尾加压素Ⅱ在大鼠肾间质纤维化发生发展中的作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾间质纤维化是进展到终末期肾衰竭的共同途径和主要病理学基础,主要病理学变化是肾间质成纤维细胞活化,分泌大量细胞外基质(ECM),沉积于肾间质,导致肾间质纤维化。近年来,尾加压素Ⅱ(UⅡ)在肾脏疾病中的病理生理作用受到关注,UⅡ及其受体在肾内广泛分布,且具有多种生物学作用。但UⅡ在肾间质纤维化发生发展中的作用尚未阐明。本研究从体内、体外实验两方面进行一系列研究,旨在揭示UⅡ在大鼠肾间质纤维化形成过程中的作用,并探讨作用的机制。
     在整体水平上,采用单侧输尿管梗阻(UUO)方法诱发大鼠肾间质纤维化模型。实验结果表明,UUO组大鼠血肌酐、尿肌酐、尿素氮水平增高;HE染色及masson染色证实UUO组大鼠肾间质炎细胞浸润,间质扩张,胶原呈带状明显增生;免疫组化、RT-PCR和Western blot结果表明,UUO组大鼠肾组织UⅡ及其受体GPR14含量明显升高,且与致纤维化因子tTG及TGF-β1呈正相关。
     肾间质成纤维细胞是纤维化时的主要效应细胞,大鼠肾间质成纤维细胞(NRK-49F)容易培养可传代,是一个比较理想的细胞模型。采用MTT法及流式细胞术研究发现UⅡ对NRK-49F的促增殖作用具有浓度依赖性和时间依赖性;UⅡ提高NRK-49F细胞α-SMA的表达,促进其向肌成纤维细胞转分化;UⅡ增加ECM的合成及分泌;提高TGF-β1、CTGF、及tTG的mRNA的表达及蛋白水平;RNA干扰技术的应用进一步证实了UⅡ受体GPR14的重要作用,GPR14基因干扰后,UⅡ的促TGF-β1及CTGF合成明显降低。钙通道阻断剂尼莫地平、钙离子鳌合剂EDTA及UⅡ抗体能不同程度的阻断UⅡ的作用。这些研究结果表明,UⅡ具有促进肾脏成纤维细胞增殖、转分化、ECM沉积及分泌致纤维化活性因子的作用,为研究肾间质纤维化的发生机制和防治措施提供了新的理论依据。
UrotensinⅡ(UⅡ) is a cyclic neuropeptide that was first isolated from the caudalneurosecretory system of teleost fish. UⅡcombined with its specific receptor GPR14 cantrigger various biological events that play an important pathophysiological role. UⅡandGPR14 widely exist in the cardiovascular system, kidney, liver, brain and so on. UⅡis themost potent vasoconstrictor peptide to date, it has identified to have cardiovascular actions andcontribute to vasoconstriction. UⅡis not only a potent vasoconstrictor peptide, but also havethe effect of non-hemodynamics. With the study an increasing amount of evidence hasaccumulated for the presence of both UⅡand its receptor in kidney, UⅡis secreted andexcreted by kidney and it acts as a growth factor for the renal epithelial cells by autocrine and(or) paracrine ways. In addition, UⅡacts as a mitogen and promotes the proliferation andDNA synthesis of renal intercapillary and tubular cells. All of the above results suggest thatUⅡis associated with physiopathology and pathogenesis of the kidney diseases. However, therole and the mechanism of UⅡin renal interstitial fibrosis have not been addressed.
     Renal interstitial fibrosis, which is the common pathway and main pathology foundationfor almost all kidney disease, is the common turnover of various kinds of chronic renopathy. Itis characterized by renal interstitial fibroblasts proliferation and excess extracellular matrix(ECM) accumulation in the renal interstitium. It is reported that UⅡinvolved in the adjustmentof the cardiomyocyte hypertrophy and cardiac fibrosis. Well, the study on effects of UⅡonrenal interstitial fibrosis and its mechanism in rats have not been reported. So it has importantsignificant to discover the effects of urotensinⅡon renal interstitial fibrosis and its mechanism,and find a new target for clinical treatment of renal disease by antagonism of UⅡ.
     In the present study, the renal interstitial fibroblast model induced by unilateral ureteralobstruction (UUO) in rats was established and the rat renal interstitium fibroblasts NRK-49Fwere cultured in vitro. The light microscope, immunohistochemistry, flow cytometry, ELISA, RT-PCR, Western blot and RNA interference techniques were employed, and the followingissues were investigated: the contents of both UⅡand its receptor in renal medulla of renalinterstitial fibrosis model induced by UUO; effects of UⅡon proliferation and cell cycle,transdifferentiation and ECM accumulate in NRK-49F cells; the relationship of UⅡand somebioactive compound like TGF-β1, CTGF; the effects of Nimodipine, EDTA and UⅡantibodyon NRK-49F cells. The aim of these investigations was to reveal the roles of UⅡin thedevelopment and progression of renal interstitial fibrosis and possible action mechanism, andto offer new clue for prevention and cure of interstitial fibroblast.
     The main results of the present study are as follows:
     1. The left kidney which be ligated with ureter was bigger than the right, the renalcortex was thinner than normal in section, renal pelvis and renal calices were stretched. Allthese changes were obvious in the UUO rat (obstruction for 7 days, UUO 7d).
     2. The pathological features with HE staining included renal interstitium edema andinflammatory cell infiltration in the UUO 3d. When in the UUO 7d, prominent interstitialexpansion, inflammatory cell infiltration, renal tubules show varying degrees of vacuolardegeneration, necrosis and cast formation, renal tubule expansion, interstitial collagen wereaccumulation.
     3. The pathological features with Masson’s trichrome-staining included collagengirdle-shaped in the interstitial of kidney which be ligated.
     4. The urine creatinine, serum creatinine and blood urea nitrogen contents weresignificantly increased in the UUO 7d compared with the Sham group (P<0.05).
     5. Immunohistochemical detection showed that the area and intensity of immunologicalstaining for UⅡ, GPR14, and tTG were increased in the UUO group(3d and 7d) comparedwith the Sham group (P<0.01).
     6. Compared with the Sham group, the expression levels of UⅡand GPR14 mRNA andprotein in UUO group(3d and 7d) were significantly increased ( P<0.01). The expressions ofUⅡmRNA in UUO group were positively correlated with Scr contents (r=0.601, P=0.039)and Ucr contents (r=0.599, P=0.04) that reflected the renal function injury.
     7. UⅡexerted the stimulative effect on NRK-49F cell proliferation and DNA synthesiswhen UⅡat concentrations of 10-9 and 10-8mol/L, compared with the Sham group (P<0.01).
     8. UⅡpromoted the transdifferentiation of NRK-49 F cells by stimulate the expressionof theα-SMA and increased the accumulation of ECM, enhanced the TGF-β1, CTGF and tTG mRNA expression in NRK-49F cells. Especially in 10-9mol/L and 10-8mol/L of UⅡgroupcompared with the control group.
     9. Nimodipine, EDTA and UⅡantibody treatment weakend the effect includingNRK-49F cell proliferation, ECM accumulate, the expression of TGF-β1、CTGF and tTG..
     10. RNA interference of GPR14 suppressed an increase in TGF-β1 and CTGF mRNAexpression caused by UⅡ.
     The conclusions of this study are as follows:
     1. Renal interstitial fibrosis animal model is established by UUO in rats.
     2. UUO can induce the rats with renal function injury, kidney index increasing, renalfeature changed and the accumulation of the collagen.
     3. UⅡand GPR14 mRNA and protein are significantly enhanced in UUO groupcompared with the Sham group, it may suggest UⅡand GPR14 have important roles in thedevelopment of the renal fibrosis.
     4. UⅡis able to cause proliferation and DNA synthesis of NRK-49F cells in aconcentration-dependent manner, Calcium ion inflow may partly mediate UⅡ-induced cellmultiplication in NRK-49F cells.
     5. UⅡincreases the expression of ColI、Col III and FN in NRK-49F cells, promote theexpression ofα-SMA, thereby promote the transdifferentiatie of the NRK-49F cells.
     6. The effects of UⅡcan be blocked partly by Nimodipine, EDTA and UⅡantibody.especially the effect of the UⅡantibody compared with the other group.
     The creative points of the present study are: it is studied that UⅡhad intimaterelationships with renal diease, well, the mechanism of which UⅡplayed in the renalinterstitial fibrosis has not been reported. and its receptor GPR14 increase significantly in themodel of renal interstitial fibrosis induced by UUO; UⅡcan promote the proliferation andDNA synthesize of NRK-49F; UⅡcan increase the production of ECM andtransdifferentiation of of NRK-49F; UⅡis involved in renal interstitial fibrosis; conbined withRNAi, it is demonstrated that UⅡcan increased the expression of TGF-β1 in NRK-49F cell byinduced of GPR14.
引文
[1]Conlon J M, Yano K, Waugh D, et al. Distribution and molecular forms of urotensin II andits role in cardiovascular regulation in vertebrates[J]. J Exp Zool, 1996, 275(2-3): 226-238.
    [2]Coulouarn Y, Lihrmann I, Jegou S, et al. Cloning of cDNA encoding the urotensin IIprecursor in frog and human reveals intense expression of the urotensin II gene inmotoneurons of the spinal cord[J]. Proc Natl Acad Sci USA, 1998, 95(26): 15803-15808.
    [3]Ames R S, Sarau HM, Chambers JK, et al. Human urotensin II is a potent vasoconstrictorand agonist for the orphan receptor GPR14[J]. Nature, 1999, 401(6750): 282-286.
    [4]Matsushita M, Shichiri M, Fukai N, et al. Urotensin II is an autocrine/paracrine growthfactor for the porcine renal epithelial cell line, LLCPK1[J]. Endocrinology, 2003, 144(5):1825-1831.
    [5]Tzanidis A, Hannan R D, Thomas W G, et al. Direct actions of urotensin II on the heart:Implications for cardiac fibrosis and hypertrophy[J]. Circ Res, 2003,93: 246-253.
    [6]Douglas S A, Sulpizio A C, Piercy V, et al. Differential vasoconstrictor activity of humanurotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset andcynomolgus monkey[J]. Br J Pharmacol, 2000, 131: 1262-1274.
    [7]Douglas S A, Dhanak D, Johns DG. From‘gills topills’: urotensin-II as a regulator ofmammalian cardiorenal function[J]. Trends Pharmacol. Sci, 2004, 25:76-85.
    [8]Suziki S, Wenyi Z, Hirai M, et al. Genetic variations at urotensin II and urotensin II receptorgenes and risk of type 2 diabetes mellitus in Japanese[J]. Peptides, 2004, 25(10):1803-1808.
    [9]Alexandre BK, Almut HB, Evi KT, et al. Functional and binding characterizations ofurotensin II -related peptides in human and rat urotensin II -receptor assay[J]. J PharmacolExp Ther, 2003, 306(3): 1200-1209.
    [10]Matsushita M, Shichiri M, Imai T, et al. Co-expression of urotensin II and its receptor(GPR14) in human cardiovascular and renal tissues[J]. J Hypertens, 2001, 19(12): 2185-2190.
    [11]Bohm F, Pernow J. Urotensin II evokes potent vasoconstriction in humans in vivo [J]. Br JPharmacol, 2002, 135: 25-27.
    [12]Maguire JJ, Kuc RE, Davenport AP. Orphan-receptor ligand human urotensin II: receptorlocalization in human tissues and comparison of vasoconstrictor responses withendothelin-1[J]. Br. J. Pharmacol, 2000, 131(3): 441-446.
    [13]Watanabe T, Suguro T, Kanome T, et al. Human urotensin II accelerates foam cellformation in human monocyte-derived macrophages[J]. Hypertension, 2005, 46: 738-744
    [14]Davenport AP, Maguire JJ. Urotensin II: fish neuropeptide catches orphan receptor[J].Trends Pharmacol Sci, 2000, 21: 80-82.
    [15]Totsune K, Takahashi K, Arihara Z, et al. Role of urotensin II in patients on dialysis[J].Lancet, 2001, 358(9284): 810-811.
    [16]Giuliani L, Lenzini L, Antonello M, et al. Expression and functional role of urotensin-IIand its receptor in the adrenal cortex and medulla: novel insights for the pathophysiologyof primary aldosteronism[J]. J Clin Endocrinol Metab, 2009, 94(2): 684-690.
    [17]Yoshimoto T, Matsushita M, Hirata Y. Role of urotensin II in peripheral tissue as anautocrine/paracrine growth factor[J]. Peptides, 2004, 25(10): 1775-1781.
    [18]MacLean M R, Alexander D, Stirrat A, et al. Contractile responses to human urotensin IIin rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia inthe rat[J]. Br J Pharmacol, 2000, 130: 201-204.
    [19]Douglas SA, Ohlstein EH. Human urotensinII, the most potent mammalian vasoconstrictoridentified to date, as a therapeutic target for the management of cardiovascular disease[J].Trends Cardiovasc Med, 2000, 10(6): 229-237.
    [20]Behm DJ, Harrison SM, Ao Z, et al. Deletion of the UT receptor gene results in theselective loss of urotensin-II contractile activity in aortae isolated from UT receptorknockout mice[J]. Br J Pharmacol, 2003, 139: 464-472.
    [21]SauzeauV, LeMellionnec E, Bertoglio J, et a1. Human urotensin II-induced contractionand arterial smooth muscle cell proliferation are mediated by RhoA and Rho-Kinase[J].Circ Res, 2001, 88(11): 1102-1104.
    [22]Lin Y, Tsuchihashi T, Matsumura K, et al. Central cardiovascularaction of urotensin II inspontaneously hypertensive rats[J]. Hypertens Res, 2003, 26(10): 839-845.
    [23] Zhu YC, Zhu YZ, Moore PK. The role of urotensin II in cardiovascular and renalphysiology and diseases[J]. Br J Pharmacol, 2006, 148(7): 884-901
    [24]Stirrat A, Gallagher M, Douglas SA,et al. Potent vasodilator responses to human urotensinII in human pulmonary and addominal resistance arteries[J]. Am J Physiol Heart CircPhysiol, 2001, 280(2): 925-928.
    [25]Katano Y, Ishihata A, Aita T et al. Vasodilator effect of urotensin II, one of the most potentvasoconstrictor factors, on rat coronary arteries[J]. Eur J Pharmacol, 2000, 402(1-2): 5-7.
    [26]Gray GA, Jones MR, Sharif I. Human urotensin II increases coronary perfusion pressure inthe isolated rat heart: potentiation by nitric oxide synthase and cyclooxygenase inhibition[J]. Life Sci, 2001, 69(2): 175-180.
    [27]Xu S, Jiang H, Wu B. et al. Urotensin II induces migration of endothelial progenitor cellsvia activation of the RhoA/Rho kinase pathway[J]. Tohoku J Exp Med, 2009, 219 (4):283-288.
    [28]Gendron G, Gobeil FJr, Belanger S, et al. Urotensin II induced hypotensive responses inWistar-Kyoto(Wky) and spontaneously hypertensive(SHR) rats[J]. Peptides, 2005, 26:1468-1474.
    [29]Hirose T, Takahashi K, Mori N, et al. Increased expression of urotensin II, urotensinII-related peptide and urotensin II receptor mRNAs in the cardiovascular organs ofhypertensive rats: comparison with endothelin-1[J]. Peptides. 2009, 30(6): 1124-1129.
    [30]Bottrill FE, Douglas SA, Hiley CR, et al. Human urotensin II is an endothelium-dependentvasodilator in rat small arteries[J]. Br J Pharmacol, 2000, 130(8): 1865-1870.
    [31]Zhang AY, Chen YF, Zhang DX, et al. Urotensin II is a nitric oxide-dependent vasodilatorand natriuretic peptide in the rat kidney[J]. Am J Physiol Renal Physiol, 2003, 285(4):792-798.
    [32]Russell F D. Emerging roles of urotensin- II in cardiovascular disease[J]. Pharmacol Ther,2004, 103(3): 223-243.
    [33]Tsai CS, Loh SH, Liu JC, et al. Urotensin II-induced endothelin-1 expression and cellproliferation via epidermal growth factor receptor transactivation in rat aortic smoothmuscle cells[J]. Atherosclerosis, 2009, 206(1): 86-94.
    [34]Takahashi K, Totsune K, Murakami O, et al. Expression of urotensin II and its receptor inadrenal tumors and stimulation of proliferation of cultured tumor cells by urotensin II[J].Peptides, 2003, 24(2): 301-306.
    [35]Peng X, Yin H, Wang LH, et al. Content and activity of the focal adhesion kinase incultured vascular smooth muscle cells enhanced by urotensin II[J]. Sheng Li Xue Bao,2000, 52: 455-458.
    [36]Shi L, Ding W, Li D, Wang Z, et al. Proliferation and anti-apoptotic effects of humanurotensinII on human endothelial cells[J]. Atherosclerosis, 2006, 188: 260-264.
    [37]Watanabe T, Pakala R, Katagiri T, et al. Synergistic effect of urotensin II with serotonin onvascular smooth muscle cell proliferation [J]. J Hypertens, 2001, 19(12): 2191-2196
    [38]WatanabeT, Pakala R, Katagiri T, et al. Synergistic effect of urotensin II with milidlyoxidized LDL on DNA synthesis in vascular smooth muscle cells[J]. Circulation, 2001,104(1): 16-18.
    [39]Watanabe T, Koba S, Katagiri T, et al. Lysophosphatidylcholine potentiates the mitogeniceffect of various vasoactive compounds on rabbit aortic smooth muscle cells[J]. Jpn Heart J,2002, 43(4): 409-416.
    [40]Shibata R, Kai H, Seki Y, et al. Role of Rho- associated kinase in neointima formation aftervascular injury [J]. Circulation, 2001, 103: 284-289.
    [41]Tamura K, Okazaki M, Tamura M, et al. Urotensin II-induced activation of extracellularsignal regulated kinase in cultured vascular smooth muscle cells: involvement of celladhesion-mediated integrin signaling[J]. Life Sci, 2003;72:1049–60.
    [42]Balat A, Pakir IH, Gok F, et al. Urotensin - II levels in children with minimal changenephrotic syndrome [J]. Pediatr Nephrol, 2005, 20: 42-45.
    [43]Totsune K, Takahashi K, Arihara Z, et al. Elevated plasma levels of immunoreactiveurotensin II and its increased urinary excretion in patients with Type 2 diabetes mellitus:association with progress of diabetic nephropathy [J]. Peptides, 2004, 25(10): 1809-1814.
    [44]Langham RG, Kelly DJ, Gow RM, et al. Increased expression of urotensin II and urotensinII receptor in human diabetic nephropathy [J]. Am J Kidney Dis, 2004, 44(5): 826-831.
    [45]Wenyi Z, Suzuki S, Hirai M, et al. Role of urotensin II gene in genetic susceptibility toType 2 diabetes mellitus in Japanese subjects[J]. Diabetologia, 2003, 46(7): 972-976.
    [46]Wu XJ, Qin L, Zhou JY, et al. Relationship between polymorphism of urotensin II geneand type 2 diabetes in pedigrees [J]. Zhong Hua Yi Xue Yi Chuan Xue Za Zhi, 2007, 24(6):656-659.
    [47]Ong KL, Wong LY, Man YB, et al. Haplotypes in the urotensin II gene and urotensin IIreceptor gene are associated with insulin resistance and impaired glucose tolerance[J].Peptides, 2006, 27(7): 1659-1667.
    [48]Xie N, Liu L.Elevated expression of urotensin II and its receptor in great artery of type 2diabetes and its significance[J]. Biomed Pharmacother, 2009, 63(10): 734-741.
    [49]Cheung BM, Leung R, Man YB, et al. Plasma concentration of urotensin II is raised inhypertension[J]. J Hypertens, 2004, 22: 1341-1344.
    [50]Aiyar N, Johns DG, Ao Z, et al. Cloning and pharmacological characterization of the caturotensin -II receptor (UT) [J]. Biochem Parmacol, 2005, 69: 1069-1079.
    [51]Thompson JP, Watt P, Sanghavi S, et al. A comparison of cerebrospinal fluid and plasmaurotensin II concentrations in normotensive and hypertensive pateits undergoing urologicalsurgery during spinalanes thesia: a pilot study[J]. Anesth Analg, 2003, 97: 1501-1503.
    [52]Behm DJ, McAtee JJ, Dodson JW, et al. Palosuran inhibits binding to primate UTreceptors in cell membranes but demonstrates differential activity in intact cells andvascular tissues[J]. Br J Pharmacol, 2008, 155(3): 374-386.
    [53]Takahashi K, Totsune K, Murakami O, et al. Expression of urotensin II and urotensin IIrecep tor mRNAs in various human tumor cell lines and secretion of urotensin II-likeimmunoreactivity by SW -13 adrenocortical. Carcinoma Cells[J]. Peptides, 2001, 22:1175-1179.
    [54]Shenouda A, Douglas SA, Ohlstein EH, et al. Localizition of urotensin II immunoreactivityin normal human kidneys and renal carcinoma[J]. J Histochem Cytochem, 2002, 50:885-889.
    [55]Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: Epidemiology,social, and economic implications[J]. Kidney Int, 2005, 68: S7-S10.
    [56]Eddy AA. Molecular basis of renal fibrosis[J]. Pediatr Nephrol, 2000, 15(3-4): 290-301.
    [57]Iwano M, Neilson EG. Mechanisms of tubulointersitial fibrosis[J]. Curr Opin NephrolHypertens, 2004, 13: 279-284.
    [58]Eddy AA. Molecularinsi ghtsintorenal interstitial fibrosis[J]. J Am Soc Nephrol, 1996,7(12): 2495-2508.
    [59]Li FY, Xie XS, Fan JM, et al. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro[J]. J Zhejiang Univ Sci B. 2009, 10(9): 659-667.
    [60]Li Q, Fan JM, Pu L, et al. Effects of interferon-gamma on tubular epithelial-myofibroblasttransdifferentiation in vitro[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2008, 39(6):895-899.
    [61]Badid C, Vincent M, Fouque D, et al. Myofibroblast: a prognostic marker and target cell inprogressive renal disease[J]. Ren Fail, 2001, 23(3-4): 543-549.
    [62]Anders HJ, VielhauerV, SchlondorffD. Chemokines and chemokine receptors are involvedin the resolution or progression of renal disease[J]. Kidney Int, 2003, 63: 401-415.
    [63]Klahr S, Morrissey JJ. The role of growth factors, cytokines, and vasoactive compounds inobstructive nephropathy[J]. Semin Nephrol, 1998, 18(6): 622-632.
    [64]Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance,molecularmechanism, and therapeutic intervention[J]. J Am Soc Nephrol, 2004, 15: 1-12.
    [65]Neilson EG. Setting a trap for tissue fibrosis[J]. Nat Med, 2005, 11: 373-374.
    [66]Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation[J]. Kidney Int, 2002, 61: 1714-1728.
    [67]Liu Y.New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am SocNephrol, 2010, 21(2): 212-222.
    [68]Onzalez AA, Segura AM, Horiba K, et al. Matrix metalloproteinases and their tissueinhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemicalstudy[J]. Hum Pathol, 2002, 33(12): 1158-1164.
    [69]Jin Y, Fuller L, Ciancio G, et al. Antigen presentation and immune regulatory capacity ofimmature and mature-enriched antigen presenting (dendritic) cells derived from humanbone marrow[J]. Hum Immunol, 2004, 65(2): 93-103.
    [70]Strutz F, Neilson EG. The role of lymphocytes in the progression of interstitial disease[J].Kidney Int, 1994, 45(Suppl.): S106-S110.
    [71]Postlethwaite AE, Holness MA, Katai H, et al. Human fibroblasts synthesize elevatedlevels of extracellular matrix proteins in response to interleukin 4[J]. J Clin Invest, 1992,90: 1497- 1485.
    [72]De Larco JE, Todaro GJ. Growth factors from murine sarcoma virustransformed cells[J].Proc Natl Acad Sci USA, 1978, 75(8): 4001-4005.
    [73]张翥,黄颂敏,付平. TGF -β在慢性肾脏病发生发展中的作用和抑制TGF -β的应用前景[J].中国中西医结合肾病杂志, 2003, 4(9): 557-558.
    [74]陈虹,谌贻璞.肾脏细胞外基质代谢的调节[J].国外医学·内科学分册, 2003, 30(11):477-480.
    [75]Goumenos DS, Kalliakmani P, Tsakas S, et al. Urinary transforming growth factor-beta 1as a marker of response to immunosuppressive treatment, in patients with crescenticnephritis[J]. BMC Nephrol, 2005, 6: 16.
    [76]Sommer M, Eismann U, Deuther-Conrad W, et al. Time course of cytokine mRNAexpression in kidneys of rats with unilateral ureteral obstruction[J]. Nephron, 2000, 84(1):49-57.
    [77]Yang CW, Hsueh S, Wu MS, et al. Glomerular transforming growth factor-betal mRNA asa marker or golmerulosclerosis-application in renal biopsies[J]. Nephron, 1997, 77(3):290-297.
    [78]Szeto CC, Chan RW, Lai KB, et al. Messenger RNA expression of target genes in theurinary sediment of patients with chromic kidney disease[J]. Nephrol Dial Transplant,2005, 20(1): 105-113.
    [79]Schnaper HW, Hayashida T, Poncelet AC. It’s a Smad world: regulation of TGF-betasignaling in the kidney[J]. J Am Soc Nephrol, 2002, 13(4): 1126-1128.
    [80]Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7using ultrasound-microbubble system in rat UUO model[J]. J Am Soc Nephrol, 2003, 14(6):1535-1548.
    [81]Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta-induced alphasmooth muscle actin expression[J]. Am J Respir Cell Mol Biol, 2003, 29(3): 397-404.
    [82]Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial tomesenchymal transition and renal interstitial fibrogenesis[J]. J Clin Invest, 2003, 112(4): 503-516.
    [83]Li J, Campanale NV, Liang RJ, et al. Inhibition of p38 mitogen-activated protein kinase andtransforming growth factor-beta1/Smad signaling pathways modulates the development offibrosis in adriamycin-induced nephropathy[J]. Am J Pathol, 2006, 169(5): 1527-1540.
    [84]王伟铭,姚建,石蓉,等. TGF-β1对肾间质成纤维细胞Ⅲ型胶原表达的影响[J].细胞与分子免疫学杂志,2000, 16(1): 29-31.
    [85]Strutz F, Zeisberg M, Renziehausen A, et al. TGF-beta 1 induces proliferation in human renalfibroblasts via induction of basic fibroblast growth factor (FGF-2) [J]. Kidney Int, 2001, 59(2):579-592.
    [86]Isaka Y, Tsujie M, Ando Y, et al. Transforming growth factor-beta 1 antisense oligodeoxynucleotidesblock interstitial fibrosis in unilateral ureteral obstruction[J]. Kidney Int, 2000,58(5): 1885-1892.
    [87]Fan JM, Huang XR, Ng YY, et al. Interleukin-1 induces tubular epithelial-myofibroblasttransdifferentiation through a transforming growth factor-beta-dependent mechamism invito[J]. Am J Kidney Dis, 2001, 37(4): 820-831.
    [88]Bradham DM, Igarashi A, Potter RL, et al. Connective tissue growth factor: a cysteine-richmitogen secreted by human vascular endothelial cells is related to the SRC-inducedimmediate early gene product CEF-10[J]. J Cell Biol, 1991, 114(6): 1285-1294.
    [89]Almendral JM, Sommer D, Macdonald-Bravo H, et al. Complexity of the early geneticresponse to growth factors in mouse fibroblasts[J]. Mol Cell Biol, 1988, 8(5): 2140-2148.
    [90]Chen Y, Blom IE, Sa S, et al. CTGF expression in messangial cell: involvement ofSMADs, MAP kinase, and PKC[J]. Kidney Int, 2002, 62(4): 1149-1159.
    [91]Segarini PR, Nesbitt JE, li D, et al. The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is a receptor for connective tissue growth factor[J]. J BiolChem, 2001, 276 (44): 40659- 40667.
    [92]Wahab NA,Brinkman H ,Mason RM,et al. Uptake and intracellular transport of theconnective tissue growth factor: a potential mode of action[J]. Biochem J, 2001, 359(Pt1):89-97.
    [93]Grotendorst GR, Okochi H, Hayashi N. A novel transforming growth factor beta responseelement controls the expression of the connective tissue growth factor gene[J]. Cell GrowthDiffer, 1996, 7(4): 469-480.
    [94]Abdel WN, Mason RM. Connective tissue growth factor and renal diseases : some answers,more questions [J]. Curr Opin Nephrol Hypertens, 2004, 13 (1): 53-58.
    [95]Okada H, Kikuta T, Kobayashi T, et al . Connective tissue growth factor expressed intubular epithelium plays a pivotal role in renal fibrogenesis[J]. J Am Soc Nephrol, 2005, 16(1): 133-143.
    [96]Heusinger-Ribeiro J, Eberlein M, Wahab NA, et al. Expression of connective tissue growthfactor in human renal fibroblast: regulatory roles of RhoA and cAMP[J]. J Am SocNephrol, 2001, 12(9): 1853-1861.
    [97]Komorowsky C, Ocker M, Goppelt-Struebe M.Differential regulation of connective tissuegrowth factor in renal cells by histone deacetylase inhibitors[J]. J Cell Mol Med, 2009,13(8b): 2353- 2364.
    [98]Shi Y, Tu Z, Bao J, et al. Urinary connective tissue growth factor increases far earlier thanhistopathological damage and functional deterioration in early chronic renal allograftinjury[J]. Scand J Urol Nephrol, 2009, 43(5): 390-399.
    [99]Chen XM, Qi W, Pollock CA. CTGF and chronic kidney fibrosis[J]. Front Biosci, 2009, 1:132-141.
    [100]Ruperez M, Lorenzo O, Blanco-Colio LM, et al. The connective tissue growth factor is amediator of angiotensin II-induced fibrosis[J]. Circulation, 2003, 108: 1499-1509
    [101]Esteban V, Lorenzo O, Ruperez M, et al. Angiotensin II, via AT1 and AT2 receptors andNF-kappaB pathway, regulates the inflammatory response in unilateral ureteralobstruction[J]. J Am Soc Nephrol, 2004, 15: 1514-1529
    [102]黄海长,杨敏,李惊子,等.结缔组织生长因子诱导肾成纤维细胞转为成肌纤维细胞[J].科学通报, 2002, 47(1): 37-40.
    [103]Zhang C , Meng X , Zhu Z , et al . Role of connective tissue growth factor in renal tubularepithelial-myofibroblast transdifferentiation and extracellular matrix accumulation in vitro[J]. Life Sci, 2004, 75(3): 367-379.
    [104]Puizis G, Copper ME, Schembri GM, et al. The sevent h report of the joint nationalcommittee on preventive, detection[J]. Gaseroenterology, 2002, 123(5): 1667-1676.
    [105]Ruiz-Ortega M, Ruperez M, Esteban V, et al. Molecular mechanisms of angiotensinII-induced vascular injury[J]. Curr Hypertens Rep, 2003, 5: 73-79.
    [106]Wolf G, Ziyadeh FN, Thaiss F et al. Angiontensin II stimulates expression of thechemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2receptor[J]. J Clin Invest, 1997, 100: 1047-1058.
    [107]Kagam S, Lonnemann G, Novick D, et al. Genetic manipulation of the rennin- angiotensionsystem in the kidney[J]. J Clin Invest, 2004, 93(10): 2431-2439.
    [108]Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, et al. Angiotensin II activates the Smadpathway in vascular smooth muscle cells by a transforming growth factor betaindependent mechanism[J]. Circulation, 2005, 111: 2509-2517.
    [109] Ruiz-Ortega M, Rupérez M, Esteban V, et al. Angiotensin II: a key factor in theinflammatory and fibrotic response in kidney diseases[J]. Nephrol Dial Transplant, 2006,21: 16-20.
    [110]Wolf G, Meier P, Dayer E, et al. Screening for proteinuria in US adult s: a cost- effectivenessanalysis[J]. Miner Eleverolyte Metab, 2001, 24(3): 174-180.
    [111]Grainger DJ. Transforming growth factor beta and atherosclerosis: so far, so good for theprotective cytokine hypothesis[J]. Arterioscler Thromb Vasc Biol, 2004, 24: 399-404.
    [112]Ruiz-Ortega M, Egido J. Angiotensin II modulates cell growth-related events andsynthesis of matrix proteins in renal interstitial fibroblasts[J]. Kidney Int, 1997, 52(6):1497-1510.
    [113]Shihab FS, Bennett WM, Tanner AM, et al. Angiotensin II blockade decreases TGF-beta1and matrix proteins in cyclosporine nephropathy[J]. Kidney Int, 1997, 52(3): 660-673.
    [114]Wu LL, Cox A, Roe CJ, et al. Transforming growth factor beta 1 and renal injuryfollowing subtotal nephrectomy in the rat: role of the renin-angiotensin system[J]. KidneyInt, 1997, 51(5): 1553-1567.
    [115]Ray P, Bhaskaran M, Ranjan R, et al. Chimericmice carrying regional targeted deletion ofthe angiotension typeⅠA receptor gene[J]. Kidney Int, 2002, 45(4): 177-184.
    [116]Jones RA, Nicholas B, Mian S, et al. Reduced expression of tissue transglutaminase in ahuman endothelial cell line leads to changes in cell spreading, cell adhesion and reducedpolymerisation of fibronectin[J]. Cell Sci, 1997, 110(19): 2461-2472.
    [117]Johnson TS, El-Koraie AF, Skill NJ, et al. Tissue transglutaminase and the progression ofhuman renal scarring[J]. J Am Soc Nephrol, 2003, 14(8): 2052-2062.
    [118]Johnson TS, Skill NJ, El Nahas AM, et al. Transglutaminase transcription and antigentranslocation in experimental renal scarring[J]. J Am Soc Nephrol, 1999, 10(10): 2146-2157.
    [119]Johnson TS, Griffin M, Thomas GL, et al. The role of transglutaminase in the rat subtotalnephrectomy model of renal fibrosis[J]. J Clin Invest, 1997, 99(12): 2950-2960.
    [120]Skill NJ, Griffin M, El Nahas AM, et al. Increases in renal epsilon-(g-glutamyl)-lysinecrosslinks resuit from compartment-specific changes in tissue transglutaminase in earlyexperimental diabetic nephropathy : pathologic implications[J]. Lab Invest, 2001, 81(5):705-716.
    [121]Johnson TS, Scholfield CI, Parry J, et al. Induction of tissue transglutaminase bydexamethasone: its correlation to receptor number and transglutaminase-mediated celldeath in a series of malignant hamster fibrosarcomas[J]. Biochem, 1998, 331(Pt1):105-112.
    [122]Douthwaite JA, Johnson TS, Haylor JL, et al. Effects of transforming growth factor-beta1on renal extracellular matrix components and their regulating proteins[J]. J Am SocNephrol, 1999, 10(10): 2109-2119.
    [123]Ritter SJ, Davies PJ. Identification of a transforming growth factor-beta1/bonemorphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissuetransglu-taminase gene promoter[J]. J Biol Chem, 1998, 273(21): 12798-12806.
    [124]刘俊兰,程丽静.转化生长因子β1对人肾间质成纤维细胞组织型转谷氨酰胺酶表达的影响[J].中华肾脏病杂志, 2005, 21(12): 753-755.
    [125]Nunes I, Gleizes PE, Metz CN, et al. Latent transforming growth factor-beta bindingprotein domains involved in activation and transglutaminase-dependent cross-linking oflatent transforming growth factor-beta[J]. J Cell Biol, 1997, 136(5): 1151-1163.
    [126]Verderio E, Gaudry C, Gross S, et al. Regulation of cell surface tissue transglutaminase:effects on matrix storage of latent transforming growth factor-beta binding protein-1[J]. JHistochem Cytochem, 1999, 47(11): 1417-1432.
    [127]Ito Y, Aten J, Bende RJ, et al. Expression of connective tissue growth factor in humanrenal fibrosis[J]. Kidney Int, 1998, 53(4): 853-861.
    [128]Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancersequences [J]. Cell, 1986, 46(5): 705-716.
    [129]Rosón MI, Cao G, Della Penna S, et al. Angiotensin II increases intrarenal transforminggrowth factor-beta1 in rats submitted to sodium overload independently of bloodpressure[J]. Hypertens Res, 2008, 31(4): 707-715.
    [130]Guzik TJ, Harrison DG. Endothelial NF-kappaB as a mediator of kidney damage: themissing link between systemic vascular and renal disease[J]. Circ Res, 2007, 101(3):227-229.
    [131]de Jesus Soares T, Costa RS, Balbi AP, et al. Inhibition of nuclear factor-kappa Bactivation reduces glycerol-induced renal injury[J]. J Nephrol, 2006, 19(4): 439-448.
    [132]Ozawa Y, Kobori H, Suzaki Y, et al. Sustained renal interstitial macrophage infiltrationfollowing chronic angiotensin II infusions[J]. Am J Physiol Renal Physiol, 2007, 292(1):F330-F339.
    [133]Klahr S, Morrissey JJ. Comparative study of ACE inhibitors and angiotensin II receptorantagonists in interstitial scaring [J]. Kidney Int, 1997, 52(63): 111-114.
    [134]Volpini RA,Costa RS, da Silva CG, et al Inhibition of nuclear factor-kappaB activationattenuates tubulointerstitial nephritis induced by gentamicin[J]. Nephron Physiol, 2004,98(4): 97-106.
    [135]Hocher B, Thone-Reineke C, Rohmeiss P, et al. Endothelin-1 transgenic mice developglomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension[J]. Clin Invest,1997, 99(6): 1380-1389.
    [136]Koli K, Saharinen J, Hyytiainen M, et al. Latency, activation, and binding proteins ofTGF-beta[J]. Microsc Res Tech, 2001, 52(4): 354-362.
    [137]任韫卓,段惠军,史永红,等. p-Smad23、Smad7在大鼠实验性肾间质纤维化模型中的表达[J].基础医学与临床, 2006, 26(8): 871-876.
    [138]Johnson TS, Abo-zenah H, Skill NJ, et al. Tissue transglutaminase: a mediator andpredictor of chronic allograft nephropathy[J]. Transplatation, 2004, 77(11): 1667-1675.
    [139]Dai HY, Kang WQ, Wang X, et al. The involvement of transforming growth factor-β1secretion in urotensinⅡ-induced collagen synthesis in neonatal cardiac fibroblasts[J].Regul Pept, 2007, 140(1-2): 88-93.
    [140]Watanabe T, Takahashi K, Kanome T, et al. Human urotensinⅡpotentiates the mitogeniceffect of mildly oxidized low-density lipoprotein on vascular smooth muscle cells:comparison with other vasoactive agents and hydrogen peroxide[J]. Hypertens Res, 2006,29(10): 821-831.
    [141]Papadopoulos P, Bousette N, Giaid A. Urotensin-II and cardiovascular remodeling[J].Peptides, 2008, 29(5): 764-769.
    [142]Liou JY, Chen YL, Loh SH,et al. Magnolol depresses urotensin-II-induced cellproliferation in rat cardiac fibroblasts[J]. Clin Exp Pharmacol Physiol, 2009, 36(7):711-716.
    [143]De la Motte CA, Hascall VC, Drazba J, et al. Mononuclear leukocytes bind to specifichyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinicacid: polycytidylic acid: inter-trypsin inhibitor is crucial to structure and function[J]. Am JPathol, 2003, 163(1): 121-133.
    [144]Truter SL, Catanzaro DF, Supino PG, et al. Fibronectin gene expression in aorticregurgitation: relative roles of mitogen-activated protein kinases[J]. Cardiology, 2009,113(4): 291-298.
    [145]Tsujihata M, Yoshimura K, Tsujikama, K, et al. Fibronectin inhibits endocytosis ofcalcium oxalate crystals by renal tubular cells[J]. Int J Urol, 2006, 13(6): 743-746.
    [146]Eismann U, Sommer M, Kosmehl H, et al. Fibronectin splice variants prognostic markersfor the stage of renal interstitial fibrosis in the rat[J]. Nephron, 2002, 92(2): 379-388.
    [147]Shui HA, Ka SM, Lin JC, et al. Fibronectin in blood invokes the development of focalsegmental glomerulosclerosis in mouse model[J]. Nephrol Dial Transplat, 2006, 21(7):1794-1802.
    [148]Tran L, Kompa AR, Kemp W. et al. Chronic urotensin-II infusion induces diastolicdysfunction and enhances collagen production in rats[J]. Am J Physiol Heart Circ Physiol,2010, 298(2): H608-H613.
    [149]Zhang G, Kernan KA, Thomas A, et al. A novel signaling pathway: fibroblast nicotinicreceptor alpha1 binds urokinase and promotes renal fibrosis[J]. J Biol Chem, 2009,284(42): 29050-29064.
    [150]Wagrowska-Danilewicz M, Danilewicz M. Dysregulation of immunoexpression of matrixmetalloproteinases in renal chronic allograft injury[J]. Pol J Pathol, 2009, 60(2): 88-93.
    [151]陈东,黄海长,喻陆.肾间质纤维化组织中组织型谷氨酰胺酶和结缔组织生长因子共表达[J].北京大学学报, 2005, 37(2): 143-146.
    [152]Zhang YG, Li YG, Liu BG, et al. UrotensinⅡaccelerates cardiac fibrosis andhypertrophy of rats induced by isoproterenol[J]. Acta Pharmacol Sin, 2007, 28(1): 36-43.
    [153]Clozel M, Hess P, Qiu C, et al. The urotensinⅡreceptor antagonist palosuran improvespancreatic and renal function in diabetic rats[J]. J Pharmacol Exp Ther, 2006, 316(3):1115-1121.
    [154]Zoccali C, Mallamaci F, Tripepi G, et al. UrotensinⅡand cardiomyopathy in end-stagerenal disease[J]. Hypertension, 2008, 51(2): 326-333.
    [155]Ravani P, Tripepi G, Pecchini P, et al. UrotensinⅡis an inverse predictor of death andfatal cardiovascular events in chronic kidney disease[J]. Kidney Int, 2008, 73(1): 95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700