(P>0.05)。
     5. LZDO并不能增加正常大鼠左心室肌细胞的L-型钙电流,LZDO对hNav1.5电流与hERG电流均无显著性的抑制作用:
     LZDO100μM对大鼠左心室单个肌细胞的L-型钙电流无显著性作用(P>0.05),显示LZDO的作用靶点不是L-型钙通道;LZDO(1,10,100,300μM)对hNav1.5电流无显著性的抑制作用;LZDO(1,10,100,300μM)对hERG电流无显著性的抑制作用。
     6.LZDO显著性地增加正常大鼠左心室肌细胞内的钙释放量:
     LZDO100μM可以显著性地增加大鼠左心室肌细胞内的钙释放量(P<0.05);LZDO100μM可以恢复由咖啡因所引起的肌浆网钙衰竭现象,这说明LZDO的作用靶点不是兰尼碱受体。
     7. LZDO对豚鼠在体和离体心脏心电图的P-R间期及QTc间期均无显著性的影响:
     豚鼠在体给予LZDO1.7g.kg-1或豚鼠离体心脏灌流LZDO300μM后,P-R间期及QTc间期并没有显著性的改变(P>0.05)。
     结论:
     LZDO的正性肌力作用与其增强肌浆网的钙释放量有关,LZDO对L-型钙通道无直接作用,其作用靶点可能为肌浆网钙泵。LZDO并没有显著性地改变豚鼠在体与离体心电图的P-R间期及QTc间期,也没有显著性抑制hNav1.5和hERG电流,显示其良好的心脏安全性。LZDO具有独特的生物学机制,很有希望成为临床治疗心衰的有效药物。
Objectives:
     The purpose in the present work was to investigate the mechanism underlying positive inotropic effect in rat isolated hearts and evaluate cardiac safety of Liguzinediol.
     Methods:
     1. Intraventricular pressure recording from isolated rat hearts:
     Left ventricle contractile function was measured using the Langendorff non-recirculating mode of isolated rat hearts. Effects of LZDO and LZDO in presences of ai receptor, β receptor, dopamine D1, Hi receptor antagonist, Phosphodiesterase, Na+-K+ATPase, Na+-Ca2+exchange inhibitor, L-type calcium channel antagonist, Ryanodine receptor, or SR Ca2+ATPase inhibitor. Left ventricular systolic pressure (LVSP) and left ventricular end diastolic pressure (LVEDP) as major cardiac contractile function were calculated. Also, heart rate (HR), peak rate of rise of left ventricular pressure (+dp/dtmax), and peak rate of fall of left ventricular pressure (-dp/dtmax) of isolated rat hearts were measured.
     2. The stimulatory activity assay on31GPCRs:
     The stable cell lines expressing31GPCRs respectively were applied for the screening. LZDO was diluted to100μM and screened in duplication. The cells were validated with the reference compounds. Their EC50/IC50values were similar to the reported values and can be applied in the screening. During screening, the reference agonist for each GPCR was assayed as positive control and at concentration stimulating maximal activity. The activation activity of LZDO to each GPCR was normalized with the positive control and shown as%activation.
     3. Recording of action potential from rat heart papillary muscle:
     The action potential (AP) duration at50%level (APD50) and at90%level (APD90) from rat heart papillary muscle were recorded using conventional intracellular recording technique. Effects of LZDO on above parameters were analyzed.
     4. Whole-cell current clamp recording:
     The action potential (AP) duration at50%level (APD50) and at90%level (APD90) of rat left myocyte were recorded using patch clamp current clamp configuration. Effects of LZDO on above paremeters were analyzed.
     5. Whole-cell voltage clamp recording:
     Whole-cell voltage clamp technique was used to analyze the effects of LZDO on L-type Ca2+current which underlies mechanism of LZDO's positive inotropic effect and hNav1.5、 hERG currents which serve for cardiac safety evaluation of LZDO.
     6. Intracellular Ca2+imaging:
     Intracellular Ca2+imaging was used to investigate the effect of LZDO on Ca2+transient.
     7. In vivo and in vitro electrocardiogram (ECG) recording:
     ECG was recorded by conventional guinea pig in vivo and in vitro ECG techniques, we analyzed the effects of LZDO on P-R and QTc intervals.
     Results:
     1. LZDO increased left ventricular contractility in the isolated rat heart in a dose-dependent manner. L-type calcium channel antagonist, Ryanodine receptor inhibitor or SR Ca2+-ATPase inhibitor completely blocked the positive inotropic effect of LZDO:
     LZDO significantly enhanced LVSP, LVEDP,+dp/dtmax, and-dp/dtmax, but not heart rate. α1adrenergic receptor antagonist (Prazosin1μM), β adrenergic receptor antagonist (Propranolol1μM), Dopamine D1receptor antagonist (SCH233901μM), H1receptor antagonist (Fexofenadine1μM), Phosphodiesterase inhibitor (IBMX5μM), Na+-K+-ATPase inhibitor (Ouabain1μM) or Na+-Ca2+exchange inhibitor (KB-R79431μM) had no effect on blocking contractile function of LZDO100μM (P<0.05). Meanwhile, L-type calcium channel antagonist (Nimodipine1μM), L-type calcium channel antagonist (Verapamil1μM), Ryanodine receptor inhibitor (Ruthenium red5μM) or SR Ca2+-ATPase inhibitor (Thapsigargin2μM) completely blocked the contractile function of LZDO (P>0.05). It is suggested that the positive inotropic effect of LZDO was mediated by L-type calcium channel, Ryanodine receptor and SR Ca2+-ATPase.
     2. The31GPCRs were not activated by LZDO:
     Results showed that LZDO100μM did not activate31GPCRs which related to cardiac contractility.
     3. LZDO did not significantly change APD50and APD90in rat heart papillary muscle:
     LZDO100μM did not significantly change APD50and APD90in rat heart papillary muscle (P>0.05).
     4. LZDO did not significantly change APD50and APD90in rat left ventricular myocyte:
     LZDO100μM did not significantly change APD50and APD90in rat left ventricular myocyte (P>0.05).
     5. LZDO failed to increase the L-type calcium current in rat left ventricular myocyte, LZDO did not significantly suppress the hNavl.5and hERG current:
     LZDO100μM did not significantly change L-type calcium current in rat left ventricular myocyte (P>0.05), it is suggested that LZDO's target is not L-type calcium channel. LZDO (1,10,100,300μM) did not significantly suppress the hNavl.5and hERG current.
     6. LZDO significantly enhanced intracellular Ca2+transient in rat left ventricular myocyte:
     LZDO100μM significantly enhanced intracellular Ca2+transient in rat left ventricular myocyte (P<0.05), Moreover, LZDO100μM restored the sarcoplasmic reticulum depletion effect of caffeine on Ca2+transient.
     7. LZDO did not significantly change P-R and QTc intervals of in vivo and in vitro guinea pig ECG:
     LZDO1.7g-kg-1in vivo and LZDO300μM in vitro could not significantly prolong P-R and QTc intervals (P>0.05).
     Conclusions:
     The positive inotropic effect of LZDO in isolated rat hearts was mediated through an elevation of SR Ca2+transient. LZDO had no direct effect on L-type calcium channel and may act on SR Ca2+ATPase. LZDO did not significantly change P-R and QTc intervals of in vivo and in vitro guinea pig ECG Moreover, LZDO did not significantly suppress the hNav1.5and the hERG current. These data suggested LZDO had no prearrythmia effect. LZDO has a unique biological mechanism without proarrythmia effect that may prove effective in treating heart failure in clinic.
引文
[1]陆再英,钟南山.内科学[M].北京:人民卫生出版社,2009:165-181.
    [2]Gelape CL, Pham SM. Advances in mechanical circulatory support in the treatment of heart failure [J]. Arq Bras Cardiol,2012; 98(2):36-43.
    [3]Peters-Klimm F, Laux G, Campbell S, et al. Physician and patient predictors of evidence-based prescribing in heart failure:a multilevel study [J]. PLoS One,2012; 7(2):e31082.
    [4]Prasad R, Pugh PJ. Drug and device therapy for patients with chronic heart failure [J]. Expert Rev Cardiovasc Ther,2012; 10(3):313-315.
    [5]Gelape CL, Pham SM. Advances in mechanical circulatory support in the treatment of heart failure [J]. Arq Bras Cardiol,2012; 98(2):36-43.
    [6]Greenberg B. Acute decompensated heart failure [J]. Circ J,2012; 76(3):532-543.
    [7]Tamargo J, Duarte J, Caballero R, et al. New therapeutic targets for the development of positive inotropic agents [J]. Discov Med,2011; 12(66):381-392.
    [8]Shan J, Kushnir A, Betzenhauser MJ, et al. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice [J]. J Clin Invest,2010; 120(12):4388-4398.
    [9]Renoux C, Dell'Aniello S, Brophy JM, et al. Dopamine agonist use and the risk of heart failure [J]. Pharmacoepidemiol Drug Saf,2012; 21(1):34-41.
    [10]Butler J, Anand IS, Kuskowski MA, et al. Digoxin use and heart failure outcomes:results from the Valsartan Heart Failure Trial (Val-HeFT) [J]. Congest Heart Fail,2010; 16(5):191-195.
    [11]Sebkova S, Tomek V, Zemanova P, et al. Heart failure treated with low-dose milrinone in a full-term newborn [J]. Prague Med Rep,2012; 113(1):58-65.
    [12]Lunghetti S, Palmerini E, Urselli R, et al. Effects of levosimendan without loading dose on systolic and diastolic function in patients with end-stage heart failure [J]. Cardiol J,2011; 18(5):532-537.
    [13]Doorduin J, Sinderby CA, Beck J, et al. The calcium sensitizer levosimendan improves human diaphragm function [J]. Am J Respir Crit Care Med,2012; 185(1):90-95.
    [14]Parry A. Inotropic drugs and their uses in critical care [J]. Nurs Crit Care,2012; 17(1):19-27.
    [15]刘峥,周淑媛,李伟,等.Liguzinediol对正常大鼠离体心脏的正性肌力作用[J].中国新药与临床杂志,2009,28(4):293-296.
    [16]刘峥,卞慧敏,陈龙,等.Liguzinediol对正常大鼠心脏血液动力学的影响[J].中国药学杂志,2009,44(15):1155-1158.
    [17]闻侃,刘峥,卞慧敏,等.Liguzinediol的急性毒性[J].中国新药与临床杂志,2011,30(3):234-235.
    [18]单晨啸,李伟,文红梅,等.UPLC法测定大鼠血浆中Liguzinediol浓度以及动力学研究[J].中国药理学通报,2011,27(5):709-712.
    [1]ZimmerHG The isolated perfused heart and its pioneers [J].News Physiol Sci,1998; 13:203-210.
    [2]Zimmer HG. The contributions of Carl Ludwig to cardiology [J]. Can J Cardiol,1999; 15(3):323-329.
    [3]Wang QD, Swardh A, Sjoquist PO. Relationship between ischaemic time and ischaemia/reperfusion injury in isolated Langendorff-perfused mouse hearts [J]. Acta Physiol Scand,2001; 171(2):123-128.
    [4]Xu D, Zhang S, Foster DJ, et al. The effects of isosteviol against myocardium injury induced by ischaemia-reperfusion in the isolated guinea pig heart [J]. Clin Exp Pharmacol Physiol,2007; 34(5-6): 488-493.
    [5]Greenfield DT, Greenfield LJ, Hess ML. Enhancement of crystalloid cardioplegic protection against global normothermic ischemia by superoxide dismutase plus catalase but not ditiazem in the isolated, working rat heart [J]. J Thorac Cardiovasc Surg,1988; 95(5):799-813.
    [6]Galinanes M, Hearse DJ. Assessment of ischemic injury and protective interventions:the Langendorff versus the working rat heart preparation [J]. Can J Cardiol,1990; 6(2):83-91.
    [7]Wolkow PP, Korbut R. Pharmacology at the Jagiellonian University in Kracow, short review of contribution to global science and cardiovascular research through 400 years of history [J]. J Physiol Pharmacol,2006; 57(1):119-136.
    [8]Taegtmeyer H. One hundred years ago:Oscar Langendorff and the birth of cardiac metabolism [J]. Can J Cardiol,1995; 11(11):1030-1035.
    [9]Skrzypiec-Spring M, Grotthus B, Szelag A, et al. Isolated heart perfusion according to Langendorff-still viable in the new millennium [J]. J Pharmacol Toxicol Methods,2007; 55(2): 113-126.
    [10]Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion:the Langendorff technique of isolated heart perfusion [J]. J Mol Cell Cardiol,2011; 50(6):940-950.
    [11]Doring HJ. The isolated perfused heart according to Langendorff technique-function-application [J]. Physiol Bohemoslov,1990; 39(6):481-504.
    [12]梁伟涛.离体心脏Langendorff灌流模型稳定性的探讨[J].国际心血管病杂志,2011,38(1):44-47.
    [13]付峰,张海峰,高峰.离体心脏灌流系统今昔谈[J].生理科学进展,2010,41(3):238-242.
    [14]Sutherland FJ, Hearse DJ. The isolated blood and perfusion fluid perfused heart [J]. Pharmacol Res, 2000; 41(6):613-627.
    [15]Reichelt ME, Willems L, Hack BA, et al. Cardiac and coronary function in the Langendorff-perfused mouse heart model [J]. Exp Physiol,2009; 94(1):54-70.
    [16]Guo L, Dong Z, Guthrie H. Validation of a guinea pig Langendorff heart model for assessing potential cardiovascular liability of drug candidates [J]. J Pharmacol Toxicol Methods,2009; 60(2):130-151.
    [17]Akar JG, Akar FG. Mapping arrhythmias in the failing heart:from Langendorff to patient [J]. J Electrocardiol,2006; 39(4):19-23.
    [18]Kern MJ, Christopher T. Hemodynamic rounds series II:the LVEDP [J]. Cathet Cardiovasc Diagn, 1998; 44(1):70-74.
    [19]Morimont P, Lambermont B, Desaive T, et al. Arterial dp/dtmax accurately reflects left ventricular contractility during shock when adequate vascular filling is achieved [J]. BMC Cardiovasc Disord, 2012; 12(1):13.
    [20]Ciliberti P, Schulze-Neick I, Giardini A. Modulation of pulmonary vascular resistance as a target for therapeutic interventions in Fontan patients:focus on phosphodiesterase inhibitors [J]. Future Cardiol, 2012; 8(2):271-284.
    [21]Kaneko Y, Nakajima T, Irie T, et al. Ventricular fibrillation following bidirectional tachycardia due to digitalis toxicity [J]. Intern Med,2011; 50(19):2243.
    [22]Liao J, Li H, Zeng W, et al. Structural insight into the ion-exchange mechanism of the sodium-calcium exchanger [J]. Science,2012; 335(6069):686-690.
    [23]Chang SL, Chen YC, Yeh YH, et al. Heart failure enhanced pulmonary vein arrhythmogenesis and dysregulated sodium and calcium homeostasis with increased calcium sparks [J]. J Cardiovasc Electrophysiol,2011; 22(12):1378-1386.
    [24]Movafagh S, Morad M. L-type calcium channel as a cardiac oxygen sensor [J]. Ann NY Acad Sci, 2010; 1188:153-158.
    [1]Kang M, Chung KY, Walker JW. G-protein coupled receptor signaling in myocardium:not for the faint of heart [J]. Physiology,2007; 22:174-184.
    [2]Salazar NC, Chen J, Rockman HA. Cardiac GPCRs:GPCR signaling in healthy and failing hearts [J]. Biochim Biophys Acta,2007; 1768(4):1006-1018.
    [3]Penela P, Murga C, Ribas C, et al. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease [J]. Cardiovasc Res,2006; 69(1):46-56.
    [4]Riddle EL, Schwartzman RA, Bond M, et al. Multi-tasking RGS proteins in the heart:the next therapeutic target? [J]. Circ Res,2005; 96(4):401-411.
    [5]Hata JA, Koch WJ. Phosphorylation of G protein-coupled receptors:GPCR kinases in heart disease [J]. Mol Interv,2003; 3(5):264-272.
    [6]Avkiran M, Haworth RS. Regulatory effects of G protein-coupled receptors on cardiac sarcolemmal Na+/H+exchanger activity:signaling and significance [J]. Cardiovasc Res,2003; 57(4):942-952.
    [7]Hanson MA, Roth CB, Jo E, et al. Crystal structure of a lipid G protein-coupled receptor [J]. Science, 2012; 335(6070):851-855.
    [8]Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane spanning receptors and heart function [J]. Nature,2002; 415:206-212.
    [9]Angerio AD. The role of endothelin in heart failure [J]. Crit Care Nurs Quart,2005; 28:355-359.
    [10]Abozguia K, Clarke K, Lee L, et al. Modification of myocardial substrate use as a therapy for heart failure [J]. Nat Clin Pract Cardiovasc Med,2006; 3:490-498.
    [11]Adorisio R, Deluca L, Rossi J, et al. Pharmacological treatment of chronic heart failure [J]. Heart Failure Rev,2006; 11:109-123.
    [12]Titus S, Neumann S, Zheng W, et al. Quantitative high-throughput screening using a live-cell cAMP assay identifies small-molecule agonists of the TSH receptor [J]. J Biomol Screen,2008; 13(2): 120-127.
    [13]Rodriquez M, Beauverger P, Naime I, et al. Cloning and molecular characterization of the novel human melanin-concentrating hormone receptor MCH2 [J]. Mol Pharmacol,2001; 60(4):632-639.
    [14]Devi LA. Heterodimerization of G-protein coupled receptors:pharmacology, signaling and trafficking [J]. Trends Pharmacol,2001; 22:532-537.
    [15]Teerlink JR. Endothelins:pathophysiology and treatment implications in chronic heart failure [J]. Curr Heart Failure Rep,2005; 2:191-197.
    [16]Tang CM, Insel PA. GPCR expression in the heart:'new'receptors in myocytes and fibroblasts [J]. Trends Cardiovasc Med,2004; 14:94-99.
    [17]Wang W, Ma R. Cardiac sympathetic afferent reflexes in heart failure [J]. Heart Failure Rev,2000; 5: 51-57.
    [1]Roman-Campos D, Carneiro-Junior MA, Primola-Gomes TN, et al. Chronic exercise partially restores the transmural heterogeneity of action potential duration in left ventricular myocytes of spontaneous hypertensive rats [J]. Chin Exp Pharmacol Physiol,2012; 39(2):155-157.
    [2]Ferreiro M, Petrosky AD, Escobar AL. Intracellular Ca2+release underlies the development of phase 2 in mouse ventricular action potentials [J]. Am J Physiol,2012; 302(5):1160-1172.
    [3]Chae JE, Kim HS, Ahn DS, et al. Ionic mechanisms of desflurane on prolongation of action potential duration in rat ventricular myocytes [J]. Yonsei Med J,2012; 53(1):204-212.
    [4]Schwoerer AP, Zenouzi R, Ehmke H, et al. Bupivacaine destabilizes action potential duration in cellular and computational models of long QT syndrome 1 [J]. Anesth Analg,2011; 113(6): 1365-1373.
    [5]O'Hara T, Rudy Y. Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species [J]. Am J Physiol Heart Circ Physiol,2012; 302(5): 1023-1030.
    [6]Guo X, Gao X, Wang Y, et al. IKs protects from ventricular arrhythmia during cardiac ischemia and reperfusion in rabbits by preserving the repolarization reserve [J]. PLoS One,2012; 7(2):e31545.
    [7]Sarhan MF, Tung CC, Van Petegem F, et al. Crystallographic basis for calcium regulation of sodium channels [J]. ProcNatl Acad Sci,2012; 109(9):3558-3563.
    [8]Mann SA, Otway R, Guo G, et al. Epistatic effects of potassium channel variation on cardiac repolarization and atrial fibrillation risk [J]. J Am Coll Cardiol,2012; 59(11):1017-1025.
    [9]Cain SM, Snutch TP. Voltage-gated calcium channels and disease [J]. Biofactors,2011; 37(3): 197-205.
    [10]Guo J, Wang T, Yang T, et al. Interaction between the cardiac rapidly (Iks) and slowly (Iks) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation [J]. J Biol Chem,2011; 286(40):34664-34674.
    [11]Moric-Janiszewska E, Glogowska-Ligus J, Paul-Samojedny M, et al. Expression of genes KCNQ1 and hERG encoding potassium ion channels Ik Iks in long QT syndrome [J]. Kardiol Pol,2011; 69(5): 423-429.
    [12]Wang J, Gao E, Rabinowitz J, et al. Regulation of in vivo cardiac contractility by phospholemman: role of Na+/Ca2+exchange [J]. Am J Physiol Heart Circ Physiol,2011; 300(3):859-868.
    [13]Oqawa H, Shinoda T, Cornelius F, et al. Crystal structure of the sodium-potassium pump (Na+-K+-ATPase) with bound potassium and ouabain [J]. Proc Natl Acad Sci,2009; 106(33): 13742-13747.
    [1]Chen L, el-Sherif N, Boutjdir M. Alpha 1-adrenergic activation inhibits beta-adrenergic-stimulated unitary Ca2+currents in cardiac ventricular myocytes [J]. Circ Res,1996; 79:184-193.
    [2]Chae JE, Kim HS, Ahn DS, et al. Ionic mechanisms of desflurane on prolongation of action potential duration in rat ventricular myocytes [J]. Yonsei Med J,2012; 53(1):204-212.
    [3]Jung BC, Lee SH, Cho YK, et al. Role of the alternans of action potential duration and aconitine-induced arrhythmias in isolated rabbit hearts [J]. J Korean Med Sci,2011; 26(12): 1576-1581.
    [4]Zhang LP, Wei Y, Song SL, et al. Effect of polydatin on action potential in ventricular papillary muscle of rat and the underlying ionic mechanism [J]. Sheng Li Xue Bao,2011; 63(1):48-54.
    [5]Hu H, Zhou J, Sun Q, et al. Effects of ethanol on action potential of rat myocardium and human Kv1.5 channel [J]. Sheng Li Xue Bao,2011; 63(3):219-224.
    [6]Caillier B, Pilote S, Patoine D, et al. Metabolic syndrome potentiates the cardiac action potential-prolonging action of drugs:a possible'anti-proarrhythmic'role for amlodipine [J]. Pharmacol Res,2012; 65(3):320-327.
    [7]Davies MR, Mistry HB, Hussein L, et al. An in silico canine cardiac midmyocardial action potential duration model as a tool for early drug safety assessment [J]. Am J Physiol Heart Circ Physiol,2011; 23(2):15-19.
    [8]Rouet R, Worou ME, Puddu PE, et al. Nifedipine blocks ondansetron electrophysiological effects in rabbit purkinje fibers and decreases early afterdepolarization incidence [J]. Curr Clin Pharmacol,2012; 25(3):117-125.
    [9]Hamill OP, Marty A, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches [J]. Pfluqers Arch,1981; 391(2):85-100.
    [10]Colquhoun D. Neher and Sakmann win Nobel Prize for patch-clamp work [J]. Trends Pharmacol Sci, 1991; 12(12):449.
    [11]康华光.膜片钳技术及其应用[M].北京:科学出版社,2003.
    [12]Karnani MM, Venner A, Jensen LT, et al. Direct and indirect control of orexin/hypocretin neurons by glycine receptors [J]. J Physiol,2011; 589(3):639-651.
    [13]Qi H, Chen HZ, Jin ZJ. Caspase 3 gene expression and [Ca2+]i homeostasis underlying desipramine-induced C6 glioma cell apoptosis [J]. Acta Pharmacol Sin,2002; 23(9):803-807.
    [1]刘泰槰.心肌细胞离子通道和通道病[M].北京:人民卫生出版社,2006.
    [2]Catterall WA, Striessnig J, Snutch TP, et al. International Union of Pharmacology.XL. Compendium of voltage-gated Ion channels:calcium channels [J]. Pharmacol Rev,2003; 55(4):579-581.
    [3]Pan LJ, Zhang ZC, Zhang ZY, et al. Effects and mechanisms of store-operated calcium channel blockade on hepatic ischemia-reperfusion injury in rats [J]. World J Gastroenterol,2012; 18(4): 356-367.
    [4]Reimao JQ, Tempone AG. Investigation into in vitro anti-leishmanial combinations of calcium channel blockers and current anti-leishmanial drugs [J]. Mem Inst Oswaldo Cruz,2011; 106(8): 1032-1038.
    [5]Reuter H. The dependence of the slow inward current on external calcium concentration in Purkinje fibers [J]. J Physiol,1967; 192:479-492.
    [6]Chen-Izu Y. Multiple levels of the single L-type Ca2+channel conductance in adult mammalian ventricular myocytes [J]. Biochem Biophys Res Commun,2010; 391(1):604-608.
    [7]Catterall WA. Structure and function of voltage-gated ion channels [J]. Annu Rev Biochem,1995; 65: 493-531.
    [8]Catterall WA. Structure and regulation of voltage-gated Ca2+channels [J]. Annu Rev Cell Dev Biol, 2000; 16:521-555.
    [9]Shi J, Gu P, Zhu Z, et al. Protein phosphatase 2A effectively modulates basal L-type Ca2+current by dephosphorylating Cavl.2 at serine 1866 in mouse cardiac myocytes [J]. Biochem Biophys Res Commun,2012; 418(4):792-798.
    [10]Goonasekera SA, Hammer K, Auger-Messier M, et al. Decreased cardiac L-type Ca2+channel activity induces hypertrophy and heart failure in mice [J]. J Chin Invest,2012; 122(1):280-290.
    [11]Tuckwell HC. Quantitative aspects of L-type Ca2+currents [J]. Prog Neurobiol,2012; 96(1):1-31.
    [12]Lipskaia L, Chemaly ER, Hadri L, et al. Sarcoplasmic reticulum Ca2+-ATPase as a therapeutic target for heart failure [J]. Expert Opin Biol Ther,2010; 10(1):29-41.
    [13]Mizuno J, Hanaoka K, Otsuji M, et al. Calcium-induced calcium release from the sarcoplasmic reticulum can be evaluated with a half logistic function model in aequorin-injected cardiac muscles [J]. JAnesth,2011; 25(6):831-838.
    [14]Williams GS, Huertas MA, Sobie EA, et al. Moment closure for local control models of calcium-induced calcium release in cardiac myocytes [J]. Biophys J,2008; 95(4):1689-1703.
    [15]Fellner SK, Arendshorst WJ. Voltage-gated Ca2+entry and ryanodine receptor Ca2+-induced Ca2+ release in preglomerular arterioles [J]. Am J Physiol Renal Physiol,2007; 292(5):1568-1572.
    [16]Williams GS, Smith GD, Sobie EA, et al. Models of cardiac excitation-contraction coupling in ventricular myocytes [J]. Math Biosci,2010; 226(1):1-15.
    [17]Kukielka M, Holycross BJ, Billman GE, et al. Endurance exercise training reduces cardiac sodium/calcium exchanger expression in animals susceptible to ventricular fibrillation [J]. Front Physiol,2011;2:3.
    [18]Vyleta NP, Smith SM. Spontaneous glutamate release is independent of calcium influx and tonically activated by the calcium-sensing receptor [J]. J Neurosci,2011; 31(12):4593-4606.
    [19]Rose RA, Sellan M, Simpson JA, et al. Iron overload decreases Cav1.3-dependent L-type Ca2+currents leading to bradycardia, altered electrical conduction, and atrial fibrillation [J]. Circ Arrhythm Electrophysiol,2011; 4(5):733-742.
    [20]Splawski I, Timothy KW, Sharpe LM, et al. Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism [J]. Cell,2004; 199(1):19-31.
    [1]Berridge MJ. Calcium microdomains:organization and function [J]. Cell Calcium,2006; 40:405-412.
    [2]Berridge MJ, Bootman MD, Roderick HL. Calcium signaling:dynamics, homeostasis and remodeling [J].Nat Rev Mol Cell Biol,2003; 4:517-529.
    [3]Clapham DE. Calcium signaling [J]. Cell,2007; 131:1047-1058.
    [4]Cheng H, Lederer WJ, Cannell MB. Calcium sparks:elementary events underlying excitation-contraction coupling in heart muscle [J]. Science,1993; 262:740-744.
    [5]Hagiwara S, Nakajima S. Effects of the intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle [J]. J GenPhysiol,1966; 49:807-818.
    [6]Blinks JR, Prendergast FG, Allen DA. Photoproteins as biological calcium indicators [J]. Pharmacol Rev,1976; 28:1-93.
    [7]Allen DG, Blinks JR. Calcium transients in aequorin-injected frog cardiac muscle [J]. Nature,1978; 273:509-513.
    [8]Williams DA, Fogarty KE, Tsien RY, et al. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2 [J]. Nature,1985; 318:558-561.
    [9]Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores [J]. J Biol Chem,1989; 264:8171-8178.
    [10]Wang SQ, Song LS, Lakatta EG, et al. Ca2+signalling between single L-type Ca2+channels and ryanodine receptors in heart cells [J]. Nature,2001; 410:592-596.
    [11]Wang SQ, Song LS, Xu L, et al. Thermodynamically irreversible gating of ryanodine receptors in situ revealed by stereotyped duration of release in Ca+sparks [J]. Biophys J,2002; 83:242-251.
    [12]Cheng H, Lederer WJ, Cannell MB. Calcium sparks:elementary events underlying excitation-contraction coupling in heart muscle [J]. Science,1993; 262:740-744.
    [13]Macrez N, Mironneau J. Local Ca2+signals in cellular signaling [J]. Curr Mol Med,2004; 4:263-275.
    [14]Santana LF, Cheng H, Gomez Am, et al. Relation between the Ca2+current and Ca2+sparks and local control theories for cardiac excitation-contraction coupling [J]. Circ Res,1996; 78:166-171.
    [15]Wier WG, Balke CW. Ca2+release mechanisms, Ca2+sparks, local control of excitation-contraction coupling in nomal heart muscle [J]. Circ Res,1999; 85:770-776.
    [16]Soeller C, Cannell MB. Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad [J]. Biophys J,1997; 73:97-111.
    [17]Lukyanenko V, Subramanian S, Gyorke I, et al. The role of luminal Ca2+in the generation of Ca2+ waves in rat ventricular myocytes [J]. J Physiol,1999; 518:173-186.
    [18]Terentyev D, Viatchenko-Karpinski S, Valdivia HH, et al. Luminal Ca2+controls termination and refractory behavior of Ca2+-induced Ca2+release in cardiac myocytes [J]. Circ Rev,2002; 91:414-420.
    [19]Song LS, Sham JS, Stern MD, et al. Direct measurement of SR release flux by tracking "Ca2+spikes" in rat cardiac myocytes [J]. J Physiol,1998; 512:677-691.
    [20]Franzini-Armstrong C, Protasi F, Ramesh V, et al. Shape, size, distribution of Ca2+release units and couplons in skeletal and cardiac muscles [J]. Biophys J,1999; 77:1528-1539.
    [21]Zhou YY, Song LS, Lakatta EG, et al. Constitutive beta2-adrenergic signalling enhances sarcoplasmic reticulum Ca2+cycling to augment contraction in mouse heart [J]. J Physiol,1999; 40:351-361.
    [22]Petroff MGV, Kim SH, Pepe S, et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+release in cardiomyocytes [J]. Nat Cell Biol,2001; 3:867-873.
    [23]Izu LT, Mauban JR, Balke CW, et al. Large currents generate cardiac Ca2+sparks [J]. Biophys J,2001; 80:88-102.
    [24]Pratusevich VR, Balke CW, et al. Factors shaping the confocal image of the calcium spark in cardiac muscle cells [J]. Biophys J,1996; 71:2942-2957.
    [25]Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle [J]. Science,1995; 268:1045-1049.
    [26]Ji G, Feldman M, Doran R, et al. Ca+-induced Ca+release through localized Ca+uncaging in smooth muscle [J]. J Gen Physiol,2006; 127:225-235.
    [27]Cheng H, Song LS, Shirokova N, et al. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method [J]. Biophys J,1999; 76:606-617.
    [28]Picht E, Zima AV, Blatter LA, et al. SparkMaster:automated calcium spark analysis with ImageJ [J]. Am J Physiol Cell Physiol,2007; 293:1073-1081.
    [29]Lopez-Lopez JR, Shacklock PS, Balke CW, et al. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells [J]. Science,1995; 268:1042-1045.
    [30]Callamaras N, Parker I. Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+release sites in Xenopus oocytes resolved by axial confocal linescan imaging [J]. J Gen Physiol,1999; 113: 199-213.
    [31]Cheng H, Cannell MB, Lederer WJ. Partial inhibition of Ca2+current by methoxyverapamil (D600) reveals spatial nonuniformities in [Ca"+]i during excitation-contraction coupling in cardiac myocytes [J]. Circ Res,1995; 76:236-241.
    [32]Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes [J]. Biophys J,1994; 67:1942-1956.
    [33]Miyaji T, Sawada K, Omote H, et al. Divalent cation transport by vesicular nucleotide transporter [J]. J Biol Chem,2011; 286(50):42881-42887.
    [34]Delbridge LM, Satoh H, Yuan W, et al. Cardiac myocyte volume, Ca2+fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy [J]. Am J Physiol,1997; 272:2425-2435.
    [35]Doni MG, Cavallini L, Alexandre A. Ca2+influx in platelets:activation by thrombin and by the depletion of of the stores [J]. Biochem J,1994; 303(2):599-605.
    [1]Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics-2008 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J]. Circulation,2008; 117(4):25-146.
    [2]Jessup M, Brozena S. Heart failure [J]. N Engl J Med,2003; 348(20):2007-2018.
    [3]Lipskaia L, Ly H, Kawase Y, et al. Treatment of heart failure by calcium cycling gene therapy [J]. Future Cardiology,2007; 3(4):413-423.
    [4]Del Monte F, Hajjar RJ. Intracellular devastation in heart failure [J]. Heart Fail Rev,2008; 13(2): 151-162.
    [5]Kawase Y, Hajjar RJ. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase:a potent target for cardiovascular diseases [J]. Nat Clin Pract Cardiovasc Med,2008; 5(9):554-565.
    [6]Bers DM. Calcium cycling and signaling in cardiac myocytes [J]. Annu Rev Physiol,2008; 70:23-49.
    [7]Lipskaia L, Hulot JS, Lompre AM, et al. Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation [J]. Pflugers Arch,2009; 457(3): 673-685.
    [8]Sakata S, Lebeche D, Sakata N, et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins [J]. J Mol Cell Cardiol,2007; 42(4):852-861.
    [9]Sakata S, Lebeche D, Sakata Y, et al. Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer [J]. Mol Ther,2006; 13(5):987-996.
    [10]Del Monte F, Lebeche D, Guerrero JL, et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling [J]. Proc Natl Acad Sci USA,2004; 101(15):5622-5627.
    [11]Hadri L, Lipskaia L, Kawase Y, et al. Transcoronary gene transfer of SERCA2a increases coronary blood flow trought an increase of eNOS activity in endothelial cells [J]. Circ Res,2007; 101:65-69.
    [12]Lipskaia L, Del Monte F, Capiod T, et al. Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat [J]. Circ Res, 2005; 97(5):488-495.
    [13]Vinge LE, Raake PW, Koch WJ. Gene therapy in heart failure [J]. Circ Res,2008; 102(12):1458-1470.
    [14]Lyon AR, Sato M, Hajjar RJ, et al. Gene therapy:targeting the myocardium [J]. Heart,2008; 94(1): 89-99.
    [15]Song LS, Guatimosim SILV, Gomez-Viquez LETI, et al. Calcium biology of the transverse tubules in heart [J]. Ann NY Acad Sci,2005; 1047:99-111.
    [16]Marjamaa A, Laitinen-Forsblom P, Wronska A, et al. Ryanodine receptor(RyR2) mutations in sudden cardiac death:studies in extended pedigrees and phenotypic characterization in vitro [J]. Int J Cardiol, 2011; 147(2):246-252.
    [17]Sarma S, Li N, van Oort RJ, et al. Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy [J]. ProcNatl Acad Sci USA,2010; 107(29):13165-13170.
    [18]Michelangeli F, East JM. A diversity of SERCA Ca2+pump inhibitors [J]. Biochem Soc Trans,2011; 39(3):789-797.
    [19]Strosova MK, Karlovska J, Zizkova P, et al. Modulation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and oxidative modification during the development of adjuvant arthritis [J]. Arch Biochem Biophys,2011; 511(1-2):40-47.
    [20]Akin BL, Jones LR. Characterizing phospholamban to sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein binding interactions in human cardiac sarcoplasmic reticulum vesicles using chemical cross-linking [J]. J Biol Chem,2012; 287(10):7582-7593.
    [21]Lompre AM, Hajjar RJ, Harding SE, et al. Ca2+cycling and new therapeutic approaches for heart failure [J]. Circulation,2010; 121(6):822-830.
    [22]Nicolaou P, Hajjar RJ, Kranias EG. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology [J]. J Mol Cell Cardiol,2009; 14:3571-3585.
    [23]Volkers M, Weidenhammer C, Herzog N, et al. The inotropic peptide (3ARKct improves βAR responsiveness in normal and failing cardiomyocytes through G (βγ)-mediated L-type calcium current disinhibition [J]. Circ Res,2011; 108(1):27-39.
    [24]Keurs HE. The interaction of Ca2+with sarcomeric proteins:role in function and dysfunction of the heart [J]. Am J Physiol Heart Circ Physiol,2012; 302(1):38-50.
    [25]Wang L, Zhang S, Zou C, et al. Differences in sarcoplasmic reticulum Ca+leak characteristics between systolic and diastolic heart failure rabbit models [J]. Chin J Physiol,2011; 54(2):133-142.
    [26]Maclennan DH, Kranias EG. Phospholamban:a crucial regulator of cardiac contractility [J]. Nat Rev Mol Cell Biol,2003; 4(7):566-577.
    [27]del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a [J]. Circulation,1999; 100(23):2308-2311.
    [28]Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload [J]. Ann NY Acad Sci, 2010;1201:183-188.
    [29]Yoshikawa Y, Takaki M. Energy utility of failing heart [J]. Nihon Yakurigaku Zasshi,2004; 123(2): 77-86.
    [30]Studeli R, Jung S, Mohacsi P, et al. Diastolic dysfunction in human cardiac allografts is related with reduced SERCA2a gene expression [J]. Am J Transplant,2006; 6(4):775-782.
    [31]Davia K, Bernobich E, Ranu HK, et al. SERCA2a overexpression decreases the incidence of aftercontractions in adult rabbit ventricular myocytes [J]. J Mol Cell Cardiol,2001; 33(5):1005-1015.
    [1]Kamiya K, Niwa R, Morishima M, et al. Molecular determinants of hERG channel block by terfenadine and cisapride [J]. J Pharmacol Sci,2008; 108(3):301-307.
    [2]Wysowski DK, Bacsanyi J. Cisapride and fatal arrhythmia [J]. N Engl J Med,1996; 335(4):290-291.
    [3]Garcia-Ferreiro RE, Kerschensteiner D, Major F, et al. Mechanism of block of hEagl K+channels by imipramine and astemizole [J]. J Gen Physiol,2004; 124(4):301-317.
    [4]陈龙,杨琳,吕强,等.ICH对药物临床前心脏安全性评价的技术要求[J].中国新药杂志,2010;19(18):1642-1647.
    [5]Miller MD. The informed-consent policy of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use:knowledge is the best medicine [J]. Cornell Int Law J,1997; 30(1):203-244.
    [6]ICH. Safety Pharmacology Studies for Human Pharmaceuticals ICH Topic.2000(S7A)
    [7]ICH. The Non-clinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals.2005(S7B)
    [8]ICH. The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-antiarrhythmic Drugs.2008(E14)
    [9]Dekker JM, Crow RS, Hannan PJ, et al. Heart rate-corrected QT interval prolongation predicts risk of coronary heart disease in black and white middle-aged men and women:the ARIC study [J]. J Am Coll Cardiol,2004,43(4):565-571.
    [10]Raghav KP, Makkuni P, Figueredo VM. A review of electrocardiography in pulmonary embolism: recognizing pulmonary embolus masquerading as ST-elevation myocardial infarction [J]. Rev Cardiovasc Med,2011; 12(3):157-163.
    [11]Salcido DD. Quantitative waveform measures of the electrocardiogram as continuous physiologic feedback during resuscitation with cardiopulmonary bypass [J]. Resuscitation,2012; 83(4):505-510.
    [12]黄宛.临床心电图学[M].北京:人民卫生出版社,2005.
    [13]Barold SS. Willem Einthoven and the birth of clinical electrocardiography a hundred years ago [J]. Card Electrophysiol Rev,2003; 7(1):99-104.
    [14]Hjelm NM, Julius HW. Centenary of electrocardiography and telephonocardiography [J]. J Telemed Telecare,2005; 11(7):336-338.
    [15]刘泰槰.心肌细胞电生理学[M].北京:人民卫生出版社,2005.
    [16]Fukuda E, Yamashita T, Tamakoshi K, et al. Premature atrial complex with P-R prolongation indicates multiple atrioventricular nodal pathways [J]. Circ J,2005; 69(10):1233-1236.
    [17]李江,瞿林海,姜红柳,等.应用麻醉豚鼠对药物引起的QT间期延长的评价[J].中国药理学与毒理学杂志,2010;24(2):146-149.
    [18]Pollard CE, Abi Gerges N, Bridgland-Taylor MH, et al. An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk [J]. Br J Pharmacol,2010; 159(1):12-21.
    [19]Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited [J]. FASEB J,2008; 22(3):659-661.
    [1]George AL, Varkony TA, Drabkin HA, et al. Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+channel alpha-subunit gene(SCN5A) to band 3p21 [J]. Cytogenet Cell Gene,1995; 68:67-70.
    [2]Balser JR. The cardiac sodium channel:gating function and molecular pharmacology [J]. J Moll Cell Cardiol,2001; 33:599-613.
    [3]Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. [J].Cell, 2001; 104:569-580.
    [4]Larbig R, Torres N, Bridge JH, et al. Activation of reverse Na+-Ca2+exchange by the Na+current augments the cardiac Ca2+transient:evidence from NCX knockout mice [J]. J Physiol,2010; 588: 3267-3276.
    [5]Bode-Schnurbus L, Bocker D, Block M, et al. QRS duration:a simple marker for predicting cardiac mortality in ICD patients with heart failure [J]. Heart,2003; 89:1157-1162.
    [6]Hummel SL, Skorcz S, Koelling TM. Prolonged electrocardiogram QRS duration independently predicts long-term mortality in patients hospitalized for heart failure with preserved systolic function [J]. J Card Fail,2009; 15:553-560.
    [7]Gintant GA, Gallacher DJ, Pugsley MK. The'overly-sensitive'heart:sodium channel block and QRS interval prolongation [J]. Br J Pharmacol,2011; 164:254-259..
    [8]Graf BM. The cardiotoxicity of local anesthetics:the place of ropivacaine [J]. Curr Top Med Chem, 2001; 1:207-214.
    [9]Thanacoody HK, Thomas SH. Tricyclic antidepressant poisoning:cardiovascular toxicity [J]. Toxicol Rev,2005; 24:205-214.
    [10]Vieweg WV, Wood MA. Tricyclic antidepressants, QT interval prolongation, and torsade de pointes [J]. Psychosomatics,2004; 45:371-377.
    [11]Chancey JH, Shockett PE, O'Reilly JP. Relative resistance to slow inactivation of human cardiac Na+ channel hNavl.5 is reversed by lysine or glutamine substitution at V930 in D2-S6 [J]. Am J Physiol Cell Physiol,2007; 293(6):1895-1905.
    [12]Shuraih M, Ai T, Vatta M, et al. A common SCN5A variant alters the responsiveness of human sodium channels to class Ⅰ antiarrhythmic agents [J]. J Cardiovasc Electrophysiol,2007; 18(4): 434-440.
    [13]Erdemli G, Kim AM, Ju H, et al. Cardiac safety implications of hNav1.5 blockade and a framework for pre-clinical evaluation [J]. Front Pharmacol,2012; 3(6):1-9.
    [14]Seger DL. A critical reconsideration of the clinical effects and treatment recommendations for sodium channel blocking drug cardiotoxicity [J]. Toxicol Rev,2006; 25:283-296.
    [15]Chen MX, Helliwell RM, Clare JJ. In vitro profiling against ion channels beyond hERG as an early indicator of cardiac risk [J]. Curr Opin Mol Ther,2009; 11:269-281.
    [16]Harmer A, Valentin JP, Polard C. On the relationship between block of the cardiac Na+channel and drug-induced prolongation of the QRS complex [J]. Br J Pharmacol,2011; 164:260-273.
    [17]Cordes J, Li C, Dugas J, et al. Translation between in vitro inhibition of cardiac Navl.5 channel and pre-clinical and clinical QRS widening [J]. J Pharmacol Toxicol Methods,2009; 60(2):221.
    [18]Bottino D, Penland RC, Stamps A, et al. Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems based computer model of the heart [J]. Prog Biophys Mol Biol, 2006; 90:414-443.
    [1]Gutman GA, Chandy KG, Grissmer S, et al. Nomenclature and molecular relationships of voltage-gated potassium channels [J]. Pharmacol Rev,2005; 57(4):473-508.
    [2]Sanguinetti MC, Jurkiewicz NK. Delayed rectifier outward K+current is composed of two currents in guinea pig atrial cells [J]. Am J Physiol,1991; 269:393-399.
    [3]Chwartz JR, Bauer CK. Function of erg K+channels in excitable cells [J]. J Cell Mol Med,2004; 8: 22-30.
    [4]Subbiah RN, Clarke CE, Smith DJ, et al. Molecular basis of slow activation of the human ether-a-go-go related gene potassium channel [J]. J Physiol,2004; 558(2):417-431.
    [5]徐江,彭双清.hERG编码的钾离子通道与药物致QT间期延长的安全性评价[J].中国新药杂志,2007;16(12):912-916.
    [6]沈秀张,武君,林吉进.hERG基因与心率失常[J].心血管病学进展,2008;29(3):436-440.
    [7]关凤英,杨世杰.抗心率失常药物作用的靶点-hERG K+通道[J].药学学报,2007;42(7):687-691.
    [8]Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes [J].Heart,2003; 89(11): 1363-1372.
    [9]Roden DM, Viswanathan PC. Genetics of acquired long QT syndrome [J]J Clin Invest,2005; 115(8):2025-2032.
    [10]Chen X, Cass JD, Bradley JA, et al. QT prolongation and proarrhythmia by moxifloxacinxoncordance of preclinical models in relation to clinical outcome [J].Br J Pharmacol,2005; 146(6):792-799.
    [11]Lee SY, Kim YJ, Kim KT, et al. Blockade of hERG human K+channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine [J]. Br J Pharmacol,2006; 148(4):499-509.
    [12]Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals [J]. ProcNatl Acad Sci,1994; 91:3438-3442.
    [13]Hancox JC, Mcpate MJ, El Harchi A, et al.The hERG potassium channel and hERG screening for durg-induced torsades de pointes [J]. Pharmacol Ther,2008; 119(2):118-132..
    [14]Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia [J]. Nature, 2006; 440(7083):463-469.
    [15]Snyders DJ, Chaudhary A. High affinity open channel block by dofetilide of hERG expressed in a human cell line [J]. Mol Pharmacol,1996; 49(6):949-955.
    [16]Kamiya K, Niwa R, Morishima M, et al. Molecular determinants of hERG channel block by terfenadine andcisapride [J]. J Phannacol Sci,2008; 108(3):301-307.
    [17]Huang X, Yang Y, Zhu J, et al. The effects of a novel anti-arrhythmic drug, acehytisine hydrochloride, on the human ether-a-go-go related gene K channel and its trafficking [J]. Basic Clin Pharmacol Toxicol,2009; 104(2):145-154.
    [18]ICH. Safety Pharmacology Studies for Human Pharmaceuticals ICH Topic.2000(S7A)
    [1]Shan J, Kushnir A, Betzenhauser MJ, et al. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice [J]. J Clin Invest,2010,120(12):4388-4398.
    [2]Amsallem E, Kasparian C, Haddour G, et al. Phosphodiesterase III inhibitors for heart failure [J]. Cochrane Database Syst Rev,2005,25 (1):CD002230.
    [3]Kushnir A, Andrew R. The Ryanodine Receptor in Cardiac Physiology and Disease [J]. Adv Pharmacol, 2010,59(C):1-30.
    [4]Qvit N, Mochly-Rosen D. Highly Specific Modulators of Protein Kinase C Localization:Applications to Heart Failure [J]. Drug Discov Today Dis Mech,2010,7(2):87-93.
    [5]Yunbo KE, Ming L, Solaro J. Regulation of cardiac excitation and contraction by p21 activated kinase-1 [J]. Prog Biophys Mol Biol,2008,98(2-3):238-250.
    [6]Neco P, Rose B, Huynh N, et al. Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart [J]. Biophys J,2010,99(3):755-764.
    [7]Jordan MC, Henderson SA, Han T, HAN T, et al. Myocardial function with reduced expression of the sodium-calcium exchanger [J]. J Card Fail,2010,16(9):786-796.
    [8]Butler J, Anand IS, Kuskowski MA, et al. Digoxin use and heart failure outcomes:results from the Valsartan Heart Failure Trial [J]. Congest Heart Fail,2010,16(5):191-195.
    [9]Salle L, Brette F. T-tubules:a key structure of cardiac function and dysfunction [J]. Arch Mai Coeur Vaiss,2007,100(3):225-230.
    [10]Larissa L, Elie R, Lahouaria H, et al. Sarcoplasmic reticulum Ca2+-ATPase as a therapeutic target for heart failure [J]. Expert Opin Biol Ther,2010,10(1):29-41.
    [11]Ha KN, Masterson LR, Hou Z, et al. Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc Natl Acad Sci USA,2011,108(7):2735-2740.
    [12]Lanner JT, Georgiou DK, Joshi AD, et al. Ryanodine receptors:structure, expression, molecular details, and function in calcium release [J]. Cold Spring Harb Perspect Biol,20102(11):1-21.
    [13]Mackrill JJ. Ryanodine receptor calcium channels and their partners as drug targets [J]. Biochem Pharmacol,2010,79(11):1535-1543.
    [14]Kockskamper J, Zima AV, Roderick HL. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes [J]. J Mol Cell Cardiol,2008,45(2):128-147.
    [15]Landoni G, Mizzi A, Biondi-Zoccai G, et al. Levosimendan reduces mortality in critically ill patients. A meta-analysis of randomized controlled studies [J]. Minerva Anestesiol,2010,76(4):276-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700