7YSZ/Al_2O_3/Ni-343多层热障涂层的同步合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热障涂层是一类用于隔热、抗氧化、抗腐蚀的功能材料,它们能有效地保护在高温等恶劣环境下工作的部件。近年来,随着航天航空领域的飞速发展,对热障涂层的性能提出了越来越高的要求。因此,研制性能优异的新型热障涂层系统,开发先进的涂层制备新技术是当今材料科学领域的研究重点之一。为此,本文以7YSZ/Al2O3/Ni-343(7YSZ:ZrO2-7wt.%Y2O3; Ni-343:Ni22Cr10Al1Y)纳米涂层的同步合成和性能分析为目标,采用放电等离子烧结(Spark Plasma Sintering, SPS)技术为手段,通过对涂层的结构及其制备工艺的控制,成功地制备出具有纳米结构的7YSZ/Al2O3/Ni-343热障涂层,并对其各项性能进行了系统研究。
     以纳米7YSZ粉末、纯A1薄膜和预先低温球磨得到的纳米Ni-343合金粉末为原料,采用放电等离子烧结技术,在不同烧结温度、轴向压力、保温时间条件下制备出了不同结构的7YSZ/Al2O3/Ni-343热障涂层。研究了低温球磨对Ni-343粉体显微结构的影响,以及放电等离子烧结工艺与热障涂层组织、结构和性能之间的关系;对比了含有纳米和微米Ni-343粘结层热障涂层的结合强度、抗氧化行为和抗热冲击性能;并通过对Ni-343合金块体试样的进一步研究,确立了Ni-343合金微观结构、物相组成与力学性能的相互依赖关系,集中分析了纳米化对Ni-343合金以及热障涂层系统显微结构和性能的综合影响。
     实验结果表明,低温球磨技术可以有效地减小Ni-343粉体的晶粒尺寸至20-70nm。采用放电等离子烧结技术可以同步获得结构均匀、结合紧密、高温性能优异的纳米7YSZ/Al2O3/Ni-343热障涂层,其最佳制备参数为:7YSZ陶瓷层厚度500μm,Ni-343粘结层厚度150μm;烧结温度1000℃,轴向压力50MPa,保温时间3mmin。与微米涂层相比,含有纳米Ni-343粘结层的热障涂层具有更好的层间结合强度、抗氧化性能、以及较长的抗热冲击循环寿命。显微结构研究表明:热障涂层性能的提高与界面生成的Al2O3热生长氧化层(TGO)的结构、形貌密切相关。对Ni-343合金的研究发现,纳米Ni-343合金具有较高的显微硬度,并且其微观结构与力学性能在高温下比较稳定。
     本研究结果表明:采用放电等离子烧结技术可以在短时间内同步合成结构复杂的多层热障涂层,得到综合性能优异的热障涂层材料。这对于发展先进热障涂层的制备工艺具有积极的实际意义和良好的应用前景。
Thermal barrier coatings (TBCs) have been widely used for protecting the superalloys from high temperature, oxidation and corrosion. The increasing demands for high performance superalloys in the turbine engines make TBCs a key component in combating degradation resulting from failure mechanisms. Therefore, high quality TBCs and advance fabrication process have been one of the important corners of materials science. In this study, multiple-layer TBC system was simultaneously synthesized on Ni superalloy substrate by spark plasma sintering (SPS) process, and the best parameters in SPS for high performance TBC were established.
     Nano-structured 7YSZ/Al2O3/Ni-343 multiple-layer TBCs with various microstructure were produced by SPS from nano ZrO2-7wt.%Y2O3 (7YSZ) powder, Al foil and nano Ni-343 powder made by cryomilling method. Afterwards, the mechanical properties arid high temperature behavior of 7YSZ/Al2O3/Ni-343 TBC and Ni-343 bulk sample were studied by advance testing techniques.
     The results indicated that, the grain size of Ni-343 powder was efficiently reduced to 20-70 nm by cryomilling method, and the microstructure and performance of TBCs were improved by SPS process. The best fabricating parameters were established as:a 500μm thick 7YSZ top coat, a 150μm thick Ni-343 bond coat, sintering at 1000℃, pressing under 50MPa axial pressure and dwelling for 3min at sintering temperature. Compared with conventional TBC, the performance of nano-structured TBC, such as bonding strength, oxidation-resistant behavior and thermal cycling life, was significantly improved by excellent microstructure between 7YSZ top coat and Ni superalloy substrate. The thermally growth oxide (TGO) in nano-structured TBC grew slowly and homogeneously, which enhanced high temperature performance of the TBC system.
     The research on Ni-343 alloy indicated Nano-structured fully dense Ni-343 bulk sample was strengthened by the mechanism of fine grain strengthen. The microhardness of Ni-343 bulk sample was influenced by microstructure and phase composition which determined by heat treatment conditions.
     In this dissertation, a novel technique for preparation of TBCs has been introduced, which characterized as simultaneous synthesis of a multiple-layer structure in simple process. The results from this research should be great helpful to the development of TBCs.
引文
[1]G. Evans, D. R. Mumm, J. W. Hutchinson. Mechanisms Controlling the Durability of Thermal Barrier Coatings[J]. Progress in Materials Science,2001,46:505-555.
    [2]U. Schulz, C. Leyens, K. Fritscher. Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings[J]. Aerospace Science and Technology,2003,7: 73-80.
    [3]D. R. Mumm, A. G. Evans, I. T. Spitsberg. Characterization of a Cyclic Displacement Instability for a Thermal Grown Oxide in a Thermal Barrier System[J]. Acta Materi, 2001,49:2329-2340.
    [4]P. K. Wright. Influence of Cyclic Strain on Life a PVD TBC[J]. Materials Science and Engineering A,1998,245:191-200.
    [5]J. T. DeMasi-Marcin, D. K. Gupta. Protective Coatings in the Gas Turbine Engine[J]. Surface and Coatings Technology,1994,68-69:1-9.
    [6]周洪,李飞,何博,王俊,孙宝德.热障陶瓷材料研究进展[J].材料导报,2006,20(10):40-43.
    [7]M. Andritschky, P. Alpuim, D. Stover, C. Funkeb. Study of the Mechanics of the Delamination of Ceramic Functional Coatings [J]. Materials Science and Engineering A, 1999,271 (1-2):62-69.
    [8]S. Sharafat, A. Kobayashi, V. Ogden, N. M. Ghoniema. Development of Composite Thermal Barrier Coatings with Anisotropic Microstructure[J]. Vacuum,2003,71(1-2):247-251.
    [9], T. Hejwowski, A. Weronski. The Effect of Thermal Barrier Coatings on Diesel Engine Performance[J]. Vacuum,2002,65 (34):427-433.
    [10]J. Wigren, L. Pejrud. Thermal Barrier Coatings-Why, How, Where and Where to. Proceedings of ITSC'98 in Nice.
    [11]J. Wilden, M. Wank. New Thermal Barrier Coatings System for High Temperature Applications. Proceedings of ITSC'98 in Nice.
    [12]A. G. Evans, D. R. Mumm, J. W. Hutchinson. Mechanisms Controlling the Durability of Thermal Barrier Coatings[J]. Progress in Materials Science,2001,46:505-555.
    [13]李晓梅,陈贵清,孟松鹤,韩杰才.热障涂层的研究进展[J].宇航材料工艺,2004,1:1-3.
    [14]徐惠彬,宫声凯,刘福顺.航空发动机热障涂层材料体系的研究[J].航空学报,2000,21(1):7-10.
    [15]X. Q. Cao, R. Vassen, D. Stoever. Ceramic Materials for Thermal Barrier Coatings[J]. Journal of Europea Ceramic Society,2004,24:1-10.
    [16]U. Schulz, K. Fritscher. Two-source Jumping Beam Evaporateion for Advanced EB-PVD TBC Systems[J]. Surface & Coatings Technology,2000,133-134:40-48.
    [17]D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco. Mechanical and thermophysical properties of thic PYSZ thermal barrier coatings:correlation with microstructure and spraying parameters [J]. Surface Coating and Technology,1998, 108-109:99-106.
    [18]A. NusairKhan, J. Lu. Behavior of Air Plasma Spraye Thermal Barrier Coatings, Subject to Intense Thermal Cycling[J]. Surface and Coatings Technology,2003,166: 37-43.
    [19]S. Bose, J. T. DeMasi-Marcin. Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt&Whitney[C]. Thermal Barrier Coating Workshop, NASA CP 3312, 1995:63-77.
    [20]T. E. Strangman. Thermal Barrier Coatings for Turbine Airfoils[J]. Thin Solid Films, 1985,127:93-105.
    [21]P. K. Wright, A. G. Evans. Mechanisms Governing the Performance of Thermal Barrier Coatings[J]. Current Opinion in Solid State and Materials Science,1999,4:255-265.
    [22]K. A. Khor, Y. W. Gu, Z. L. Dong. Properties of Plasma Sprayed Functionally Graded YSZ/NiCoCrAlY Composite Coatings[C]. Proceedings of the 1st International Thermal Spray Conference, ASM International, Materials Park, OH, Canada,2000:1241-1247.
    [23]A. Scrivani, U. Bardi. On the Experimental Correlation Between Plasma Spray Process Conditions and Yttria Partially Stabillized Zirconia Coatings Properties[C]. Proceedings of the 1st International Thermal Spray Conference, ASM International, Materials Park, OH, Canada,2000:1207-1210.
    [24]M. A. Cole, R. Walker. High Temperature Erosion Properties of Thermal Barrier Coatings Produced by Acetylene Sprayed High Velocity Oxygen Fuel Process[C]. Proceedings of the 1st International Thermal Spray Conference, ASM International, Materials Park, OH, Canada,2000:1191-1200.
    [25]张立德,牟季美.纳米材料和纳米结构[M].北京:科学技术出版社,2001:5-20.
    [26]刘静.微米/纳米尺度传热学[M].北京:科学技术出版社,2001:10-32.
    [27]滕荣厚.纳米级材料的内涵、判据及其研究方向[J].钢铁研究学报,
    [28]徐龙堂,徐滨士,周美玲.电刷镀镍/镍包纳米Al2O3颗粒复合镀层微动磨损性能研究[J].摩擦学报,2001,21(1):24-27.
    [29]马亚军,朱张校,丁蓬珍.镍基纳米A1203粉末复合电刷镀镀层的耐磨性[J].清华大学学报(自然科学版处),2002,41(4):498-500.
    [30]张玉峰.复合刷镀纳米Ni-ZrO2高温耐磨性的研究[J].电镀与涂饰,2000,19(4):18-21.
    [31]R. Vapen, G.Kerkhoff, D. Stover. Development of Micromechanical Life Prediction for Plasma Sprayed Thermal Barrier Coatings[J]. Materials Science and Engineering A, 2001,303 (1-2):100-109.
    [32]A. G. Evans. Mechanisms Controlling the Durability of Thermal Barrier Coatings[J]. Progress in Materials Science,2001,46 (5):505-553.
    [33]D. Monceau, D. Oquab, C. Estournes, M. Boidot, S. Selezneff, Y. Thebault, Y. Cadoret, Surface and Coating Technology,2009,204:771-778.
    [34]D. Oquab, C. Estournes, D. Monceau, Materials Science and Engineering A,2007,413-417.
    [35]R. A. Miller. Thermal Barrier Coatings for Aircraft Engines:History and Directions[J]. Journal of Thermal Spray Technology,1997,6 (1):35-42.
    [36]D. S. Duvall, D. L. Ruckle. Ceramic Thermal Barrier Coatings for Turbine Engine Components[C]. ASME, International Gas Turbine Conference and Exhibit,27th,1982.
    [37]赵建生、程宇航、许大庆、惠松晓等.热障涂层研究现状[J].信息与开发,1994,4:5-9.
    [38]大村秀树.喷涂技术在航空发动机上的应用[J].溶射技术,1989,9(2):27-35.
    [39]徐劲松.地面燃机涡轮叶片和导向叶片涂层的应用[J].材料工程,1997,2:36-37.
    [40]T. N-Rhys-Jones. Thermally Sprayed Coating Systems for Surface Protection and Clearance Control Applications in Aero Engines[J]. Surface and Coating Technology, 1990,43-44:402-415.
    [41]丁彰雄.热障涂层的研究动态及应用[J].中国表面工程,1999,2(43):31.
    [42]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社,2004:609-611.
    [43]戴达煌,周克崧,袁镇海,等.现代材料表面技术科学[M].北京:冶金工业出版社,2004:142-143.
    [44]徐惠彬,宫声凯,刘福顺.乌克兰巴顿焊接研究所的电子束物理气相沉积技术[J].航空制造工程,1997,6:6-8.
    [45]R. D. Barber, J. K. Dempsey, D. Jones, W. F. Friday, W. D. Mullins, S.M. Meier, D. K. Gupta. Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications [J]. Journal of Engineering for Gas Turbines and Power.1994,116:250-257.
    [46]林锋,蒋显亮.热障涂层的研究进展[J].功能材料,2003,34(3):254-257.
    [47]宫声凯,邓亮,毕晓方,徐惠彬.陶瓷热障涂层的隔热效果研究[J].航空学报,2000,21(4):25-29.
    [48]L. D. Xie, E. H. Jordan, N. P. Padture, M. Gell. Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings [J]. Surface and Coatings Technology,2004,381:190-196.
    [49]A. Bennett, F. C. Toriz, A. B. Thakker. A Philosophy for Thermal Barrier Coating Design and Its Corroboration by 10000h Service Experience on RB211 Nozzle Guide Vanes[J]. Surface & Coatings Technology,1987,32 (1-4):359-375.
    [50]J. Wigren.热障涂层的机理、现状、应用和发展.北京:第十五届国际热喷涂大会(ITSC'98)论文集,1999:611-621.
    [51]J.Wigren.高温下应用的新型热障涂层系统.北京:第十五届国际热喷涂大会(ITSC'98)论文集,1999:654-657.
    [52]D. Schwingel, C. person, R. Taylor, T. Johanesson, J. Wigren. Thick Thermal Barrier Coatings [J]. High Temperature-High Pressures,1996,27-28 (3):273-281.
    [53]武颖娜,柯培玲,孙超,华伟纲,王福会,闻立时.爆炸喷涂制备NiCrAlY/NiAl/ZrO2-Y2O3[J].金属学报,2004,40(5):541-545.
    [54]K. A. Khor, Y. W. Gu. Thermal Properties of Plasma-sprayed Functionally Grade Thermal Barrier Coatings[J]. Thin Solid Films,2000,372:104-113.
    [55]K. A. Khor, Y. W. Gu. Effects of Residual Stress on The Performance of Plasma Sprayed Functionally Graded ZrO2/NiCrAlY Coatings [J]. Materials Science and Engineering A,2000,277:64-76.
    [56]K. A. Khor, Y. W. Gu, Z. L. Dong. Properties of Plasma Sprayed Functionally Graded YSZ/NiCrAlY Composite Coatings. Proceedings of the 1st International Thermal Spray Conference, ASM International, Materials Park, OH, Canada,2000:1241-1247.
    [57]H. B. Guo, S. K. Gong, K. A. Khor, H. B. Xu. Effect of Thermal Exposure on the Microstructure and Properties of EB-PVD Gradient Thermal Barrier Coatings[J]. Surface and Coatings Technology,2003,168:23-29.
    [58]J. H. Kim, M. C. Kim, C. GPark. Evaluation of Functionally Graded Thermal Barrier Coatings Fabricated by Detonation Gun Spray Technique[J]. Surface Coatings and Technology,2003,168 (2-3):275-280.
    [59]王伊卿,方其先,韩志海,陈德森.热障涂层(TBCs)高温氧化及熔盐腐蚀性能的研究[J].腐蚀科学与防护技术,1998,10(1):6-10.
    [60]R. Taylor, J. R. Brandon, P. Morrell. Microstructure Composition and Property Relationships of Plasma-sprayed Thermal Barrier Coatings[J]. Surface and Coatings Technology,1992,50 (2):141-149.
    [61]林锋,蒋显亮.热障涂层的研究进展[J].功能材料,2003,34(3):254-257.
    [62]C. Funke, J. C. Mailand, B. Siebert. Characterization of ZrO2-7wt%Y2O3 Thermal Barrier Coatings with Different Parasites and FEM Analysis of Stress Redistributeion during Thermal Cycling of TBC[J]. Surface and Coatings Technology,1997,94-95: 106-112.
    [63]B. D. Choules, K. Kokini, T. A. Taylor. Thermal Fracture of Thermal Barrier Coatings in Ahigh Heat Flux Environment[J]. Surface and Coatings Technology,1998,106:23-29.
    [64]J. A. Thomposn, T. W. Clyne. The Effect of Heat Treatment on The Stiffness of Zirconia Top Coats in Plasma-sprayed TBCs[J]. Scripta Materialia,2001,49:1565-1575.
    [65]D. Schwingel, R. Taylor, T. Haubold, J. Wigren, C. Gualco. Mechanical and Thermophysical Properties of Thick PYSZ Thermal Barrier Coatings:Correlation with Microstructure and Spraying Parameters[J]. Surface and Coatings Technology,1998, 108-109:99-106.
    [66]A. N. Khan, J. Lu. Thermal Cyclic Behavior of Air Plasma Sprayed Thermal Coatings Sprayed on Stainless Steel Substrates [J]. Surface and Coatings Technology,2007,201: 4653-4658.
    [67]R. Chaim, M. Ruhle, A. H. Heuer. Microstructural Evolution in a ZrO2-12wt%Y2O3 Ceramic[J]. Journal of the American Ceramic Society.1985,68 (8):427-431.
    [68]T. S. Sheu, T. Y. Tien, I. W. Chen. Cubic-to-tetragonal Transformation in Zirconia-Containing Systems[J]. Journal of American Ceramic Society,1992,75:1108-1116.
    [69]R. A. Miller. Current Status of Thermal Barrier Coatings-an Overview [J]. Surface and Coatings Technology,1987,30:1-11.
    [70]K. T. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff, B. R. Rossing. Stabilization of Tetragonal Phase in Polycrystalline Zirconia[J]. Journal of Material Science,1977, 12:2421-2426.
    [71]S. Bose, J. D. Masi-Marcin. Thermal Barrier Coating Experience in Gas Turbine Enginesat Pratt & Whitney[J]. Journal of thermal spray technology,1997,6(1):99-104.
    [72]W. J. Brindley, R. A, Miller. Thermal Barrier Coating Life and Isothermal Oxidation of Low-pressure Plasma-sprayed Bond Coat Alloys[J].Surface and Coatings Technology, 1990,43-44:446-457.
    [73]S. M. Meier, D. M. Nissley, K. D. Sheffler. Thermal Barrier Coating Life Prediction Model Development [J]. Journal of Engineering for Gas Turbines and Power,1992,114 (1-3):258-264.
    [74]G. W. Goward. Progress in Coatings for Gas Turbine Airfoils[J]. Surface and Coatings Technology,1998,108-109:73-79.
    [75]A. NusairKhan, J. Lu. Thermal Cyclic Behaveior of Air Plasma Sprayed Thermal Barriercoatings Sprayed on Stainless Steel Substrates. Surface and Coatings Technology,2007,201:4653-4658.
    [76]N. Czech, F. Schmitz, W. Stamm. Improvement of MCrAlY Coatings by Addition of Rhenium[J]. Surface and Coatings Technology,1994,68-69:17-21.
    [77]X. Q. Ma, M. Takemoto. Quantitative Acoustic Emission Analysis of Plasma Sprayed Thermal Barrier Catings Subjected to Thermal Shock Tests[J]. Materials Science and Engineering A,2001,308:101-110.
    [78]Y. N. Wu, P. L. Ke, Q. M. Wang, C. Sun, F. H. Wang. High Temperature Properties of Thermal Barrier Coatings Obtained by Detonation Spraying[J]. Corrosion Science,2004, 46:2925-2935.
    [79]S. K. Gong, L. Deng, F. S. Liu, H. B. Xu. Investigations on the Formation of Initial Cracks in Thermal Barrier Coatings Prepared by EB-PVD[J]. Acta Metal lurgica Sinica. 1996,9 (6):519-522.
    [80]H. B. Xu, S. K. Gong, L. Deng. Preparation of TBCs for Gas Turbine Blades by EB-PVD[J]. Thin Solid Films,1998,334 (1-2):98-102.
    [81]B. Preauchat, S. Drawin. Isothermal and Cycling Properties of Zirconia-Based Thermal Barrier Coatings Deposited by PECVD[J]. Surface and Coatings Technology,2001, 146-147:94-101.
    [82]B. H. Kear, G. Skandan. Theraml Spray Processing of Nanoscale Materials[J]. Nanostructure Materials,1997,8 (6):765-769.
    [83]L. Bianchi, F. Blein, P. Fauchais. Comparison of Plasma Sprayed Ceramic Coatings by RF and DC Plasma Spraying,7th NTSC, Boston, Massachusetts, USA, ASM International, Materials Park, OH, USA, June 1994:575-579.
    [84]Y. Song, I. Lee, D. Lee. High Temperature Properties of Plasma-sprayed Coatings of YSZ/NiCrAlY on Inconel Substrate[J]. Materials Science and Engineering A,2002,332: 129-133.
    [85]D. E. Wolffe, M. B. Movchan, Jogender. Architecture of Functionally Fraded Ceramic/metallic Coatings by Electron Beam Physical Vapor Deposition[J]. The Mineral, Metals and Materials Society,1997:93-110.
    [86]A. F. Renteria, B. Saruhan, U. Schulz, H. J. Raetzer-Scheibe, J. Haug, A. Wiedenmann. Effect of Morphology on Thermal Conductivity of EB-PVD PYSZ TBCs[J]. Surface and Coatings Technology,2006,201:2611-2620.
    [87]宫声凯,邓亮,徐惠彬.陶瓷热障涂层制备技术及发展趋势[J].材料导报,1999,13(6):31-34.
    [88]B. Preauchat, S. Drawin. Isothermal and Cycling Properties of Zirconia-based Thermal Barrier Coatings Deposited by PE-CVD[J]. Surface and Coatings Technology,2001, 146-147:94-101.
    [89]冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用[J].材料科学与工艺,2003,111:327-331.
    [90]张东明,傅正义.放电等离子加压烧结(SPS)技术特点及应用[J].武汉工业大学学报,1999,6:152-181.
    [91]段成军,杨东升.放电等离子烧结A1N陶瓷[J].硅酸盐学报,2003,4:389-392.
    [92]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,12:129-133.
    [93]王士维,陈立东,平井敏雄,郭景坤.脉冲电流烧结机理的研究进展[J].无机材料学报,2001,6:1055-1061.
    [94]王久兴,刘科高,周美玲.放电等离子烧结技术的发展与应用[J].粉末冶金技术,2002,3:129-134.
    [95]张利波,彭金辉,张世敏.等离子体活化烧结在材料制备中的新应用[J].稀有金属,2000,6:445-449.
    [96]M. Tokita. Development of Large-Size Ceramic/Metal bulk FGM Fabricated by Spark Plasma Sintering[J]. Materials Science Forum,1999,308-311:83-88.
    [97]D. Oquab, C. Estournes, D. Monceau. Oxidation Resistant Aluminized MCrAlY Coating Prepared by Spark Plasma Sintering(SPS)[J]. Advanced Engineering Materials, 2007,9 (5):413-417.
    [98]D. Monceau, D. Oquab, C. Estournes, M. Boidot, S. Selezneff, Y. T. Cadoret. Pt-modified Ni aluminides, MCrAlY-base multilayer coatings and TBC systems fabricated by Spark Plasma Sintering for the protection of Ni-base superalloys[J]. Surface Coating Technology.2009,204:771-778.
    [99]D. Oquab, D. Monceau, Y. Thebault, C. Estournes. Preliminary Results of the Isothermal Oxidation Study of Pt-Al-NiCoCrAlYTa Multi-layered Coatings Prepared by Sparks Plasma Sintering[J]. Materials Science Forum,2008,595-598:143-150.
    [100]J. R. Song, K. K. Ma, L. M. Zhang, J. M. Schoenung. Simultaneous Synthesis by Spark Plasma Sintering of a Thermal Barrier Coating System with a NiCrAlY Bond Coat[J]. Surface and Coatings Technology, in press.
    [101]C. Johansson. Deposited Nano-meter Sized Iron Clusters[J]. Nanostructured Materials, 1999,12 (1-4):287-290.
    [102]E. Kusano. Hardness of Compositionally Nano-modulated TiNfilms [J]. Nano-structured Materials,1999,12 (5-8):807-810.
    [103]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004:62-70.
    [104]Hernandez Lopez. Functional Polymers as Nanoscopic Building Blocks[J]. Materials Science and Engineering C,2003,23 (1-2):267,274.
    [105]T. G. Nieh, C. M. Mcnally, J. Wadsworth. Superplastic Behavior of a 20%Al2O3/YTZ Ceramic Composite[J]. Scripta Materialia,1989,23 (4):223-227.
    [106]S. N. Basu, G. Ye, C. Cui, M. Gevelber, D. Wroblewski. Plasma Sprayed Coatings with Engineered microstructures. Thermal Spray 2003:Advancing the Science & Applying the Technology, (Ed.) Moreau and B. Marple, Published by ASM International, Materials Park, Ohio, USA,2003:1599-1608.
    [107]M. Friis, C. Persson, J. Wigren. Influence of Particle In-flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2[J]. Surface and Coatings Technology,2001,141:115-127.
    [108]K. Brinkiene, R. Kezelis. Correlations between Processing Parametersand Microstructure for YSZ Films Produced by Plasma Spray Technique[J]. Journal of the European Ceramic Society,2004,24:1095-1099.
    [109]R. S. Lima, A. Kucuk, C. C. Berndt. Integrity of Nanostructured Partially Stabilized Zirconia after Plasma Spray Processing. Materials Science and Engineering A,2001, 313:75-82.
    [110]R. S. Lima. Microstructural Characteristics of Plasma Sprayed Nanostructured Partially Stabilized Zirconia[D]. Stony Brook:State University of New York,2001.
    [111]陈煌,林新华,曾毅,丁传贤.热喷涂纳米陶瓷涂层研究进展[J].硅酸盐学报,2002,30(2):235-239.
    [112]陈煌,周霞明,黄民辉,陶顺衍,丁传贤.纳米Zr02等离子涂层的结构性能和工艺特点[J].无机材料学报,2003,18(4):911-916.
    [113]陈煌,丁传贤.等离子喷涂氧化锆纳米涂层显微结构研究[J].无机材料学报,2002,17(4):882-886.
    [114]M. J. Cieslak, T. J. Headley, A. D. Romig. The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276[J]. Metallurgical and Materials Transactions A,17,2002 (11):2035-2047.
    [115]B. Wang, J. Gong, A. Y. Wang, C. Sun, R. F. Huang, L. S. Wen. Oxidation behaviour of NiCrAlY coatings on Ni-based superalloy[J]. Surface and Coatings Technology,149, 2002 (1):70-75.
    [116]Y. Gu, K. Khor, Y. Fu, Y Wang. Functionally graded ZrO2-NiCrAlY coatings prepared by plasma spraying using pre-mixed, spheroidized powders[J]. Surface and Coatings Technology 96,1997 (2-3):305-312.
    [117]J. Matejicek, S. Sampath, P.C. Brand, H.J. Prask. Quenching, thermal and residual stress in plasma sprayed deposits:NiCrAlY and YSZ coatings[J]. Acta Materialia,47,1999 (2):607-617.
    [118]K. A. Khor, Y. W. Gu, Z. L. Dong. Mechanical behavior of plasma sprayed functionally graded YSZ/NiCoCrAlY composite coatings[J]. Surface and Coatings Technology,139, 1999 (2-3):200-206.
    [119]X. Q. Cao, R. Vassen, D. Stoever. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society,24,2004 (1):1-10.
    [120]Feng Tang, Masuo Hagiwara and Julie M. Schoenung. Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder[J]. Scripta Materialia,53,2005 (6) 619-624.
    [121]L. Ajdelsztajn, F. Tang, J. M. Schoenung, G. E. Kim, V. Provenzano. Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings[J]. Journal of Thermal Spray Technology,14,2001 (1) 23-30.
    [122]J. Zhang, V. Desai. Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy[J]. Surface and Coatings Technology, 190,2005 (1,3):98-109.
    [123]M Gell, L Xie, X Ma, EH Jordan, NP Padture. Highly durable thermal barrier coatings made by the solution precursor plasma spray process [J]. Surface and Coatings Technology,177-178,2004 (30):97-102.
    [124]R. A. Miller. Thermal barrier coatings for aircraft engines:history and directions [J]. Journal of Thermal Spray Technology,6,1998 (1):35-42.
    [125]Klug, Harold P. Alexander, Leroy E. X-Ray Diffraction Procedures:For Polycrystalline and Amorphous Materials.
    [126]P. Niranatlumpong, C. B. Ponton, H. E. Evans. The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings[J]. Oxidation of Metals,53,2006 (2-4): 241-258.
    [127]D.B. Witkin, E.J. Lavernia. Synthesis and mechanical behavior of nanostructured materials via cryomilling[J]. Progress in Materials Science,51,2006 (1):1-60.
    [128]R. W, Hayes, David Witkin, Fei Zhou, E. J. Laverniac. Deformation and activation volumes of cryomilled ultrafine-grained aluminum[J]. Acta Materialia,52,2004 (14): 4259-4271.
    [129]R. J. Perez, H. G. Jiang, E. J. Lavernia, C. P. Dogan. Grain growth of nanocrystalline cryomilled Fe-Al powders[J]. Metallurgical and Materials Transactions A,29,2007 (10):2469-2475.
    [130]B. H. Ahn, S. I. Akasofu, Y. Kamide. The Joule Heat Production Rate and the Particle Energy Injection Rate as a Function of the Geomagnetic Indices AE and AL[J]. Journal Of Geophysical Research,88,1983:6275-6287.
    [131]Ji-Guang Li, Takayasu Ikegami, Toshiyuki Mori. Low temperature processing of dense samarium-doped CeO2 ceramics:sintering and grain growth behaviors [J]. Acta Materialia,52,2004 (8):2221-2228.
    [132]G. W. Goward, D. H. Boone. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys[J]. Oxidation of Metals,3,2005 (5):475-495.
    [133]Yi-Bing Cheng, Derek P. Thompson. Role of Anion Vacancies in Nitrogen-Stabilized Zirconia[J]. Journal of the American Ceramic Society,76,1993 (3):683-688.
    [134]M. J. J(?)rgensen, S. Primdahl, C. Bagger, M. Mogensen. Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes[J]. Solid State Ionics,139,2001(1-2):1-11.
    [135]Chang-Jiu Li, Xian-Jin Ning, Cheng-Xin Li. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells[J]. Surface and Coatings Technology,190,2005 (1,3):60-64.
    [136]Xin Ren, Fuhui Wang. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing[J]. Surface and Coatings Technology,201,2006 (1-2):30-37.
    [137]Ines Hofinger, Jorg Moller, Manfred Bobeth, Karen Raab. Effect of substrate surface roughness on the adherence of NiCrAlY thermal spray coatings [J]. Journal of Thermal Spray Technology,11,1999(3):387-392.
    [138]Ralf Rettig, Astrid Heckl, Steffen Neumeier, Florian Pyczak, Matthias Goken, Robert F. Singer. Verification of a Commercial CALPHAD Database for Re and Ru Containing Nickel-Base Superalloys[J]. Defect and Diffusion Forum,289-292,2009:101-108.
    [139]Robert A. Miller, Carl E. Lowell. Failure mechanisms of thermal barrier coatings exposed to elevated temperatures [J]. Thin Solid Films,95,1982 (3):265-273.
    [140]A. Rabiei, A. G. Evans. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia,48,2000 (15):3963-3976.
    [141]C. Bernd, H. Herman. Failure during thermal cycling of plasma-sprayed thermal barrier coating[J]. Thin Solid Films,108,1983 (4):427-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700