若干非线性演化方程精确求解法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了在物理学领域中提出的一些非线性演化方程或方程组的精确解的求解问题。考虑的问题主要为:如何从待求解的方程或方程组出发,寻找有效的变换,将原方程(组)变为简单的、易解的方程,通过求解简单的方程,而获得原方程或方程组的精确解。主要工作如下:
     (1).第二章介绍了非线性微分方程精确求解的一般原则,并通过实例说明了这一原则的使用方式和适用范围。
     (2).第三章利用齐次平衡法研究了一些高维非线性演化方程和方程组的求解问题,通过对该方法的某些关键步骤的处理,将原方程转化为一线性的微分方程(组),从而获得了这些方程大量的多种精确解。
     (3).通过引入一个新的变量,将(2+1)-维破裂孤子方程简化为一个单个方程,或利用Bcklund变换将一类(2+1)-维的耦合方程组化为仅有其一个未知量的(1+1)-维非线性演化方程,这时方程不仅维数降低,而且阶数也降低。这使得近年来使用的非常有效的推广的tanh-函数法、投影Riccati方程法等求解法使用起来更简单,特别是在求这类非线性演化方程组的类孤波解时,其求解的简炼程度十分显著,甚至比求原方程的行波解的原有方法更简单(分别见第四五章)。
     (4).第六章对楼森岳教授提出的求解非线性演化方程或方程组的分离变量解的分离变量法作了进一步的研究,利用Bcklund变换和Cole-Hopf变换,一些非线性演化方程或方程组可被化为一个具有一个或两个分别以{x,t}和{y,t}为自变量的任意函数的线性偏微分方程。利用与楼森岳教授的分离变量法相同的思想,发现了一类新的分离变量解,同时也得到了一些与楼森岳教授的分离变量法所确定的同类分离变量解,但这里的方法更简单。
     本文的安排如下,第一章简要的介绍了非线性演化方程(组)精确求解法的发展情况。第二章以张鸿庆教授于1978年提出的偏微分方程求解的构造性的机械化算法,即“AC=BD”的理论模式为指导,介绍微分方程求解的一般原则及其在非线性演化方程精确求解中的应用。第三章至第六章则分别就上面所提到的
    
    (l)一(4)这四个方面进行详细的讨论.
This dissertation mainly studies finding exact solutions of some nonlinear evolution equation(s) arrising from physics. The main problems under consideration is how to seek efficient transformations that can reduce the equation(s) to be solved to one(s) which is (are) simpler and easily solved. By solving the latter, the exact solutions of the original equation(s) can be then obtained. The main results derived are as follows:
    (1). In chapter 2, we introduce the general principle to solve nonlinear partial differential equations. Some illustrative examples are presented to show how to use the principle and the application range.
    (2). In chapter 3, homogeneous balance method is used to deal with some problems of finding solutions of higher dimensional nonlinear evolution equation(s). By improving some key procedure of the method, the original equation(s) is (are) reduced to a linear equation(s), hence a great number of exact solutions for this (these) are obtained.
    (3). By introducing a new variable, the (2+l)-dimensional breaking soliton equation is simplified to be a sigle one, or using Backlund transformation to change a class of (2+l)-dimensional coupled equations to a (1+1)-dimensional nonlinear equation with only an unknow variable. The latter one is not only with a low dimension, but also a low order. This makes it much simpler to use the efficient extended tanh-function method and the projective Riccati equation method used in recent years in the literature. In particular, when seeking soliton-like solutions of this kind of nonlinear evolution equations, the concise degree is much notable, even more simpler than the method existing to find travelling wave solutions. For more details, please consult chapter 4-5, respectively.
    (4). Chapter 6 further investigates the variable separation method to solve nonlinear evolution equation(s) presented by professor Lou senyue. By using
    
    
    
    Backlund transformation and Cole-Hopf transformation, some nonlinear equation(s) can be reduced to a linear partial equation including one or two arbitrary functions of two varable (x,t) or (y,t), respectively. Simlar to professor Lou's variable separation method, a new type of variable separation solutions are found. At the same time, some same type solutions obtained by professor Lou are also derived, but the method used here is more simpler.
    The dissertation is organized as follows. In chapter 1 the development of solving methods for finding exact solutions of nonlinear evolution equations is introduced briefly. In chapter 2, under the guidance of the theory of AC=BD presented by professor Zhang Hongqing in 1978, we introduce general principle of seeking solutions for differential equation and its application to searching for exact solutions of nonlinear evolution equations. The four aspects mentioned above are discussed in details in chapter 3-6, respectively.
引文
[1] 李大潜,陈韵梅、非线性发展方程,科学出版社,1999。
    [2] 郭柏灵,非线性:演化方程,上海科技教育出版社,1998。
    [3] Kovalevskaya.S., Zur Theorie der Partiellen Differentialgleichungen. J. Reine Agnew. Math. 80(1875)1-32.
    [4] 陈恕行,偏微分方程概论,人民教育出版社,1981。
    [5] Reid, G. J., Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solugion space and calculating its Taylor series solution, Eur. J. Appl. Math. 2(1991)293-318.
    [6] Reid, G. J. et al, Reduction of sestems of nonlinear partial differential equations to simplified involutive forms, Eur. J. Appl. Math. 7(1996)635-666.
    [7] Wazwaz, Abdul-Majid, A New Approach to the Nonlinear Advection Problem: An Application of the Decomposition Method, Applied Mathematics and Computation. 72(1995)175-181.
    [8] Wazwaz, Abdul-Majid, The decomposition method applied to systems of partial differential equations and to the reactiondiffusion Brusselator model, Applied Mathematics and Computation. 110(2000)251-264.
    [9] Wazwaz, Abdul-Majid, A computational approach to soliton solutions of the KadomtsevPetviashvili equation, Applied Mathematics and Computation. 123(2001)205-217.
    [10] Wazwaz, Abdul-Majid, Compact structures for variants of the generalized KdV and the generalized KP equations, Applied Mathematics and Computation. 149(2004)103-117.
    [11] J. Scott Russell, Report on waves, Fourteen meeting of the British association for the advancement of science, Jonh Murray, London, 1844, 311-396.
    [12] 郭柏灵,庞小峰,孤立于,北京:科学出版社,1987.
    [13] Korteweg, D.J., and De Vries, G., On the change of form of long-waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Magazine, 5th Ser. 39(1895) 422-443.
    [14] E. Fermi, J Pasta and Ulma, Studies of Nonlinear Problems, I, Los Alamos Rep. LA 1955.
    [15] C. S. Gardener, G.Maviawa, Similarity in the asyrnptotic behavier of collision-
    
    free hydromagnetic waves and water waves, Courant institute of math., Science Report, 1960.
    [16] Zabusky, N. J, Kruskal, M. D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 14(1965)240-243.
    [17] C. S. Gardener, J. M. Green, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de-Vries equation, Phys. Rev. Lett. 19(1967)1095-1097.
    [18] C. S. Gardener, J. M. Green, M. D. Kruskal, R. M. Miura, Korteweg-de-Vries and generalizations. Ⅵ. Method for exact solution, Comm pure appl. Math., 27(1974)97-133.
    [19] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm pure appl. Math., 21(1968)467-490.
    [20] Zakharov V. E. and Shabat A. B., Exact theory of two-dimensional selffocusing and one-dimensional of waves in nonlinear media, Sov. Phys. JETP., 34(1972)62-69.
    [21] M. Wadati, The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Jp., 32(1972)1681.
    [22] M. J. Ablowitz et al., Method for solving the sine-Gordon equation, Phys. Rev. Lett. 30(1973)1262-1264.
    [23] M. J. Ablowitz et al., Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31(1973)125-127.
    [24] H. D. Wahlquist and F. B. Estabrook, Prolongation structurres of nonlinear evolution equations I, J. Math. Phys., 16(1975)1-7.
    [25] H. D. Wahlquist and F. B. Estabrook, Prolongation structurres of nonlinear evolution equations Ⅱ, J. Math. Phys., 17(1976)1293-1297.
    [26] K. Wu, H. Y. Guo and S. K. Wang, Prolongation structurres of nonlinear system in higher dimensions, Commun. Theor. Phys., 2(1983)1425.
    [27] H. Y. Guo, K. Wu and S. K. Wang, Inverse scattering transform and regular Riemann-Hilbert problem, Commun. Theor. Phys., 2(1983)1169.
    [28] H. Y. Guo, K. Wu and S. K. Wang, Prolongation structurre, Bcklund transformation and principlal homogeneous Hilbert problem in general relativity, Commun. Theor. Phys., 2(1983)883.
    [29] Li Yi shen, Chin. Ann. Math., 21(1980)147.
    [30] Tian Chow, Li Yi shen, Chin. Ann. of Math., 2(1981)11.
    [31] C. Rogers and W. R. Shadwick, Bcklund transformations and their applica-
    
    tion, Academic Press, New York, 1982.
    [32] H. D. Wahlquist and F. B. Estabrook, Bcklund transformations for solitons of Korteweg-de-Vries equation, Phys. Rev. Lett. 31(1973)1386-1389.
    [33] J. Weiss, M. Tabor and G. Carnvale, The Painlevé property for partial differential equations, J. Math. Phys., 24(1983)522-526.
    [34] G. Darboux, Compts Rendus Hebdomadaires des Seances de l'Academie des Sciences, Pairs, 94(1882)1456.
    [35] V. B. Matveev and M. A. Salle, Darboux transformation and solitons, Berlin: Speinger, 1991.
    [36] 谷超豪等,孤立于理论中的DarbouX变换及其几何应用,上海科技出版社,1999.
    [37] M. Wadati et al., Simple derivation of Bcklund transformation from Riccati form of inverse method, Prog. Theor. Phys., 53(1975)418.
    [38] Lie S, ber die Integration durch bestimmte Integrale yon einer Klasse linearer partieller Differentialgleichungen, Arch. for Math., 6(1881)328-368.
    [39] Nother, E. Invariante Variationsprobleme, Nachr. Knig. Gesell. Wissen. GSttingen, Math. Phys. K1., (1918)235-257.
    [40] Ovsiannikov, L. V. Groups and group-invariant solutions of differential equations, Dokl. Akad. Nauk. USSR, 118(1958)439-442(in Russian).
    [41] Ovsiannikov, L. V. Group properties of the nonlinear heat conduction equation, Dokl. Akad. Nauk. USSR, 125(1959)492-495(in Russian).
    [42] Ovsiannikov, L. V. Group properties of Differential equations, Novosibirsk 1962 (in Russian).
    [43] Ovsiannikov, L. V. Group Analysis of Differential Equations, Academic Press, New York, 1962.
    [44] Bluman, G. W. and Cole, J. D. The general similarity solution of the heat equation. J. Math. Mech. 18(1969)1025-1042.
    [45] Olver, P. J. Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18(1977)1212-1215.
    [46] Bluman, G. W. and Cole, J. D. Similarity method for differential equation, New York: Springer-Verlag, 1974.
    [47] G. W. Bluman and S. Kumei, Symmetries and differential equations, Berlin: Springer-Verlag, 1989.
    [48] Olver, P. J. Applications of Lie group to differential equations, 2nd Edition,
    
    New York: Springer-Verlag, 1993.
    [49] Olver, P. J. On the Hamiltonian structue of evolution equation, Math. Proc. Camb. Phill Soc., 88(1980)71-88.
    [50] B. Fuchsseiner and A. S. Fokas, Symplectic structure, their Backlund transformations and hereditary symmetries, Physica D 4(1981)47-66.
    [51] H. H. Chen et al., In Advance in nonlinear wave, ed L. Debnath, 1982, 233.
    [52] 李翊神,朱国诚,一个谱可变演化方程的对称,科学通报,1986,19:1449。
    [53] 李翊神,朱国诚,可积方程新的对称,李代数及谱可变演化方程,中国科学 A,1987,30:235。
    [54] 李翊神,朱国诚,“C可积”非线性方程的代数性质-(Ⅰ)Burgers方程和 Calogero方程,中国科学A,1989,32:1133。
    [55] Li Y. S and Zhu G. C., New set of symmetries of the integrable equations, Lie algebra and nonisospectral evolution equations. Ⅱ. AKNS system. J. Phys. A, 19(1986)3713-3725.
    [56] 田畴,Burgers方程的新的强对称,中国科学A,1987,30:1009。
    [57] Clarkson P. A. and Kruskal M. D. New similarity solutions of the Boussinesq equation, J. Math. Phys., 30(1989)2201-2213.
    [58] S. Y. Lou, A note on the new similarity reductions of the Boussinesq equation, Phys. Lett. A, 151(1990)133.
    [59] S. Y. Lou, Similarity reductions of the KP equation by a direct method, J. Phys. A, 23(1990)L694.
    [60] S. Y. Lou, Generalized Boussinesq equation and KdV equation-Painlevé properties, Bcklund transformations and Lax pairs, Sci. China A, 34(1991)1098.
    [61] S. Y. Lou and H. Y. Ruan, Nonclassical analysis and Painlevé property for the Kupershmidt equations, J. Phys. A, 26(1993)4679.
    [62] M. C. Nucci and P. A. Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example of the FitzHugh-Nagumo equation, Phys. Lett. A, 164(1992)49.
    [63] S. Y. Lou, Symmetries of the Kadomtsev-Petviashvili equation, J. Phys. A: Math. Gen.26(1993)4387-4394.
    [64] S. Y. Lou, Symmetries and algebras of the integrable dispersive long wave equations in (2+1)-dimensional spaces, J. Phys. A: Math. Gen.27(1994)3235-3243.
    
    
    [65] S. Y. Lou and X. M. Qian, Generalized symmetries and algebras of the twodimensional differential-difference Toda equation, J. Phys. A: Math. Gen. 27(1994)L641-L644.
    [66] 范恩贵,大连理工大学博士论文,1998。
    [67] 范恩贵,齐次平衡法,Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间关系,物理学报,49(2000)1409.
    [68] S. Y. Lou et al., Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, J. Math. Phys., 41(2000)8286.
    [69] R. Hirota, Exact solutions of the Korteweg-de-Vries equation for multiple co;;isions of solitons, Phys. Rev. Lett., 27(1971)1192.
    [70] R. Hirota, A variety of nonlinear network equations generated from the Bcklund transformation for the Toda lattice, Prog. Theor. Phys. Suppl., 59(1976)64.
    [71] Y. Matsuno, Bilinear Transformation method, New York: Academic, 1984.
    [72] X. B. Hu, Rational solutions of integrable equations via nonlinear superposition formula, J. Phys. A, 30(1997)8225.
    [73] X. B. Hu and Z. N. Zhu, A Bcklund transformation and nonlinear superposition formula for the Belov-Chaltikian lattice, J. Phys. A, 31(1998)4755.
    [74] X. B. Hu and Z. N. Zhu, Some new results on the Blaszak-Marciniak lattice: Bcklund transformation and nonlinear superposition formula, J. Math. Phys., 39(1998)4766.
    [75] X. B. Hu and Y. T. Wu, A new integrable differential-difference system and its explicit solutions, J. Phys. A, 32(1999)1515.
    [76] X. B. Hu et al., Lax pairs and Bcklund transformation for a coupled Ramani equation and its related system, Appl. Math. Lett., 13(2000)45.
    [77] 李翊神,汪克林,郭光灿,汪秉宏,非线性科学选讲,中国科技大学出版社,1994.
    [78] 谷超豪,非线性科学,湖南科学技术出版社,2001.
    [79] 张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,18(1978)23.47.
    [80] 张鸿庆,线性算子方程组一般解的代数构造,大连理工大学学报,19(1979)1-16.
    [81] 张鸿庆,弹性力学方程组一般解的代数理论,力学与实践 1980.2
    [82] 张鸿庆,电动力学基本方程多余阶次与恰当解,大连工学院学报 1981.1
    
    
    [83]张鸿庆,Maxwell方程的多余阶次与恰当解,应用数学和力学 1981.3
    [84]张鸿庆,线性算子方程组一般解的代数结构,力学学报特刊 1981.
    [85]张鸿庆,胡海昌解的完备性与逼近性,科学通报 1985.5
    [86]张鸿庆,对线性算子方程组一般解代数构造的补充说明,力学学报 1986.5
    [87]张鸿庆,弹性力学方程组的一般解及其应用,第二届全国近代数学与力学论文集 1987.
    [88]张鸿庆,变系数弹性力学方程组一般解,现代数学和力学,科学出版社 1989.
    [89]张鸿庆, Construction of the General Solution for a system of partial differential equations with variable Coefficients, Appl math and Mech 1991.2。
    [90]张鸿庆,偏微分方程组基本解的计算微分代数几何方法,第三次全国有限元会议论文集 1992.
    [91]张鸿庆,偏微分方程组的一般解与完备性,现代数学与力学 Ⅳ 1991。
    [92]张鸿庆, Mechanical Method of Algebraic Structure of the General Solution to the system of Linear Operator Equations, Proceedings of the 1992 International workshop on Mathematics Mechanics, 1992.
    [93]张鸿庆, Mechanical Method to construct the General Solution of a system of partial differential Equations, Proceedings of the 1992 International workshop on Mathematics Mechanization, 1992。
    [94]张鸿庆,构造偏微分方程组基本解的计算微分代数几何方法,第三次全国有限元论文集 1992.
    [95]张鸿庆,一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报 1992.6。
    [96]张鸿庆,构造一类板壳问题一般解的机械化方法,现代数学和力学 Ⅴ 1993。
    [97]Wang Mingliang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199(1995)169-172.
    [98]Mingliang Wang, Yubin Zhou and Zhibin Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216(1996)67-75.
    [99]Wang Mingliang and Wang Yueming, A new B?cklund transformation and multi-soliton solutions to the KdV equation with general variable coefficients, Phys. Lett. A, 287(2001)211-216.
    [100]Wang Mingliang, Wang Yueming and Zhou Yubin, An auto-Backlund transformation and exact solutions to a generalized KdV equation with variable
    
    coefficients and their applications Phys. Lett. A, 303(2002)45-51.
    [101] Engui Fan and Hongqing Zhang, A note on the homogeneous balance method, Phys. Lett. A, 246(1998)403-406.
    [102] Engui Fan and Hongqing Zhang, New exact solutions to a system of coupled KdV equations, Phys. Lett. A, 245(1998)389-392.
    [103] Fan Engui, Two new applications of the homogeneous balance method, Phys. Lett. A, 265(2000)353-357.
    [104] Fan Engui, Auto-Bcklund transformation and similarity reductions for general variable coefficient KdV equations Phys. Lett. A, 294(2002)26-30.
    [105] Fan Engui, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277(2000)212-218.
    [106] 张鸿庆,现代数学和力学Ⅶ(MMM-Ⅶ) 1997:20。
    [107] Yah Zhenya, Singularity Structure Analysis and Abundant New Dromion-like Structures for the (2+1)-Dimensional Generalized Burgers Equation, Chinese Journal of Physics, 40(2002)203-213.
    [108] Boiti M, Leon J and Pempinelli F, Spectral transform for a two spatial dimension extension of the dispersive long wave equation, Inverse Problems, 3(1987)371-387.
    [109] LI De-Sheng and ZHANG Hong-Qing, Some New Exact Solutions to the Dispersive Long-Wave Equation in (2+1)-Dimensional Spaces, Commun. Theor. Phys., 40(2003) 143-146.
    [110] 田畴,田涌波,扩展的Boussinesq系统Lax队的Bcklund变换和递推求解公式的导出,数学年刊,24(2003)349-354.
    [111] 楼森岳,阮航宇,变系数KdV方程和变系数MKdV方程的无穷多守恒律,物理学报,41(1992)182-187.
    [112] 李德生,张鸿庆,改进的tanh-函数方法和广义变系数KdV和MKdV方程新的精确解,物理学报,52(2003)1569-1573,
    [113] 范恩贵.张鸿庆.林钢,非线性耦合标量场方程的精确解,物理学报,47(1998)1064-1070.
    [114] 李德生,张鸿庆,非线性耦合标量场方程的新双周期解(Ⅰ),物理学报,52(2003)2373-2378.
    [115] 张金良,王跃明,王明亮,变系数(2+1)-维Broer-Kaup方程的精确解,原子于分子物理学报,20(2003)92-94。
    [116] Lou S. Y anti Hu X. B., Infinitely many Lax pairs and symmetry constraints
    
    of the KP equation, J. Math. Phys. 38 (1997)6401-6427.
    [117] De-Sheng Li and Hong-Qing Zhang, Some new types of multisoliton solutions for the (2+1)-dimensional higher-order Broer-Kaup system, Applied Mathematics and Computation, 152(2004)847-853.
    [118] Li De-Sheng, Gao Feng and Zhang Hong-Qing, Solving the (2+1)-dimensional higher order Broer-Kaup system via a transformation and tanhfunction method, Chaos, Solitons and Fractals, 20(2004)1021-1025.
    [119] H. Q. Zhang, Proceedings of the Fifth Asia Symposium Computer Mathematics, World Scientific, Singapore, 2001, pp210.
    [120] 张鸿庆,冯红,非齐次线性算子方程组一般解的代数构造,大连理工大学学报,34(1994)249-255.
    [121] P. A. Clarkson and E. L. Mansfield, Algorithms for the nonclassical method of symmetry reductions, SIAM J. Appl. Math., 54(1994)1693-1719.
    [122] 闫振亚,大连理工大学博士论文,2002。
    [123] 张解放,长水波近似方程的多孤子解,物理学报,47(1998)1416-1420.
    [124] 张解放,变更Boussinesq方程和Kupershmidt方程的多孤子解,应用数学和力学,21(2000)171-175.
    [125] 张解放,刘宇陆,高阶(2+1)维Broer-Kaup方程的局域相干结构,应用数学和力学,23(2003)489-496.
    [126] Yi-Tian Gao and Bo Tian, New Family of Overturning Solton Solutions for a Typical Breaking Soliton Equation, Computers Math. Applic. 30(1995)97- 100.
    [127] Bo Tian and Yi-Tian Gao, New families of exact solutions to the integrable dispersive long wave equations in (2+1)-dimensional spaces, J. Phys. A: Math. Gen. 29(1996)2895-2903.
    [128] 闫振亚,张鸿庆,两个非线性发展方程组精确解析解的研究,应用数学和力学,22(2001)825-833.
    [129] Zhen-ya Yan and Hong-qing Zhang, Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup(BK) equations in (2+1)-dimensional spaces, J. Phys. A: Math. Gen. 34(2001)1785-1792.
    [130] Zhen-ya Yah, New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation, Phys. Lett. A, 318(2003)78-83.
    [131] Yan Zhen-Ya and Zhang Hong-Qing, Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic
    
    computation, Computers and Mathematics with Applications, 44(2002)1439-1444.
    [132] M. Senthilvelan, On the extended applications of Homogenous Balance Method, Applied Mathematics and Computation , 123(2001)381-388.
    [133] De-Sheng Li and Hong-Qing Zhang, Symbolic computation and various exact solutions of potential Kadomstev-Petviashvili equation, Applied Mathematics and Computation, 145(2003)351-359.
    [134] 那仁满都拉,色散长波方程和变形色散水波方程特殊形状的多孤子解,物理学报,51(2002)1671-1674.
    [135] 那仁满都拉,王克协,(2+1)维耗散长波方程与(2+1)维Broer-Kaup方程新的类多孤子解,物理学报,52(2003)1565-1568.
    [136] 闫振亚,张鸿庆,(2+1)-维非线性色散长波方程的相似约化和解析解,数学物理学报,21(2001)384-380.
    [137] Hereman. W., Zhuang. W., Symbolic software for soliton theory, Acta Appl. Math. 39(1995)361-378.
    [138] Hereman. W., Takaoka. M., Solitary wave solutions of nonlinear evolution and wave equations using Macsyma, J. Phys. A: Math. Gen.23(1990)4805-4822.
    [139] Huibin L and Kelin W, Exact solutions for two nonlinear evolution equations, J. Phys. A: Math. Gen.23 (1990) 3923-3928.
    [140] Huang G, Lou S and Dai X, Sing. J. Phys., 8(1991)1.
    [141] Malfliet W. Solitary wave solutions of nonlinear wave equations, Am. J. Phys. 60(1992)650-654.
    [142] Malfliet W. and Hereman W. The Tanh method; Ⅰ; Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54(1996)563-568.
    [143] Parkes E. J and Duffy B. R., An automated tanh-function method for finding solitary wave solutions to non-linear evoluton equations, Comp. Phys. Comm., 98(1996)288-300.
    [144] Parkes E. J, Zhu Z., Duffy B. R. and Huang H. C., Seth-polynomial travelling solitary-wave solutions of odd-order generalized KdV equatons, Phys. Lett. A, 248(1998)219-224.
    [145] Li Zhi-bin and Liu Yin-ping, RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations, Computer Physics Communications, 148(2002)256-266.
    
    
    [146] Liu Yin-ping and Li Zhi-bin, A Maple package for finding exact solitary wave solutions of coupled nonlinear evolution equations, Computer Physics Communications, 155(2003)65-76.
    [147] Fan Engui and Chao Lu, Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation, Phys. Lett. A, 285(2001)373-376.
    [148] Fan Engui Zhang Jian and Hon Benny Y.C., A new complex line soliton for the two-dimensional KdVBurgers equation, Phys. Lett. A, 291(2001)376-380.
    [149] Fan Engui Using symbolic computation to exactly solve a new coupled MKdV system, Phys. Lett. A, 299(2002)46-48.
    [150] Fan Engui and Hon Y.C., Applications of extended tanh method to 'special' types of nonlinear equations, Applied Mathematics and Computation, 141(2003)351-358.
    [151] Fan Engui, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos, Solitons and Fractals, 16(2003)819-839.
    [152] Fan Engui and Dai H.H., A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations, Computer Physics Communications, 153(2003) 17-30.
    [153] Zhang Weiguo, Chang Qianshun and Fan Engui, Methods of judging shape of solitary wave and solution formulae for some evolution equations with nonlinear terms of high order, Journal of Mathematical Analysis and Applications, 287(2003)1-18.
    [154] Yan Zhenya, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A, 292(2001)100-106.
    [155] B. Tian and Y. T. GaG, On the generalized tanh method for the (2+1)-dimensional breaking soliton equation, Mod. Phys. Lett. A, 10(1995)2937.
    [156] B. Tian and Y. T. GaG, Beyond travelling waves: A new algorithm for solving nonlinear evolution equations, Computer Physics Communications, 95(1996) 139-142.
    [157] Y. T. GaG and B. Tian, Generalized Tanh Method with Symbolic Computation and Generalized Shallow Water Wave Equation, Computer Math. Applic., 33(1997)115-118.
    [158] Li De-sheng and Zhang Hong-qing, New soliton-like solutions to the po-
    
    tential Kadomstev-Petviashvili (PKP) equation, Applied Mathematics and Computation, 146(2003)381-384.
    [159] Li De-Sheng and Zhang Hong-Qing. A new extended tanh-function method and its application to the dispersive long wave equations in (2+1) dimensions, Applied Mathematics and Computation, 147(2004)789-797.
    [160] Li De-Sheng and Zhang Hong-qing, A further extended tanh-function method and new soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1) dimensional spaces, Applied Mathematics and Computation, 147(2004),537-545.
    [161] De-Sheng Li, Zhuosheng Lu and Hong-qing Zhang, Exact solutions of the (3+1)-dimensional KP and KdV-type equation, Communications in Theoretical Physics, 39(2003)267-270.
    [162] Li De-Sheng and Zhang Hong-Qing, Some new exact solutions of the integrable Broer-Kaup equations in (2+1)-dimensional spaces, Chaos, Solitons and Fractals, 18(2003)193-196.
    [163] 李德生,张鸿庆,(2+1).维破裂孤子方程的简单解法及其新的精确解,物理学报,xxx(200x)xxx-xxx.(submitted)
    [164] 李德生,张鸿庆,非线性耦合标量场方程的新双周期解(Ⅱ),物理学报,52(2003)2379-2385.
    [165] 李德生,张鸿庆,一类(2+1)-维耦合的非线性演化方程的多个函数的组合解,物理学报,xx(200x)xxx-xxx.(submitted)
    [166] Li De-Sheng and Zhang Hong-Qing, The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system, Chin. Phys., 13(2004)7.
    [167] 李德生,张鸿庆,一类高维耦合的非线性演化方程的简单求解,物理学报,53(2004)6.
    [168] LI De-Sheng and ZHANG Hong-Qing, Some New Exact Solutions to the integrable Broer-Kaup equations in (2+1)-dimensional spaces, Commun. Theor. Phys., 41(2004)499-501.
    [169] CHEN Yong, LI Biao, and ZHONG Hong-Qing, Symbolic Computation and Construction of Soliton-Like Solutions to the (2+1)-Dimensional Breaking Soliton Equation, Commun. Theor. Phys., 40(2003)137-142.
    [170] Conte. R, Musette. M, Link between solitary waves and projective Riccati equations, J. Phys. A: Math Gen., 25(1992)5609-5623.
    [171] Zhang GX, Li ZB, Duan YS. Exact solitary solutions of nonlinear wave
    
    equations, Sci China: A, 44(2001)396-401.
    [172]张善卿,李志斌,非线性耦合Schrdinger-KdV方程组的新的精确解析解。物理学报,51(2002)2197-2201.
    [173]李志斌,姚若侠,非线性耦合微分方程组的精确解析解,物理学报,50(2001)2062-2067.
    [174]Yan YZ, Generalized method and its application in the higher-order nonlinear schrodinger equation in nonlinear optical fibres, Chaos, Solitons and Fractals, 16(2003)759-766.
    [175]Z. Fu et al., New kinds of solutions to Gardner equation, Chaos, Solitons and Fractals, 20(2004)301-309.
    [176]Li De-Sheng and Zhang Hong-Qing, New families of non-travelling wave solutions to the (2+1)-dimensional modified dispersive water-wave system, Chin. Phys., 13(2004)9.
    [177]闫振亚,张鸿庆,具有三个任意函数的变系数KdV.MKdV方程的精确类孤子解,物理学报,48(1999)1957-1961.
    [178]Miller W, Symmetry and Separation of Variables (Reading, MA:Addison-Wesley) 1977.
    [179]Kalnins E G, Miller W, Differential-StSckel matrices, J. Math. Phys,26(1985)1560-1565.
    [180]Kalnins E G, Miller W, Generalized StSckel matrices, J. Math. Phys,26(1985)2168-2173.
    [181]Dolye P W, Vassiliou P J, Separation of variables for the 1-dimensional non-linear diffusion equation, International Journal of Non-Linear Mechanics, 33(1998)315-326.
    [182]Dolye P W, Separation of variables for scalar evolution equations in one space dimension, J. Phys. A: Math. Gen.29(1996)7581-7595.
    [183]Zhdanov R Z, Separation of variables in the nonlinear wave equation, J. Phys. A: Math. Gen.27(1994)L291-L297.
    [184]Zhdanov R Z, Revenko I V and Fushchych W I, On the new approach to variable separation in the time-dependent SchrSdinger equation with two space dimensions, J. Math. Phys, 36(1995)5506-5521.
    [185]Zhdanov R Z, Separation of variables in (1+2)-dimensional SchrSdinger equations, J. Math. Phys. 38(1997)1197-1217.
    [186]Qu C Z, Zhang S L and Liu R C, Separation of variables and exact solutions
    
    to quasilinear diffusion equations with nonlinear source, Physica D: Nonlinear Phenomena, 144(2000)97-123.
    [187] Estevez P G, Qu C Z, Zhang S L and Jhang, Separation of variables of a generalized porous medium equation with nonlinear source, Journal of Mathematical Analysis and Applications, 275(2002)44-59.
    [188] Zhang S L, Lou S Y and Qu C Z, New variable separation approach: application to nonlinear diffusion equations, J. Phys. A: Math. Gen.36(2003)12223-12242.
    [189] Lou S Y and Chen L L, Formal variable separation approach for nonintegrable models, J. Math. Phys, 40(1999)6491-6500.
    [190] Y. B. Zeng, An approach to the deduction of the finite-dimensional integrablility from infinite-dimensional integrability, Phys. Lett. A, 160(1991)541-547.
    [191] Cheng Y and Li Ys, The constraint of the Kadomtsev-Petviashvili equation and its special solutions, Phys. Lett. A, 157(1991)22-6.
    [192] C. W. Cao, Nonlinearization of the Lax system for AKNS hierarchy, Sci. China. A 33(1990)528-536.
    [193] 陈黎丽,形式变量分离法及一般 Hirota-Satsuma方程新的精确解,48(1999)2149-2153.
    [194] Sen-yue Lou, On the coherent structures of the NizhnikNovikovVeselov equation, Phys. Lett. A, 277(2000)94-100.
    [195] Lou Sen-Yue, Dromions, dromion lattice, breathers and instantons of the Davey-Stewartson equation, Physica Scripta, 65(2002)7-12.
    [196] Sen-yue Loul and H-y Ruan, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation, J. Phys. A: Math. Gen. 34(2001)305-316.
    [197] Xiao-yan Tang, Chun-li Chen and Sen-yue Lou, Localized solutions with chaotic and fractal behaviours in a (2+l)-dimensional dispersive long-wave system, J. Phys. A: Math. Gen. 35(2002)L293-L301.
    [198] Sen-yue Lou, Chun-li Chen and Xiao-yan Tang, (2+1)-dimensional (M+N)-component AKNS svstem: Painlevé integrability, infinitely many symmetries, similarity reductions and exact solutions, Journal of Mathematical Physics, 43(2002)4078-4109.
    [199] Xiao-Yan Tang, What will happen when a dromion meets with a ghoston? Phys. Lett. A, 314(2003)286-291.
    
    
    [200] Huang Wen-Hua. Zhang die-Fang and Sheng Zheng-Mao, Coherent soliton structures of the (2+1)-dimensional long-wave-shore-wave resonance interaction equation, Chinese Phys. 11(2002) 1101-1105.
    [201] Sen-Yue Lou, (2+1)-dimensional compacton solutions with and without completely elastic interaction properties, J. Phys. A: Math. Gen. 35(2002) 10619-10628.
    [202] S.-Y. Lou, X.-Y. Tang, X.-M. Qian, C.-L. Chen, J. Lin, S.-L. Zhang, New Localized Excitations in (2+1)-Dimensional Integrable Systems, Modern Physics Letters B, 16(2002)1075-1082.
    [203] S Y Lou, Localized excitations of the (2+1)-dimensional sine-Gordon system, J. Phys. A: Math. Gen. 36(2003)3877-3892.
    [204] 李德生,张鸿庆,关于分离变量法的一个注记,物理学报。53(2004)6.
    [205] LI De-Sheng, Chengxin Luo and ZHANG Hong-Qing, Solving the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces via an improved variable separation approach, Communications in Theoretical Physics, 41(2004)xxx-xxx.(待发表)
    [206] De-Sheng Li, Chengxin Luo and Hong-Qing Zhang, Variable separation solutions to the integrable higher order Broer-Kaup (HBK) system in (2+1)-dimensional spaces, Chaos, Solitons and Fractals, 22(2004)353-358.
    [207] LI De-Sheng, Yu Zhensheng and ZHANG Hong-Qing, New soliton-like solutions to the variable coefficients MKdV equation, Communications in Theoretical Physics, 42(2004)xxx-xxx.(等发表)
    [208] Ji Lin and Hua-mei Li, Painlevé Integrability and Abundant Localized Structures of (2+1)-dimensional Higher Order Broer-Kaup System, Z. Naturforsch. 57a(2002)929-936.
    [209] Ji Lin, Xian-rnin Qian, The interactions of localized coherent structures for a (2+1)-dimensional system, Phys. Lett. A, 313(2003)93-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700