大跨度预应力混凝土V形刚构拱组合桥受力行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
早期桥梁多是简单的梁、柱、拱、索之类桥式体系,受力明确、造型清晰。但随着科学技术的发展,生产力水平空前提高,桥梁的发展无论从跨越能力提高的速度、结构形式的组合化趋势,还是各种新型材料的应用和合理配置等多方面都有了充分的展现。V形刚构拱组合体系桥充分利用了梁、拱各自桥式的受力优势,优化了结构的受力,节省了工程量,创新了桥梁的外观,是大型公路、铁路桥梁中值得应用与研究的桥式结构。目前有关V形刚构拱组合桥梁的文献尚不多见,也没有相关文献对其受力行为作过系统深入的分析研究。鉴于以上情况,以小榄水道特大桥为研究背景,系统地开展了大跨度V形刚构拱组合桥受力行为的专项研究。内容主要包括五个部分:
     1、在收集国内外相关资料和深入分析国内外研究成果的基础上,对大跨度V形刚构拱组合桥的发展与受力特点进行了初步分析,并讨论了其在受力行为研究中存在的问题。以新建铁路广珠城际轨道交通工程小榄水道特大桥为工程背景,提出了进行大跨度V形刚构拱组合桥受力行为研究的课题。
     2、提出了大跨度V形刚构拱组合桥名义刚度的概念,分析了结构参数对名义刚度的影响,推导出名义刚度理论公式。针对拱梁刚度比的选取及其对结构内力分配的影响进行讨论,分析其对结构内力的影响规律,并得出刚拱柔梁与柔拱刚梁的界定值,为设计人员选取构造参数提供指导。
     3、基于结构试验模型相似理论,进行静力相似原则的分析和推导,确定模型的相似比,采用模型的基本设计原则,设计并完成了V形墩梁节点模型试验。在选定混凝土、钢筋和钢绞线本构关系的基础上,建立了V形墩梁节点三维非线性有限元模型,将数值计算结果与试验结果进行了对比。分析了多种荷载工况下V形墩梁节点局部应力分布规律,通过绘制负弯矩区钢筋荷载应变曲线以及模型梁的荷载挠度曲线,对V形墩梁节点的非线性受力行为进行了研究,得出了挠度与裂缝行为以及刚度变化规律。
     4、探讨了大跨度V形刚构拱组合桥的施工方案,在施工过程仿真计算时利用单元生死技术,编制了APDL命令流程序,并考虑了混凝土的徐变特性,建立施工过程仿真计算模型,对先梁后拱分段施工全过程进行了计算研究。同时对结构体系受力及刚度进行了分析研究,分析了收缩徐变对结构内力分配的影响,针对吊杆、拱、梁受力比值进行了讨论。最后系统深入地研究了三片腹板剪应力分布规律,各施工阶段箱梁纵向弯曲正应力,成桥后箱梁纵向弯曲正应力和横向弯曲正应力的分布规律。
     5、建立了大跨度V形刚构拱组合桥施工控制理论,确定施工误差调整理论和方法,包括对设计参数进行识别和修正,自适应系统控制以及分析系统的运行。通过对小榄水道特大桥施工控制研究,对施工方案的可行性作出评价,确定各施工理想状态的线形和位移,对随后施工状态的线形及位移作出预测。介绍了应力控制截面及测试原理,对关键截面应力控制结果进行了分析研究,使施工沿着设计的轨道进行,保证施工中的安全和结构恒载内力及结构线形符合设计要求,保证施工质量和安全。
Most of the bridges in early stage are simple bridge systems of beam, column, arch, cable, etc. The characteristics of this kind of bridge are stressing definitely and clearly modeled. However, as the development of technology and the unprecedented improvement of productivity level, the bridges have fully developed in the speed of span ability improvement, the trend of structure form combination and the application and rational allocation of diversity updated materials. It is worthy applying and researching V-shape rigid frame composite arch bridge in large highway and railway bridges because it makes full use of each superiority of beam and arch, optimizes structural force bearing conditions, saves engineering quantity, and innovates the appearance of bridges. At present, there are still few documents in V-shape rigid frame composite arch bridge and it is not found any relative documents doing systematic research in the mechanical behaviors of the bridges. Considering the situations mentioned above, based on Xiaolan channel super large bridge, the author carries out systematic researches on the mechanical behaviors of long-span V-shape rigid frame composite arch bridge. The dissertation includes five parts mainly:
     1. Based on collecting and learning correlative knowledge at home and abroad, the author preliminarily analyzes the development and mechanical characteristics of long-span V-shape rigid frame composite arch bridge. The existing problems in the research of mechanical behavior are discussed. Researched on newly built railway Guangzhou-Zhuhai intercity rail transit project Xiaolan channel super large bridge, the author proposes the subject of mechanical behavior research of long-span V-shape rigid frame composite arch bridge.
     2. The author proposes the definition of nominal rigidity of long-span V-shape rigid frame composite arch bridge, analyzes the effects of structural parameters on nominal rigidity and derives the theoretical equation of nominal rigidity. The author also discusses the selection of the rigidity ratio of arch and beam and the effect of the ratio on the structure internal forces distribution, and analyzes the influence law of the ratio on the structure internal forces. Then the author gets the delimitation value between rigid arch-flexible beam and flexible arch-rigid beam. It provides a guidance of selecting the structural parameters to designers.
     3. Based on the similitude theory of structural test models, the author analyzes and derives the static similitude principle, determines similitude ratio of the model, completes the V-shape pier-girder joint model tests by adopting basic design principle of the model. Based on choosing the constitutive relationships of concrete, steel and strand, the 3-D nonlinear finite element model of V-shape pier-girder joint is established to compare the results of the model tests with the theoretical ones. The focuse is on the local stress distribution of the V-shape pier-girder joint under various loading modes. Nonlinear mechanical behavior of the V-shape pier-girder joint is also studied by drawing the curve of load-reinforcement strain in negative moment area and load-deflection curve. The deflection and cracking behaviors and the change law of stiffness are obtained.
     4. The construction scheme of long-span V-shape rigid frame composite arch bridge is discussed. In process of simulation calculation of the construction, the author compiles APDL command flow program by using the unit birth-death technique, establishes simulation calculation model in the construction process. The creep characteristics of concrete are also taken into account. The whole process of beam first-to-arch later stage construction are calculated and studied. At the mean time, the force and rigidity of the structure system are studied, the effects of shrinkage and creep on structural internal forces distribution are analyzed, and the force ratio of the suspender, arch and beam is discussed. Finally, the author does a roughly studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, and the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder.
     5. The author establishes the construction control theory of long-span V-shape rigid frame composite arch bridge, determines the adjustment theories and methods of construction errors including identifying and correcting the design parameters, controlling the adaptive system and operating the analysis systems. By researching on construction control of Xiaolan channel super large bridge, the feasibility of the construction program is evaluated, the alignment and displacement in each construction ideal state are determined and the alignment and displacement in the following construction state are predicted. The stress controling sections and the testing principles are introduced and the stress controling results of the criticat sections are researched on to make the construction go along well as designed, make sure the safety during construction, the structural internal force under constant load and structural alignment are complied with the design requirements and the construction quality and safety are ensured.
引文
[1]金成棣.预应力混凝土梁拱组合桥梁——设计研究与实践.北京:人民交通出版社,2001
    [2]颜东煌,刘雪锋,田仲初等.组合体系拱桥的发展与应用综述.世界桥梁,2007,(2):65-67
    [3]罗世东.铁路桥梁大跨度组合桥式结构的应用研究.铁道标准设计,2005,(11):1-4
    [4]尼尔斯 J·吉姆辛(丹麦).缆索支承桥梁——概念与设计.第2版.北京:人民交通出版社,2002
    [5]伊藤学,川田忠树.超长大桥梁建设的序幕——技术者的新挑战.北京:人民交通出版社,2002
    [6]Shunichi Nakamura. New Structural Forms for Steel Concrete Composite Bridges. Structural Engineering International,2000, (1):45-50
    [7]Pascal Klein, Michael Yamout. Cable-Stayed Arch Bridge, Putrajaya, Kuala Lumpur, Malaysia. Structural Engineering International,2003, (3):196-199
    [8]李亚梅,陈爱萍.横跨荷兰鹿特丹市丁特尔港口的铁路桥.世界桥梁,2004(2)
    [9]交通部中国公路交通史编审委员会.中国公路史(第一册).北京:人民交通出版社,1990
    [10]顾安邦.桥梁工程(下册)(土木工程专业用).人民交通出版社,2003
    [11]李国平.连续拱梁组合桥的性能与特点.桥梁建设,1999,(1):10-13
    [12]陈宝春.钢管混凝土拱桥设计与施工.北京:人民交通出版社,1999
    [13]罗世东,严爱国,刘振标.大跨度连续刚构柔性拱组合桥式研究.铁道科学与工程学报,2004,(2):57-62
    [14]罗世东, 王新国,王庭正,等.大跨径斜拉拱桥创新技术构思与研究.桥梁建设,2005,(6): 31-33
    [15]王文涛主编,刚构一连续组合梁桥,北京:人民交通出版社,1997
    [16]范立础编著,预应力混凝土连续梁桥,北京:人民交通出版社,1998
    [17]王站国.大跨度预应力混凝土V形墩连续刚构桥的静力分析与工程控制.浙江大学硕士学位论文,2006
    [18]Y. L. Pi, N. S. Trahair. Nonlinear Inelastic Analysis of Steel Beam-Columns. II: Application. J. Struct. Engrg., ASCE.1994,120(7):2062-2085
    [19]Y. L. Pi, N. S. Trahair. Inelastic Bending and Torsion of Steel I-Beams J. Struct. Engrg. ASCE.1994,120(7):3397-3417
    [20]Y. B. Yang, W. McGuire. Stiffness Matrix for Geometric Nonlinear Analysis. J. Struct 1986, 112(4):853-877
    [21]S. Kitipornchai and S. L. Chan. Nonlinear Finite Analysis of Angle and Tee Beam-colums. ASCE.1987,113, ST.:69-77
    [22]C. Borri and S. Chiostrini. A Nonlinear Approach to the Stability Analysis of Space Beam Structures. Int. J. Space Structure.1989,4(4):193-217
    [23]W. R. Spillers. Geometric Stiffness Matrix for Spaee Frames. Computers&Structures 1990, 36(1):29-37
    [24]Y. B. Yang, S. R. Kuo. J. D. Yau. Use of Straight-Beam Approach to Buckling of CurVed Beams. J. Struct. Engrg. ASCE.1991,117(7):1963-1978
    [25]R. K. Wen. Nonlinear CurVed Beam Elements for Arch Structures. J. Struct. Engrg. ASCE.1991,117(11):3496-3515
    [26]Y. B. Yang, S. R. Kuo. CurVed Beam Elements for Non-linear Analysis. J. Engrg. Mech., ASCE.1989,115(4):840-855
    [27]A. S. Nazmy and A. M. A. Del-Ghaffar. Three-Dimensional Nonlinear StaticAnalysis of Cable-Stayed Bridges. Computers&Structures.1993,49(6):25-36
    [28]Z. Q. Chen and T. J. A. Agar. Geometric Nonlinear Analysis of Flexible Spatial Beam Structure. Computer&Structure.1993,49(6):25-36
    [29]Y. L. Pi, N. S, Trahair. Nonlinear Inelastic Analysis of Steel Beam-Columns. Ⅰ: Theory. J. Struct. Engrg., ASCE.1994,120(7):2041-2061
    [30]Y. L. Pi, N. S. Trahair. Nonlinear Inelastic Analysis of Steel Beam-Columns. Ⅱ: Application. J. Struct. Engrg., ASCE.1994,120(7):2062-2085
    [31]Y. L. Pi, N. S. Trahair. Inelastic Bending and Torsion of Steel I-Beams J. Struct. Engrg., ASCE.1994,120(7):3397-3417
    [32]项海帆,刘光栋.拱结构的稳定与振动.北京:人民交通出版社,1991
    [33]S. P. Timosenko.弹性稳定理论.北京:科学出版社,1958
    [34]P N. Chatterjee. On the deflection theory of ribbed two-hinged elastic arches. Thesis, Ph. D. the UniVersity of Illinois,1948
    [35]R. S. Rowe. Amplification of stress in flexible steel arches. Transactions of ASCE.1954: 2704-2714
    [36]G. Wastlund. Stability problems of compressed steel members and arch bridges. Proc. of ASCE.1960,86(6):193-203
    [37]S. O. Asplund. Deflection theory of arches. Transactions of ASCE.1963,128(11):307-341
    [38]T. Yabuk, S. Vinnakota. Stability of Steel Arch Bridges:A State-of-the-Art Report. Aolid Mech., ArchiVes.1984,9:155-158
    [39]K. W. Robert, M. Khaled. Elastic Stability of Deek-TyPe Arches Bridges. J. Struct. Engrg. ASCE.1987,113(4):879-888
    [40]J. P. Papangelis, N. S. Trahair. Flexural-Torsional Bucking of Arches, J. Struct. Engrg. ASCE.1987,113(4):889-906
    [41]J. P. Papangelis, N. S. Trahair. FLEXURAL-Torsional Buckling Teston Arches. J. Struct. Engrg., ASCE.1987,113(7):1433-1443
    [42]J. P. Papangelis, N. S. Trahair. FLEXURAL-Torsional Buckling of Monosmmetric Arches. J. Struct. Engrg., ASCE.1987,113(10):2271-2288
    [43]J. P. Papangelis, N. S. Trahair. Finite ELEMENT Analysis of ArchLateral Buckling. CiV. Engrg. Trans.1987, CE29(1):34-39
    [44]J. P. Papangelis, N. S. Trahair. Buckling of Monosmmetric Archesunder Point Loads. Engrg. Struct.1988,114(9):257-264
    [45]S. A. Chini, A. M. Wolde-Tinsae. Critical Load and Postbuckling of Arch Frameworks. J. Engrg. Meeh. ASCE.1988,114(9):1435-1453
    [46]S. A. Chini, A. M. Wolde-Tinsae. Effect of Prestressing on Elastic Arch. J. Engrg. Mech. ASCE.1988,114(10):1791-1800
    [47]A. Mirmiran, A. M. Made, M. Wolde-Tinsae. Buckling and Postbuckling of Prestressed Sandwich Arches. J. Struct. Engrg., ASCE.1993,119(1):262-278
    [48]A. Mirmiran, A. M. Made. Inelastic Buckling of Prestressed Sandwichor Homogeneous Arch. J. Struct. Engrg., ASCE.1993,119(9):2733-2743
    [49]A. Mirmiran, A. M. Made. A Class of Stability Problems:Squential Fabrication of Structures. Int. J. Space Struetures.1993,8(2):179-185
    [50]C. Blasi, P. Foraboschi. Analytical Approach to Collapse Mechanisms of Circular Masonry Arch. J. Struct. Engrg., ASCE.1994,120(8):2285-2309
    [51]C. Molins, P. Roca. Capacity of Masonry Arches and Spatial Frames. J. Struct. Engrg. ASCE.1998,124(6)653-663
    [52]Y. L. Pi, N. S. Trahair. Prebuckling Deflections and Lateral Buckling. I-Theory. J. Struct. Engrg., ASCE.1992,118(11):2949-2966
    [53]Y. L. Pi, N. S. Trahair. Prebckling Deflections and Lateral Buckling. II-Applications. J. Struct. Engrg., ASCE.1992,118(11):2967-2985
    [54]Y. L. Pi, J. P. PaPangelis, N. S. Trahair. Prebuckling Deflections And Flexual-Torsional Buckling of Arches. J. Struct. Engrg., ASCE 1995,121(9):1313-1322
    [55]Y. L. Pi, N. S. Trahair. Three. Dimensional Nonlinear Analysis of Elastic Arches. Engrg. Struct.,1996,18(1):49-63
    [56]Y. L. Pi, N. S. Trahair. In-Plane Inelastic Buckling and Strengths of Steel Arches. J. Struct. Engrg., ASCE.1996,122(7):734-747
    [57]K. I. Kang, C. W. Bert, A. G. Striz. Vibration and Buckling Analysis of Circular Arches Using DQM. ComPuters&Sructures.60(1),1996:49-57
    [58]Stussi, F. Lateral Buckling and Vibration of Arches. Int. Assoc. of Bridges And Structural Engng Pubs, Vol.7, P.327,1973
    [59]钱莲萍,项海帆.空间拱桥结构侧倾稳定性的实用计算.同济大学学报.1989,17(2):161-172
    [60]向中富.中承式拱桥横向屈曲临界荷载实用计算.重庆交通学院学报.1995,14(1):27-31
    [61]J. Huddlestor. Finite deflections-and snap-through of high circular arches. Journal of Applied Mechanics, Dec.,1968
    [62]G. A. Wempner, G. E. Patrick. Finite deflections, buckling and post-buckling of an arch. Proceedings,11th Midwestern Mechanics Conference. Iowa State University, Aug. 1969, (15)
    [63]D. Da Deppo, R. Schmidt. Nonlinear analysis of buckling and post-buckling behaVior of circular arches. Journal of Applied Mathematics and Physics.1969, (20)
    [64]D. Da Deppo, R. Schmidt. Large deflections and stability of hinge less circular arches under interacting loads. J. Appl. Mech., Trans. ASME,1974
    [65]W.J.Austin. In-plane bending and buckling of arches. ASCE. May,1971,97(ST5):1575-1593
    [66]D. J. Dawe. CurVed finite elements for the analysis of shallow and deep circular arches. Computer and Structure.1974, (4)
    [67]M. V. Amode, Hudeleston. Three-dimension stability of prestressed arches. J. Engrg. Mech. ASCE.1977,103(5):855-867
    [68]川口昌夫,新泽远大.钢筋混凝土拱桥面承载力.殷荫龙译,国外公路.1980,21:94-104
    [69]R. K. Wen, J. Rahimzadeh. Nonlinear elastic frame analysis by finite element.1981
    [70]谢幼藩,陈克济.拱桥面内稳定性计算探讨.西南交通大学学报.1982,17(1):16-21
    [71]陈克济.钢筋混凝土拱面内承载力非线性分析.桥梁建设.1983,(1):20-25
    [72]金伟良.大跨度拱桥的横向稳定性研究.大连理工大学博士论文.1988,12
    [73]金伟良.钢筋混凝土拱桥的极限承载力.浙江大学学报.1997,3 1(4):449-461
    [74]金伟良,顾淑兴等.无横撑肋拱桥横向稳定性的研究.中国公路学报.1989,2(3):14-19
    [75]向中富.桥梁施工控制技术.北京:人民交通出版社,2001
    [76]葛耀君.分段施工桥梁分析与控制.北京:人民交通出版社,2003
    [77]韩大建,陈太聪,苏成.BP神经网络用于斜拉桥施工过程中混凝土弹性模量的识别.桥梁建设,2003(1):74-79
    [78]李传习,刘扬,张建仁.基于人工神经网络的混凝土大跨度桥梁主梁参数实时估计.中国公路学报,2001,7(3):62-66
    [79]刘刚亮,王中文.虎门大桥辅航道270m连续刚构桥悬臂施上控制.桥梁建设.2001(5):46-48
    [80]陈建阳,向木生,郭峰祥,沈成武.大跨度桥梁施工控制中的神经网络方法.桥梁建设,2001(6):42-45
    [81]常英.随机最优控制在连续刚构桥和斜拉桥施工控制中的应用.公路交通科技,2001 12(6):50-54
    [82]He X J, Shen C W. Adjustment of Bukle-cable Forces Under Cable-hoisting Construction of Concrete-filled Steel Tubular Arch Bridges. Journal of Wuhan Transportation University,1999, 23(5):575-578
    [83]Au F. T. K, Wang J J, Liu G D. Control of reinforced concrete arch bridges. Journal of Bridge Engineering ASCE,2003,8(1):39-45
    [84]Kitahara M, Achenbach J D, Guo Q C. Neural Network for Crack-dapth Determination from Ultrasonic Backscattering Data. ReView of Progress in Quantitative Nondestructive Evaluation,1992,11(6):701-708
    [85]Dejus T. Evaluation of work safety control systems in construction. J. of CiVil Engineering and Management.2005,10(2):93-98
    [86]Clark G. The UK industry's proposals for improved specifications and standards for post-tensioned concrete bridge. In:Proc. of FIP symposium, London:1997
    [87]Breen J E. Controlling Twist in Precast Segmental concrete Bridge. PCI Journal, July-August Vol 22,1985
    [88]Tsylor R. Annasis Bridge Superstructure-A Major Composite Cable Stayed Bridge. Proceedings of the 3rd EASES, Bangkok, Thailand,1986
    [89]Park J I, etal. Control System and Postprocessing in Erection of Composite Cable-stayed Bridge. Proceedings of DeauVille Conference, Cable-Stayed Bridges and Suspension Bridges, 1994
    [90]Sakai P F, Isoe A&Umeda A. A New Methodology for Control of Construction Accuracy in Cable-Stayed Bridge. Proceedings of 3rd EASEC. Shanghai, China,1991
    [91]Chiu H S. Long-Term Deflection Control in Cantilever Prestressed Concrete Bridges, Journal of Engineering Mechanics, ASCE, Vol.122, No.6,1996
    [92]Maeda K, Otsuda A&Takano H. Construction of the Yokohama Bay Bridge Superstructure. Proceedings of IABSE,1988
    [93]黄绳武.桥梁施上及组织管理(上).北京:人民交通出版社,1999
    [94]蒋彦征.预应力混凝土梁拱组合桥-系杆拱桥性能研究.同济大学硕士学位论文,2000
    [95]郭静.拱式组合体系桥梁的结构特性研究.郑州大学硕士学位论文,2003
    [96]梁巍.T构—肋拱组合体系桥梁受力特性分析.福州大学硕士学位论文,2004
    [97]蒋彦征,李国平.预应力梁拱组合桥受力分析.华东公路,1999,(6):3-5
    [98]金成棣.结构静力学.北京:人民交通出版社,1982
    [99]陈从春.矮塔斜拉桥设计理论核心问题研究.同济大学博士论文.2005,12
    [100]铁路桥涵设计基本规范(TB10002.1-2005).北京:中国铁道出版社,2005:06
    [101]易云焜.梁拱组合体系设计理论关键问题研究.同济大学博士论文.2007,1
    [102]李德寅,王邦楣,林亚超.结构模型试验[M].北京:科学出版社,1996.1-20
    [103]颜东煌,田仲初,陈常松,等.岳阳洞庭湖大桥三塔斜拉桥全桥静动力模型设计[J].长沙交通学院学报,1999,15(1):50-54
    [104]陈星烨,马晓燕,宋建中.大型结构试验模型相似理论分析与推导[J].长沙交通学院学报,2004,20(1):11-14
    [105]王光饮.弹性力学[M].四川:中国铁道出版社,2004:28
    [106]周士琼.建筑材料.北京:中国铁道出版社,1999:55-118
    [107]中华人民共和国建设部.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003:1-20
    [108]铁路桥涵钢筋混凝土和预应力混凝土桥涵结构设计规范(TB10002.3-2005).北京:中国铁道出版社,2005:06
    [109]朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1979:120-131
    [110]吕西林等.钢筋混凝土结构非线性有限元理论及应用.上海:同济大学出版社,1996:7-39
    [111]葛军颖,王立友.基于ANSYS的桥梁结构分析.北京:中国铁道出版社,2007:118-119
    [112]何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨工业大学出版社,2006:88-145
    [113]Z. P. Bazant, and P. Bhat. Endochronic theory of ineleticity and failure of concrete. Journal of engineering mechanics division, ASCE.1976 102(EM4):
    [114]Z. P. Bazant et al. Blunt crack propagation in finite analysis. Journal of engi-neering mechanics division, ASCE,1979.52(EM2):
    [115]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994:1-140
    [116]马铭彬.高强硅的发展与应用.广西工学院学报.1995,6(4):44-48
    [117]赵人达.混凝土及其结构的非线性行为研究.成都:西南交通大学博士学位论文.1990,6:152
    [118]H. Yamaguchi et al. Analysis of RC walls by plastic-fracturing theory. Journal of structural division, ASCE.1972,98(5):1025-1034
    [119]Barzegar F. Analysis of RC membrane elements with an anisotropic reinforcement [J]. Journal of structural engineering, ASCE,1989,115(3):647-665.
    [120]K. J. William, E. D. Warnke. Constitutive model for the triaxial behavior of concrete. Proceedings international association for bridge and structural engineering, ISMES, Bergamo, Italy,1975,19:174
    [121]Saenz L P Discussion of Equation for the Stress-Strain Curve of Concrete by Desayi and Krishman. J. Amer. Concr. Inst.,1964.9,61:1229-235
    [122]Elwi A A and Murray D W. A 3D Hypoelastic Concrete Constitutive Relationship. J. Eng. Mech. Div., ASCE,1979,105, EM4:623-641
    [123]向木生.连续刚构桥梁施工分析.武汉理上大学学报.2002,24(6)
    [124]W. Podolny Jr.& J. M. Muller. Construction and Design of Prestressed Concrete Segmental Bridges. John Wiley& Sones, Inc.1982
    [125]贺拴海.桥梁结构理论与计算方法.北京:人民交通出版社,2003
    [126]周水兴,李炎.钢管混凝土拱桥设计与发展.工程力学.1999,增刊:225-229
    [127]廖小雄.基于ANSYS的斜拉桥施工过程模拟分析,武汉理工大学硕士学位论文.2005,3
    [128]于炳炎.斜拉桥施工控制与ANSYS模拟分析,西南交通大学硕士学位论文.2003
    [129]张治成.大跨度钢管混凝土拱桥施工控制研究,浙江大学博士学位论文.2004,4
    [130]李传习,夏桂云.大跨度桥梁结构计算理论.北京:人民交通出版社,2002
    [131]CEB欧洲国际混凝土委员会CEB-FIP1990模式规范(混凝土结构).中国建筑科学研究院结构所规范室译.1991,1
    [132]ACI Committee 209. Prediction of creep, shrinkage and temperature effect inconcrete structure.1977
    [133]Z. P. Bazant, L. Panula. Creep and shrinkage characterization for analyzing prestressed concrete structures. PCI Journal.1980(5,6):92-100
    [134]胡狄.预应力混凝土桥梁徐变效应分析.长沙:中南大学博士学位论文.2003
    [135]Bazant, Z. P., and Oh, B. H. Deformation of progressively cracking reinforced concrete beams. J. Am. Comcr. Inst.1984(81):268-278
    [136]Bazant, Z. P, and Xiang, Y. Crack growth and lifetime of concrete under long time loading. Journal of Engineering Mechanics,1997, April,350-358
    [137]杨凤莲,王根会.大跨度混凝土桥梁施工过程中的徐变变形研究.兰州铁道学院学报(自然科学版),2003,22(3):70-72
    [138]RILEM 107-GCS. Guidelines for creep and shrinkage prediction models:Creep and shrinkage prediction model for analysis and design of concrete structures model B3. Materials and Structures,1995,28:357-365
    [139]张建民.大跨度钢管混凝上拱桥承载能力与施工控制研究.华南理工大学工学博士学位论文.2001,12
    [140]张春生,梁志广,李建中.斜拉桥施工过程仿真分析.桥梁建设,2000,2
    [141]孙学先.悬灌施工 PC弯桥梁考虑混凝土徐变增量的线形控制计算.甘肃科学学报.1999,11(2)
    [142]刘来君,贺栓海,宋一凡.大跨径桥梁施工控制温度应力分析.中国公路学报.2004,1
    [143]李国平,张哲元.钢—混凝土组合桥混凝土徐变收缩分析.结构工程师,1999,(1):12-17
    [144]谢肖礼,秦荣,彭文立,等.钢管混凝土劲性骨架拱桥收缩徐变影响理论研究.中国工程科学,2001,(3):80-84
    [145]韩林海.钢管混凝土结构.北京:科学出版社,2000
    [146]李忠评.大跨径钢管砼劲性骨架砼箱肋拱桥的施工控制.重庆交通学院硕士学位论文.2000,2
    [147]林元培.卡尔曼滤波法在斜拉桥施工中的应用.土木工程学报.1983,16(3):7-14
    [148]徐以枋,李延直,张乃华等.上海泖港大桥.桥梁建设.1982,(4):18-24
    [149]方志,刘光栋,王光炯.斜拉桥的灰色预测施上控制系统.湖南大学学报.1997,(3):74-81
    [150]陈德伟,郑信光,项海帆.混凝上斜拉桥的施工控制.土木工程学报.1993,26(1):1-11
    [151]李学文,毛大德编译.日本预应力混凝上斜拉桥施工精度控制方法.国外公路.1998,18(2):
    33-37
    [152]马文田.混凝土斜拉桥的施工控制与索力调整.华南理工大学博士学位论文.1997
    [153]颜东煌.对斜拉桥施工控制计算中几个问题的认识.中国土木工程学会1992年全国桥梁结构学术大会论文集,武汉.上海:同济大学出版社,1992:574-580
    [154]秦顺全,林国雄.斜拉桥安装计算——倒拆法与无应力状态控制法评述.中国土木工程学会1992年全国桥梁结构学术大会论文集,武汉.上海:同济大学出版社,1992:569-573
    [155]岳建学,徐福霖,邵固平等.2×160m独塔斜拉桥的工程控制.中国土木工程学会1992年全国桥梁结构学术大会论文集,武汉.上海:同济大学出版社,1992:608-615
    [156]胡隽.斜拉桥几何非线性施上控制倒拆法正算法.西南交通大学硕士学位论文.1997.6
    [157]郝超.大跨度钢斜拉桥施工阶段非线性结构行为研究.西南交通大学博士学位论文,2001.4
    [158]雷俊卿,霍永生.用神经网络分析估计斜拉桥的施工控制参数.中国铁道科学,2005(3):22-25
    [159]Herrman T, Pradlwarter H J. Two-step identification approach for damped finite element models. Journal of Engineering Mechanics,1998,124(6):639-647
    [160]Koh C G, Chen Y F, Liaw C Y. A hybrid computational strategy for identification of structural parameter. Computers and Structures,2003,81:107-117
    [161]Chen H P, Bicanic N. Assessment of damage in continue structures based on incomplete modal information. Computers and structures,2000,74(5):559-570
    [162]Ahlawat A S, Ramaswamy A. Multiobjective optimal Structural vibration control using fuzzy logic control system. Journal of Structural Engineering,2001,127(11):1330-1337
    [163]J. B. Farison, R. E. Graham and R. C. Shelton. Identification and Control of Linear Discrete-Time Syatems. Transaction of IEEE, Journal of Automatic Control, AC-12,1967
    [164]葛耀君等.分段施工桥跨结构的状态估计和工程控制.上海城市建筑学院研究报告,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700