孤立子与微分几何中某些问题的机械化方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吴方法(吴代数消元法和吴微分消元法)为工具,研究了孤立子理论的某些问题、可积系统和微分几何中的部分定理。给出了求非线性演化方程精确解(孤子解、周期解、双周期解、有理函数解)的机械化方法;把吴微分特征列法和Reid的理论相结合应用于线性偏微分方程,计算解的规模;把吴微分特征列法应用于微分几何,给出部分定理的机械化证明。
     第一章主要介绍了本文所涉及的概念,孤立子理论研究的起源和发展情况,孤立子与微分几何的关系以及国内、外学者在这些方面的工作和已经取得的成果。
     第二章介绍了求解非线性偏微分方程的AC=BD模式及其应用。首先给出了C-D对和C-D可积系统的基本理论以及构造C-D对的方法。如何寻找变换是这一部分的重点内容。然后把AC=BD模式应用于微分几何,给出了微分几何中的C-D对和广义C-D可积系统。
     第三章研究了齐次平衡法的改进和应用。把它应用于Boussinesq方程并和吴方法相结合,获得了许多新的孤子解和双周期解。把它应用于变系数KdV方程、DLW方程、SK方程、KK方程、KP方程,不仅得到了Bcklund变换,而且得到了更多的精确解。
     第四章讨论了求非线性演化方程孤波解的若干方法:包括新的extended-tanh函数方法、扩展Riccati方程方法、射影Riccati方程方法、一般形式的Riccati方程方法,并给出了一般形式的Riccati方程多种形式的解。利用这些方法探讨了一类非线性演化方程,包括Burgers方程、广义Burgers-Fisher方程、Kuramoto-Sivashinsky方程的精确解(包括奇性孤波解,周期解和有理函数解)。进一步研究了高维变系数Burgers方程的类孤子解。在解决问题的过程中吴方法是最重要的基本工具。
     第五章研究了非线性偏微分方程的雅可比椭圆函数解(双周期解)的机械化算法。首先提出了改进的Jacobi椭圆函数展开法,它是一种比sine-cosine方法和sn-cn函数法以及双曲函数法更有效更简单的方法。把它应用于组合KdV和mKdV方程,获得了许多雅可比椭圆函数解和其它精确解。然后,我们又提出了第一种和第二种椭圆方程法。特别给出了这两种椭圆方程更多形式的雅可比椭圆函数解,利用这些解,我们获得了一类非线性演化方程,包括耦合KdV方程、耦合mKdV方程的双周期解。在退化情况下,又得到其孤子解。最后,把它应用于高维变系数KP方程,获得了更多的双周期解。
     第六章介绍了吴微分特征列法的基本理论及其应用。把它与Reid方法结合,应用于线性偏微分方程,得到了解的规模;把它应用于微分几何,得到微分几何中部分定理的机械化证明。
In this dissertation, we discuss some problems of soliton theory, the integrable systems and some theorems of differential geometry with the aid of Wu method (including Wu algebraic elimination method and Wu differential elimination theory). Some mechanical methods are presented to obtain exact solutions(including soliton solutions, periodic solutions, doubly-periodic solutions and rational solutions) of nonlinear evolution equations. Wu-Ritt differential characteristic set theory together with Reid method is applied to linear partial differential equations which possess physical significance to obtain the size of solutions. It is also applied to differential geometry to prove some theorems mechanically.
    In Charter 1, we introduce some related definitions, the origin and development of soliton theory and the relations between soliton theory and differential geometry. The main works and achievements which have been obtained are presented.
    Charter 2 is devoted to AC=BD model and its applications in partial differential equations and differential geometry. First, we give basic notations, basic theory of C-D pair and C-D integrable systems with the algorithm to construct C-D pair. How to seek transformation u = Cv is an important aspect in Charter 2. Then, AC=BD model is applied to differential geometry. C-D pair and general C-D integrable system are defined.
    In Chapter 3, we study the applications of the improved homogenous balance method. We apply the method together with Wu algebraic elimination method to Boussinesq equation, and many new soliton and doubly-periodic solutions are obtained. Applying the method to SK, KK, KP, DLW equations and KdV equation with variable coefficients, we obtain not only their Backlund transformations but also new exact solutions.
    Chapter 4 deals with some mechanical methods to obtain soliton solutions of nonlinear evolution equations including new extended-tanh function method, extended Ric-cati equation method, project Riccati equation method and generalized Riccati equation method. The multiple soliton solutions of the generalized Riccati equation are obtained. With these solutions, we obtain more exact solutions(including solitary wave solutions, periodic wave solutions and rational solutions) of a kind of nonlinear evolution equations, such as Burgers equation, general Burgers-Fisher equation and Kuramoto-Sivashinsky equation. More soliton-like solutions of the Burgers equation with variable coefficients are obtained by use of our method. Wu method is the most important basic tool during the course of solving these equations.
    In Chapter 5, we present the mechanical methods to obtain doubly-periodic solutions
    
    
    
    of nonlinear partial differential equations. First, we give the improved Jacobi elliptic function expansion method. It is more effective than the sine-cosine method, the sn-cn method and tanh-method. We apply the method to the combined KdV and mKdV equations to obtain Jacobi elliptic function solutions and other exact solutions. Then, we also present the first kind and the second kind of elliptic equation method, with which more Jacobi elliptic function solutions of these two kinds of equations are obtained. With these solutions, we obtain more doubly-periodic solutions of a class of nonlinear evolution equations, such as the coupled KdV and mKdV equations. These solutions are degenerated to soliton solutions under degenerated conditions. Finally, our method is applied to higher dimensional KP equation with variable coefficients to obtain more doubly-periodic solutions.
    In the last chapter, we study basic theory of Wu-Ritt method and its applications. We apply Wu-Ritt method and Reid theory to linear partial differential equations to obtain the size of solutions. We also apply Wu-Ritt differential characteristic set to differential geometry to prove some theorems mechanically.
引文
[1]Ritt,J.F.,Differential Algebra, Colloq.Publ.,Vol.33,Amer.Math.Soc., Providence,R.I.,1950.
    [2]J. Scott Russell, Report on waves, Fourteen meeting of the British Association for the advancement of science,John Murray, London, 1844, 311-390.
    [3]D.J.Kortewrg and G.deVries, Phil.Mag., On the change of form long waves advancing in a rectangular canal, and on a new type of long stationary waves, 39(1895)422.
    [4]A.Fermi, J.pasta and Ulam, Studies of Nonlinear Problems, I.Los Alarnous Rep.LA,1940,1955.
    [5]J.K.Perring and T.H.R. Skyrme, A Model Uniform Field Equation, Nuci. Phys.,31(1962)550.
    [6]N.J.Zabusky and M.D.Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15(1965)240.
    [7]M.J.Ablowitz and H.Segur, Solitons and the inverse scatting transformation, SIAM: Philadelphia, 1981.
    [8]M.J.Ablowitz and P.A.Clarkson, Solitons, nonlinear evolution equations and inverse scatting: Cambridge University Press, 1991.
    [9]A.C.Newell, Solitons in mathematics and physics, SIAM: Philadelphia, 1985.
    [10]V.B.Matveev and M.A.Salle, Darboux transformation and Solitons, Berlin: Springer, 1991.
    [11]谷超豪等,孤立子理论与应用,杭州浙江科技出版社,1990.
    [12]谷超豪等,孤立子理论中的Darboux变换及其几何应用,上海:上海科技出版社,1999.
    [13]李翊神,孤立子与可积系统,上海:上海科技出版社, 1999.
    [14]A.V.Bcklund, Concerning surfaces with constant negative curvature, Lunds Universitets Arsskrift 19(1983),Tranlated by E.M.Coddington of New York.
    [15]L.P.Eisenhart,A Treatise on the Differential Geometry of curves and surfaces,1909.
    [16]M.J.Ablowtz,D.J.Kaup,A.C. Newell and H.Segur,Nonlinear evolution equations of Physical significance,Phys.Rev.Lett.31(1973),125-127.
    [17]屠规彰,孤立子数学理论的若干方面,中国数学会第四次代表大会报告(武汉),1983.
    [18]K.Tenenblat and C.L.Terng(滕楚莲),Ann.math,111(1980),477-490.
    [19]C.L.Terng,A higher dimension generalization of the sine-Gordon equations and its soliton theory, Ann.math.111(1980),491-510.
    [20]Fan Engui, The zero curvature representation for hietatchies of nonlinear evolution equations, Phys.Lett. A 274(2000), 135-142.
    [21]A.Sym,Soliton Surface Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Letters AI Nuovo Cimento,33(1982),394-400, 36(1983),307-312,39(1984),193-196,40(1984),225-231,41 (1984),33-40,41 (1984),353-360.
    [22]A. Sym, M. Bruschi, D. Levi and O. Ragnisco, Soliton surface Ⅶ, Letters AI Nuovo Cimento, 44(1985), 529-536.
    [23]A.V.Bcklund, Universitets Arsskrift 10, 1985.
    [24]H.D.Wahlquist and F.B.Estabrook, Backlund transformation for solitons of the Kortoweg-de Vriu equation, Phys.Rev.Lett., 31(1973)1386.
    [25]J.Weiss, The Painleve property for partial differential equations Ⅱ. Backlund transformation, Lax
    
    pairs and the Schwarzian derivative, J.Math.Phys.,24(1983)1405; The sine-Gordon equations: complete and partisl integrability, 25(1984)13: Modified equations, rational solutions and the Painleve property for for a KP and Hirota-Satsuma equations, 26(1985)258; 2174.
    [26]G.Darboux,Compts Rendus Hebdomadaires des del' Academie des Sciences, Pairs, 94(1882)1456.
    [27]M.Wadati et al., Simple derivation of Backlund transformation from Ricaati form of inverse method, Prog. Theor.Phys.,53(1975)418.
    [28]C.H.Gu, A unified exolicit form of Bacldund transformation for generalized hierarchies of KdV equations, Lett. Math. Phys., 11(1986)31; 325.
    [29]C.H.Gu and Z.X.Zhou, On the Darboux matrices of Bacldund transformations for AKNS systems, Lett. Math. Phys.,13(1987)179; 32(1994)1.
    [30]V.B.Matveev and E.K.Sklyanin, On Backlund teansformations for many-body systems, J.Phys.A, 31(1998)2241.
    [31]E.K.Sklyanin, Canonicity of Backlund transformation: r-matrix approach. I.L.D. Faddeev's Seminar on Mathematical Physics, Amer.Math.Soc. Transt.Ser., 2(2000)201.
    [32]A.N.W.Hone,et al., Backlund transformations for many-body related to KdV, J.Phys.A,32(1999)L299; Bacldund transformations for the sl(2) Gandin magnet, 34(2001)2477.
    [33]S.Lie, Arch of Math.,6(1881)328; Math.Ann.,32(1908)213.
    [34]H. Bateman, Proc.London Math.Soc., 8(1909)223.
    [35]E.Cunningham, Proc.London Math.Soc., 8(1909)77.
    [36]E.Nother et al.,Invariant variations problem, Math.Phys. kl, 1918, 235.
    [37]G.W.Bluman and J.D.Cole, The general similarity solution of the heat equation, J.Math. Mech.,18(1969).
    [38]D.Levi and P.Winternitz, Group theoretical analysis of a rotating shallow liquid in a rigid container, J.Phys.A, 22(1989)4743-4767.
    [39]E.M.Vorob'er, Acta Appl.Math.,A, 24(1991)1.
    [40]P.A.Clarkson and M.D.Kruskal, New similarity reductions of the Boussinesq equation, J.Math.Phys., 30(1989)2201.
    [41]P.J.Olver, J.Math.Phys., 18(1977)1212.
    [42]P.J.Olver, Math.Proc.Camb.Phill Soc., 88(1980)71.
    [43]B.Fuchsseiner and A.S.Fokas, Physica D,4(1981)47.
    [44]H.H.Chen,et.al.,In Advance innonlinear wave, ed L.Debnath, 1982,233.
    [45]李翊神,朱国城,一个谱可变演化方程的对称,科学通报,19(1986)1449;可积方程新的对称,李代数及可变演化方程,中国科学,30A(1987)235;“C可积”非线性方程的代数性质(Ⅰ)Burgers方程和Calogero方程,中国科学.32A(1989)1133.
    [46]田畴,Burgers方程的新的强对称,对称和李代数,中国科学,30A(1987)1009.
    [47]P.A.Clarkson, J.Phys.A, New similarity reductions and palnlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations, 22(1989)3821-3848.
    [48]S.Y.Lou, A note on the new similarity rduction of the Boussinesq equation, Phys.Lett.A 151(1990) 133.
    
    
    [49]H.S.European, J.Appl.Math., 1(1990)219; Nonlinearity, 5(1992)453; Nonclassical Chaos, Solitons and Fractals, 5(1995)2261.
    [50]P.A.Clarkson and H.S.European, J.Appl.Math.,3(1992)381; Clarkson, Peter A.; Hood, Simon Symmetry reductions of a generalized, cylindrical nonlinear Schrodinger equation. J. Phys. A 26 (1993), no. 1, 133-150.
    [51]M.C.Nucci and P.A.Clarkson, The nonclassical method is more general than the direct method for symmetry reductions,an example of the FitzHugh-Nagnmo equation, Phys.Lett. A, 164(1992)49.
    [52]P.J.Olver, Proc.R. Soc. Lond.A, 444(1992)2631.
    [53]P.A.Clarkson,New simlarity solutions for the modified Boussinesq equation, J.Phys.A, 22(1989)2355-2367.
    [54]S.Y.Lou, Nonclassical analysis and Painleve property for the Kupershmidt equations,J.Phys.A, 26(1993)4387; 27(1994)L641; Phys. Rev. Lett.,71(1993)4099.
    [55]范恩贵,大连理工大学博士论文,1998.
    [56]范恩贵,齐次平衡法,Weiss-Tabor-Carnevale法及Clarkson-Kruskal约化法之间的关系,物理学报,49(2000)1049.
    [57]S.Y.Lou et al., Similarity and conditional similarity reductions of a (2+1) dimensional KdV equation via direct method, J.Math.Phys., 41(2000)8286;
    [58]S.Y.Lou et al., Conditional Similarity Reduction Approach: Jimbo-Miwa equation, Chin. Phys.,10(2001)89?.
    [59]X.Y.Tang et al., Confitional similarity solutions of Boussinesq equation, Commun.Theor. Phys., 35(2001)399.
    [60]梅凤翔,李群和李代数在约束系统中的应用,北京:科学出版社,1999.
    [61]C.S.Gardner et al., Method for solving the KdV equation, Phys.Rev. Lett., 19(1967)1095-1097.
    [62]P.D.Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun.Pure Appl. Math., 21(1968)467.
    [63]M.Wadati, The modified Korteweg -de Vries equation, J. Phys. Soc.Jp., 32(1972)1681.
    [64]M.J.Ablowitz et al., Method for solving the sinf-Gordon equation, Phys.Rev. Lett.,30(173)1262; Nonliear evloution equations of physical significance, 31(1973)125.
    [65]H.D.Wahlquist and F.B.Estabrook, Prolongation structure of nonlinear evolution equation, J.Math.Phys., 16(1975)1.; Prolongation structures of nonlinear evlution equations Ⅱ,1976,17: 1293.
    [66]K.Wu, H.Y.Guo and S.K.Wang, Prolongation sructures of nonlinear systems in higher dimensions, Commun. Theor.Phys., 2(1983)1425.
    [67]H.Y.Guo, K.Wu and S.K.Wang, Inverse scattering transform and regular Riemann-Hilbert problem, Commun, Theor.Phys., 2(1983)1169.
    [68]H.Y.Guo, K.Wu and S.K.Wang, Prolongation structure ,Backlund transformationand principal homogeneous Hilbert problem in relativity, Commun. Theor.Phys., 2(1983)883.
    [69]H.Y.Guo et al., On the prolongation structure of Ernst equation, Commun. Theor.Phys., 1(1982)661.
    [70]K.M.Case and M.Kac., J.Math.Phys., 14(1972)594.
    [71]H.Flaschka, On the Toda lattice. Ⅱ. Inverse-scattering solution, Prog. Theor.Phys., 51(1974)703
    
    
    [72]M. J. Ablowitz and J. F. Ladik, Nonlinear differential-difference equations, J. Math. Phys., 16(1975)598.
    [73]R.M.Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J.Math.Phys., 9(1968)1202.
    [74]M.J.Ablowitz et al., J.Math.Phys., 20(1971)991.
    [75]R.Hirota, Phys.Rev. Lett.,27(1971)1192; A variety of nonlinear network equations generated from the B?cklund transformation for the Toda lattice,Prog.Theor.Phys.,Suppl., 59(1976)64.
    [76]Y.Matsuno, Bilinear Transformation method, New York: Academic, 1984.
    [77]X.B.Hu, Rational solutions of integrable equations via nonlinear superposition fromulae, J.Phys. A.,30(1997)8225.
    [78]X.B.Hu and Z.N.Zu, A Baclund transformation and nonlinear superposition formula for the Belov-Chaltikian lattice, J.Phys. A.,31(1998)4775; Some new results on the Blaszak-Marciniak lattice: Backlund transformation and nonlinear superpsition formula, J.Math.Phys., 39(1998)4766.
    [79]X.B.Hu and H.W.Tam, New interable differential difference systems: Lae pairs, bilinear forms and soliton solutions, Rep. Math.Phys., 46(2000)99 ; Inver. Probl.,17(2001)319.
    [80]X.B.Hu et al., Lax pairs and Baclund transformations for a coupled Ramani equation and its related system, Appl. Math.Lett.,13(2000)45.
    [81]张鸿庆,弹性力学方程组一般解的统一理论,大连理工大学学报,18(1978)23;线性算子方程组一般解的代数结构,力学学报,特刊,1981,152.
    [82]张鸿庆,王震宇,胡海昌解的完备性与逼近性,科学通报,30(1985)342-344.
    [83]张鸿庆,吴方向,一类偏微分方程组的一般解及其在壳体理论中的应用,力学学报,24(1992)700.构造板壳问题基本解的一般方法,科学通报,13(1993)671.
    [84]张鸿庆,冯红,构造弹性力学位移函数的机械化算法,应用数学和力学,16(1995)335.
    [85]张鸿庆,力学的代数化、机械化、辛化与几何化,现代数学和力学Ⅶ(MMM-Ⅶ)1997,20.
    [86]H.Q.Zhang and Y.F.Chen,Proceedings of the 3th ACM, Lanzhou University Press,(1998)147.
    [87]陈玉福,大连理工大学博士论文,1999.
    [88]H.Q.Zhang, Proceedings of the 5th ACM, World Scientific Press, (2001)254.
    [89]M.Boiti et al.,On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions, Inver. Probl.,2(1986)271; On a spectral transform of a KdV-like equation related to the Schr?dinger operator in the plane. Inverse Problems 3 (1987), no. 1,25.
    [90]R.Radha and M.Lakshmanna, J.Math.Phys., 35(1994)4746.
    [91]S.Y.Lou, Generalized dromion solutions of the (2 + 1)-dimensional KdV equation, J.Phys. A., 28(1995)7227.
    [92]J.F.Zhang, Chin. Phys.,9(2000)1.
    [93]S.Y.Lou and H.Y.Ruan, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation, J.Phys. A., 34(2001)305.
    [94]P.Rosenau and M.Hyman, Phys.Rev. Lett. 70(1993)564.
    [95]P.J.Olver and P.Rosenan,Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact suport, Phys.Rev.E, 53(1996),1900-1906.
    
    
    [96]S.Dusuel et al.,From kinks to compactonlike kinks, Phys.Rev.E, 57(1998)2320-2326.
    [97]M.S.Ismail and T.A.Taha, Math.Computer Simulation,47(1998)519.
    [98]A.M.Warwaz, Exact special solutions with solitary patterns for the nonlinear dispersive K(m,n) equations, Chaos,Solitons and Fractals, 13(2002)161;321
    [99]S.Y.Lou and Q.X.Wang, Painleve integrability of two sets of nonlinear evolution equations with nonlinear dispersions, Phys. Lett.A 262(1999)344.
    [100]M.L.Wang,Solitary wave solutions for variant Boussinesq equations,Phys. Lett.A 199(1995)169; 213(1996)279.
    [101]M.L.Wang, Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett.A 216(1996)67;
    [102]Z.B.Li, Exact solutions for two nonlinear equations, Adv. in Math., 26(1997)129.
    [103]Y.T.Gao and B.Tian, New families of exact solutions to the integrable dispersive long wave equations in (2+1) dimensional spaces, J.Phys. A., 29(1996)2895; New families of overturning soliton solutions for a typical breaking soliton equation,Computer Math. Appl.,30(1995)97; 33(1997)115.
    [104]E.G.Fan and H.Q.Zhang, A note on the homogeneous balance method, Phys. Lett.A, 246(1998)403.
    [105]W.Malfliet, Am.J.Phys., 57(1992)650.
    [106]E.G.Fan, Soliton solutions for a generalized HirotaSatsuma coupled KdV equation and a coupled MKdV equation, Phys.Lett.A, 282(2001)18; Soliton solutions for the new complex version of a Coupled KdV equation and a coupled MKdV equation, 285(2001)373.
    [107]C.T.Yan, A simple transformation for nonlinear waves, Phys. Lett. A., 224(1996)77.
    [108]闫振亚,大连理工大学博士论文.2002.5.
    [109]P.D.Lax, Commun.Pure Appl. Math., 28(1975)467.
    [110]V.A.Marchenko, Dokl.Akad. Nauk, SSSR, 217(1974)276.
    [111]M.Kac and P.Van Moerbeke,Proc.Natl.Acad.Sci. USA,72(1975) 1672.
    [112]P.D.Miller et al., Finite genus solutions to the Ablowitz-Ladik equations, Commun. Pure Appl.Math. ,48(1995) 1369.
    [113]E.Date, Prog.Theor.Phys., 59(1978)265.
    [114]C.W.Cao et al., Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system, J.Math.Phys., 40(1999)3948; Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, 43(2002)621.
    [115]X.G.Geng and H.H.Dai, J.Math.Phys., Algebro-geometric solutions of (2+1)-dimensional coupled modified Kadomtsev-Petviashvili equations, 41(2000)337; X.G.Geng and C.W.Cao, Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions, Nonlinearity 14(2001)1433.
    [116]J.Weiss,et al., The Painlevé property for partial differential equations, J.Math.Phys., 24(1983)522.
    [117]M.J.Ablowitz,et al., A connection between nonlinear evolution equations and ordinary differential equations of P-type, J.Math.Phys., 21(1980)715.
    [118]J.Weiss,et al., On classes of integrable systems and the painlevé property, J.Math.Phys., 25(1984) 13; 24(1983)1045; 26(1985)258.
    
    
    [119]M.Jimbo et al., Painleve test for the self-dual Yang-Mills equation, Phys.Lett.A 92(1982)59.
    [120]A.P.Fordy and A.Pickering,Prepint, University of Leeds,1991.
    [121]曾云波,与A_1相联系的半Toda方程的Latex对与Backlund变换,数学学报,35(1992)454;递推算子与Painleve性质,数学年刊,12A(1991)778.
    [122]屠规彰,秦孟兆,非线性演化方程的不变群与守恒率-对称函数方法,中国科学,5A(1980)421.
    [123]屠规彰,Boussinesq方程的Bcklund变换和守恒律,应用数学学报,15(1981)63.
    [124]曾云波,和高阶约束相联系的可积系统,数学学报,38(1995)642-652.
    [125]李翊神,c可积非线性方程的代数性质,中国科学,11A(1989)1133-1139.
    [126]屠规彰,秦孟兆,科学通报,29(1979)913.
    [127]V.I.Arnold,Mathematics method of classical mechnics, Berlin: Springer,1978.
    [128]C.H.Gu and H.S.Hu, Sci.sin.,29(1986)704.
    [129]曹策问,保谱方程的换位表示,科学通报,34(1989)723-724.
    [130]马文秀,扬族可积发展方程的换位表示,科学通报,35(1990)1843,38(1993)154;The algebraic structure of zero curvature representations and application to coupled KdV systems, J. Phys. A. 26 (1993)2573;An approach for constructing nonisospectral hierarchies of evolution equations, J. Phys. A25(1992), no. 12, L719-L726.
    [131]乔志军,科学通报,35(1990)1553;WKI的换位表示,数学年刊,37(1992)763;发展方程族Lax表示的广义结构,14A(1993)31;应用数学和力学,18(1997)625.
    [132]斯仁道尔吉,色散长波方程的换位表示,应用数学,9(1996)75;等谱和非等谱TD族,Lax表示与零曲率表示,高校应用数学学报,10(1995)375.
    [133]顾祝全,一类新的可积系及其MKdV方程族,科学通报,35(1990)1776.
    [134]G.Z.Tu, A simple approach to Hamiltonian structures of soliton equations.I. Nuovo Cimento B 73(1983)15; A new hierarchy of coupled degenerate Hamiltonian equations, Phys.Lett.A 94(1983)340.
    [135]M.Boiti and G.Z.Tu, A simple approach to the Hamiltonian structure of soliton equations Ⅲ, Nuovo Cimento B 75(1983)145;
    [136]M.Boiti et al., On a new hierarchy of Hamiltonian soliton equations, J Math.Phys.,24(1983)2035.
    [137]G.Z.Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J Math.Phys.,30(1989)330; J. Phys.A, 22(1989)2375;23(1990)3903;中国科学, 12A(1988) 1243.
    [138]Tu, Gui Zhang; Meng, Da Zhi The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. Ⅱ, Acta Math.Appl.Sin.,5(1989)89.
    [139]徐西祥,一族新的Lax可积第数及其Liouville可积性,数学物理学报(增刊),17(1997)56-60.
    [140]郭福奎,sine-Gordon方程、sinh-gordon方程与Getmanov方程之间的等价变换,应用数学,1(1991)112-115.
    [141]马文秀,一个新的Liouvill可积的广义Hamilton方程族及其约化,数学年刊,12A(1992)115.
    [142]Hu, Xing-Biao An approach to generate superextensions of integrable systems. J. Phys. A 30 (1997), no. 2, 619-632.
    
    
    [143]郭福奎,可积的Hamilton形式的NLS-MKdV方程族。数学学报,40(1997)801.
    [144]C.W.Cao, Henan kexue,5(1987)7; Acta Math.Sci.New Ser., Stationary Harry-Dym's equation and its relation with geodesics on ellipsoid, 6(1990)35; Nonlinearization of the Lax system for AKNS hierarchy, Sci. China A, 33(1990)528.
    [145]C.W.Cao and X.G.Geng, C. Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, J.Phys. A., 23(1990)4117; A nonconfocai generator of involutive systems and three associated soliton hierarchies, 32(1991)2323.
    [146]Y.B.Zeng and Y.S.Li, The constraints of potentials and the finite-dimensionai integrable systems. J. Math. Phys. 30 (1989), no. 8, 1679-1689. J Math.Phys., 30(1989)1679; Integrable Hamiltonian systems related to the polynomial eigenvalue problem. J. Math. Phys. 31 (1990), no. 12, 2835-2839. 31(1990)2835; An approach to the integrability of Hamiltonian systems obtained by reduction. J. Phys. A 23 (1990), no. 3, L89-L94.
    [147]Y.B.Zeng, An approach to the deduction of the finite-dimensionai integrability from the infinitedimensional integrability, Phys.Lett.A, 160(1991)541. China. Sci.Bull., 37(1992)769.
    [148]斯仁道尔吉。由伴随坐标得到的Dirac族的可积约束流,数学学报,42(1999)845;一个演化方程族的约束流系统的r-矩阵,高校应用数学学报,14A(1999)5.
    [149]J.C.Eilkerck et al., Phys.Lett.A, 180(1993)203.
    [150]R.G.Zhou, Commun. Theor. Phys.,33(2000)75.
    [151]Z.J.Qiao and W.Strampp, A gauge equivalent pair with two different r-matrices, Phys.Lett.A, 263(1999)365.
    [152]Q.Y.Shi and S.M.Zhu, A finite-dimensionai integrable system and the r-matrix method, J.Math.Phys., 41(2000)2157.
    [153]Y.B.Zeng, et al., Families of dynamical r-matrices and Jacobi inversion problem for nonlinear evolution equations, J. Math.Phys., 39(1998)5964.
    [154]Y.B.Zeng, et al., Canonical explicit Backlund transformations with spectrality for constrained flows of soliton hierarchies, Phys.A, 303(2002)321.
    [155]张玉峰,大连理工大学博士论文,2002.3.
    [156]高小山,数学机械化进展综述,数学进展,30(2001)385-404.
    [157]吴文俊,初等几何判定问题与机械化证明,中国科学,6A(1977)507-516;数学学报,3(1986)204;系统科学和数学,4(1984)207.数学物理学报,1(1984)125;科学通报.31(1986)1.
    [158]吴文俊,几何定理机械化证明的基本原理,北京:科学出版社,1984.
    [159]关霭雯,吴文俊消元法讲义,北京理工大学,1994.
    [160]吴文俊,初等微分几何的机械化证明。中国科学,1979,94-102.
    [161]陈玉福,高小山,微分多项式系统的对合特征集,中国科学A,33(2003)97-113.
    [162]Li Hongbo, Cheng Minteh, Ordering in automated theorem proving of differential geometry, Acta Math. Appl. Sin. 14(1998)358-362.
    [163]Li Ziming, Mechanical theorem proving in the local theory of surfaces, Ann. Math. Art. Int. 13(1995)25-46.
    
    
    [164]X. S. Gao, J. Z. Zhang and S. C. Chou, Geometry Expert (in Chinese), Nine Chaters Pub., Taiwan, 1998.
    [165]S. C. Chou, X. S. Gao and J. Z. Zhang, Machine Proofs in Geometry, World Scientific, Singapore, 1994.
    [166]S. C. Chou,Automated reasoning in differential geometry and mechanics using the characteristic set method. I. An improved version of Ritt-Wu's decomposition algorithm. J. Auto. Reason. 1993,10:161.
    [167]X. S. Gao, S. C. Chou and J. Z. Zhang, Proceedings of ISSAC-93,284.
    [168]X. S. Gao, An Introduction to Wu's Method of Mechanical Geometry Theorem Proving, IFIP Transactuon on Automated Reasoning, North-Holland, 1993,13-21.
    [169]X.D.Sun, S.K.Wang, K.Wu, Wu algorithm and eight-vertex solutions of colored Yang-Baxter equation, Commun. Theor. Phys.,26(1996)213.
    [170]X.D.Sun, S.K.Wang, K.Wu,Classification of six-vertex type solutions of the colored Yang-Baxter equation J.Math.Phys., 10(1995)6043.
    [171]X.D.Sun, S.K.Wang, K.Wu, Wu algorithm and solutions of Yang-Baxter equation for eight-vertex model, Commun. Theor. Phys.,23(1995)125.
    [172]X.D.Sun, S.K.Wang, Solutions of Yang-Baxter equation with color parameters, Sci.in China,A,38 (1995) 1105.
    [173]李志斌,张善卿,非线性波方程准确孤立波解的符号计算,数学物理学报17(1997)81.
    [174]Z.B.Li and H.Shi, Exact solutions for Belousov-Zhabotinskiui reaction-diffusion system,Appl.Math-JCU, 11B(1996)1.
    [175]Y.T.Gao, B.Tian, Extending the generalized tanh method to the generalized Hamiltonian equations: new soliton-like solutions, Appl.Math.Lett.,10(1997)125; Extension of generalized tanh method and solitonolike solutions for a set of nonlinear evolution equations, Chaos,Solitons and Fractals,8(1997)1651; Generalized hyperbolic function method with computerlized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical phisics, Computer Phys.Commun.,133(2001)158.
    [176]朝鲁,大连理工大学博士论文,1997,3.
    [177]H. Shi, International workshop Math. Mech.,Internatonal Academic,1992,79.
    [178]石赫,机械化数学引论,湖南教育出版社,1998.
    [179]王东明,消元法及其应用,科学出版社,2002.
    [180]阿拉坦仓,大连理工大学博士论文,1995.
    [181]张鸿庆,电动力学基本方程的的多余阶次与恰当解,大连理工大学学报,1981,20(1):11-18.
    [182]张鸿庆,冯红,非齐次线性算子方程组一般解的代数构造,大连理工大学学报,34(1994)249.
    [183]Wu. W. T., Polynomial equation-solving and application[A]. In: Du Ding-zhou Ed. Algorithm and Computation[C]. New York: Springer-Verlag, 1994,1-6.
    [184]陈省身,陈维桓著,微分几何讲义(第二版),北京大学出版社,2001,10.
    [185]B.A.Kupershmidt,Mathetics of dispersive water waves, Comm, Math.Phys., 99(1985),51-673.
    [186]Weiss J. The Painleve property and Bcklund transformation for the sequence of Boussinesq equa-
    
    tions. J Math. Phys., 1985, 26(2)258-269.
    [187]Wu Wentsün, On the Foundation of Algebraic differential Geometry, MMR, Prprints, NO.3,1989,1-28.
    [188]R.A.Zait, Baclund transformations, cnoidal wave and travelling wave solutions of the SK and KK equaions, Chaos, Solitons and Fractals, 15(2003),673-678.
    [189]Fan Engui, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A 277(2000), 212-218.
    [190]Lü Zhuosheng and Zhang Hongqing, On a further extanded tanh method, Phys. Left. A 307(2003), 269-273.
    [191]M. Senthilvelan, On the extended applications of homogeneous balance method, Appl. Math. Comput. 123(2001), 381.
    [192]S.K.Liu, et al., Jacobi elliptic function espansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A. 289(2001)69.
    [193]S.K.Liu, et al.,New periodic solutions to a kind of nonlinear wave equations, Acta Phys. Sin.(in chinese), 2002, 51(1):10-14.
    [194]S.K.Liu, et ai.,The enveloupe periodic solutions to nonlinear wave equations with Jacobi elliptic function, Acta Phys. Sin.(in chinese), 2002, 51(4): 718-722.
    [195]E.J.Parkes,et al., The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations, Phys. Lett. A. 295(2002),280-286.
    [196]Li H. M, The soliton solution of (3+1)-dimensionai KP equations, Theor. Phys. (Beijing), 37(2002), 561-563.
    [197]E.R.Klochin, Differential Algebra and Algebraic Groups. Academic Press,1973.
    [198]Wu. W. T., Polynomial equation-solving and application[A]. In: Du Ding-zhou Ed. Algorithm and Computation[C]. New York: Springer-Verlag, 1994,1-6.
    [199]Reid,G.J., Wittkopf, A.D., and Boutlon, A., Reduction of systrms of nonlinear partial differential equations to simplified involutive forms, Euro.J.Appl. Math.7,1996, 635-637.
    [200]H.T.Chen, H.Q.Zhang, Improved Jacobin elliptic method and its applications, Chaos, Solitons and Fractals, 15(2003), 585-591.
    [201]H.T.Chen, H.Q.Zhang,Extended Jacobin Elliptic Function Method and its Appllications, J. Appl. Math. and Comput. 10(2002), 119-130.
    [202]Duan Wenshan,The KP equation of dust acoustic waves for hot dust plasmas, Chaos, Solitons and Fractals, 14(2002), 503-506.
    [203]Y.Chen,B.Li and H.Q.Zhang, Bacldund Transformation and Exact Solutions for a New Generaliazed Zakhorov-Kuznetsov Equations, Commun.Theor.Phys.39(2003),135-140.
    [204]H.T.Chen, H.Q.Zhang, New multiple solitons to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation, Chaos, Solitons and Fractals, 19(2004), 71-76.
    [205]谢福鼎,大连理工大学博士论文,2002,10.
    [206]夏铁成,大连理工大学博士论文,2002,10.
    [207]陈勇,大连理工大学博士论文,2003,9.
    
    
    [208]吕卓生。大连理工大学博士论文,2003,12.
    [209]J.Q.Mei,H.Q.Zhang, New types of excat solutions for a breaking soliton equation, Chaos,Solitons and Fractals,20(2004),771-777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700