粉末冶金铜基摩擦材料制备及摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦材料是组成摩擦式离合器制动器的关键材料。摩擦离合器和制动器的工作原理是利用摩擦副相对运动,接触表面间所产生的摩擦阻力来调节相对运动速度或停止运动,从而达到传递扭矩和离合的目的。其主要应用于飞机、坦克、火车、船舶以及各种机械的制动、传递扭矩和过载保险等装置上。因此摩擦材料应具有一系列的良好性能,传统的摩擦材料难以满足特定的使用要求,而只有粉末冶金摩擦材料由于其本身的特点,如摩擦系数高、耐磨性高、抗腐蚀性好、导热性好以及使用负载高等,能满足相关零件的使用要求,因而获得广泛的应用。
     本论文通过粉末冶金方法得到性能优越以及整体匹配良好的铜基摩擦材料。在试验中采用正交试验方法对Fe、Sn、SiO2和石墨四种辅助元素进行成分优化;首先,探明摩擦材料在硬度、体积磨损量和摩擦系数等指标下的最优试样配比,并得出各组元对摩擦材料各指标的影响程度;其次,通过对各指标试验结果的计算和判断,为了全面衡量实验效果,采用综合平衡法对该多指标试验结果进行分析,得出最终的综合优化组合;最后,选取最终的综合优化组合及在硬度指标、体积磨损量指标、摩擦系数指标下的得到最优组合,对这四种最优组合的材料做重复性实验进行比较。实验结果表明,经过对各实验指标的综合平衡分析得出了在特定工艺条件下的最优材料配方为4Sn8Fe10C8SiO2。在晶相显微镜下观察烧结体的组织形貌,发现Sn在烧结体中能充分扩散,石墨均匀的穿插在铜的基体之中,提高了烧结体的强度,XRD比照压坯烧结前后的成分变化,发现烧结体中产生CuSn3等新相,这些新相得产生,能进一步提高摩擦材料的强度及摩擦磨损性能;同时,球盘磨损试验表明各试样在常温试验条件下,磨擦系数均比较稳定,扫描电镜下观察磨痕形貌,各组试样均体现了轻微磨损的特性。在工艺方面,论文研究了多次压制对于压坯密度的影响,发现提高压制次数,而不进一步提高压制压力,在一定程度上能提高压坯的硬度,但对压坯的密度影响不大,同时发现只要严格控制好压制工艺,对于含碳量较高的混合粉末,由于粉末的粘结性较差,采用多次压制能提高压坯强度而不至于产生压制废品浪费原料。
Friction material is the key material of the frictional clutch and arrester. The working principle of frictional clutch and arrester is utilizing the relative movement between the contact surfaces to adjust the friction to generate the relative motion speed or stop the movement, so as to achieve the purpose of transmitting torque. It's mainly used in aircraft, tanks, trains, ships and a variety of mechanical brake, transmitting torque and overload insurance device. Consequently, friction material should have a range of good performance, the traditional friction material is difficult to meet specific application requirements, and only powder metallurgy friction materials due to its own characteristics, such as the high coefficient of friction, high wear resistance, good corrosion resistance, good heat conductivity performance and higher working loads can meet the requirements of the relevant parts, thereby gaining a wide range of applications.
     In this dissertation, I try to product superior performance and overall well-matched copper-based friction material by powder metallurgy method. In the experiment, using orthogonal test method to optimize the four kinds of auxiliary components Fe, Sn, SiO2 and graphite; First of all, finding the optimal sample ratio friction material in terms of hardness, wear rate of volume friction coefficient and other indicators, and the degree of influence of the elements on each index; secondly, through the calculation of each index test results and judgments, in order to fully measure the experimental results, an integrated balance method for the multi-index analysis of test results that could eventually Integrated optimal combination; and finally, selecting the overall optimization of the final composition and the optimal combinations in terms of hardness, the volume wear and friction coefficient, for the four kinds of materials, do the repeated experiments for comparison. Experimental results show that, after a comprehensive index of all experimental equilibrium analysis,4Sn8Fe10C8SiO2 which is obtained under the conditions of a particular process is the best recipe. under the microscope, the crystal phase morphology of sintered body was found that Sn fully spread, graphite evenly interspersed among the copper matrix to improve the strength of the sintered body, XRD of sintered body and pressed body indicated that the composition was changed, found that sintered body produced CuSn3 and other new phase, these new phase can further enhance the strength and wear properties of the sintered body; the ball plate wear test indicated that all samples at room temperature test conditions, friction coefficients are relatively stable, scanning electron microscopy observation of wear scar morphology of samples in each group was reflected in a slight wear characteristics. In the technology, the paper studies the influence of compacting frequency on physical properties of P/M friction material, it was found that to increase the frequency of press, rather than to further enhance the pressure, to a certain extent, which can improve the hardness of pressed body, but little effect on the density of it, also found that as long as the strict control of a good suppression of technology, for the higher carbon content of mixed powder, as powder bonding is poor, using multiple suppression can increase the intensity of pressed body,avoiding a waste of raw materials.
引文
[1]韩凤麟.粉末冶金机械零件[M].机械工业出版社,1998:1~11
    [2]韩凤麟.粉末冶金基础教程[M].华南理工大学出版社,2004:3~10
    [3]周作平,申小平.粉末冶金机械零件实用[M].化学工业出版社,2006:30~40
    [4]白新桂,李明,许明等.金属陶瓷成分对其摩擦磨损性能影响研究[J].机械工程材料,1997,21(4):13-15
    [5]张明喆,刘勇兵,杨晓红.车用摩擦材料的摩擦学研究进展[J].摩擦学学报,1999,19(4):379-384
    [6]鲁乃光.烧结金属摩擦材料现状与发展动态[J].粉末冶金技术,2002,20(5):294-298
    [7]杨永莲.烧结金属摩擦材料[J].机械工程材料,1995,19(6):18-21
    [8]Antsiferov V.N., Masiennikov N.N., et al. Friction powder Materials (review).Soviet Powder Metallurgy and Metal Ceramies[J].1990,28(12):968~975
    [9]YiMingpan, Morris E.E Wear mechanism of Aluminum-based metal matrix composites under rolling and sliding contacts[J]. in:Pro.of a conference on tri. Of composite materials,1990.93-101
    [10]李祥明,刘德浚,戴振东等.金属陶瓷摩擦材料中的润湿性问题[J].机械工程材料,1999,23(1):36-38
    [11]陈军,姚萍屏.碳对铜基粉末冶金摩擦材料性能的影响[J].热加工工艺,2006,07(1):40-43
    [12]钱中良.碳含量对铁基粉末冶金摩擦材料力学性能的影响[J].常州轻工职业技术学院学报,2006,01:30-33
    [13]樊毅,刘先交.MoS2在铁基摩擦材料中的应用研究[J].湖南冶金,1994,01:56-59
    [14]白同庆,王秀飞.摩擦组元对粉末冶金摩擦材料摩擦性能的影响[J].粉末冶金材料科学与工程,2006,06:45-47
    [15]Ho sin wei, Ho David, Wukun Fong. Friction properties of copper-based and iron-based friction materials[J]. Ady. Powder Metallurgy,1991,5:229~236
    [16]Tsukamoto Yuji, Takanashi Tatsuhisa. Friction and wear properties of copper-based sintered materials containing various intermetallic compounds[J]. Fuutaioyobi Funmatusu Yakln,1984, 3(8):290-297
    [17]韩凤麟.铜基粉末冶金的过去、现状及前景[J].粉末冶金工业,2009,01:23-25
    [18]金永昕,施高义.摩擦磨损原理[M].浙江大学出版社,1986:233~255
    [19]何奖爱,王玉玮编著.材料磨损与耐磨材料[M].沈阳,东北大学出版社,2001:214~218.
    [20]王振廷,陈华辉.碳化钨颗粒增强金属基复合材料涂层组织及其摩擦磨损性能[J].摩擦学学报,2005,25(3):203~206.
    [21]高彩桥编著.摩擦金属学[M].哈尔滨工业大学出版社,1988:234~236.
    [22]M. H. Lee, I. Y. Bae, K. J. Kim, et al. Surface and Coatings Technology[J],2003,4:169-170
    [23]Jost H P. Lubrication (Tribology) Education and Research, D. E. S. Report[J],1966, H. M. S.
    [24]孙家枢.金属的磨损[M].冶金工业出版社,1992:340~350
    [25]蔡泽高,刘以宽,王承忠.金属磨损与断裂[M].上海交通大学出版社,1985:178~181.
    [26]邵荷生,曲敬信,许小棣.摩擦与磨损[M].煤炭工业出版社,1992:246~251.
    [27]郑林庆.摩擦学原理[M].北京,高等教育出版社,1997:198~201.
    [28]H Czichos. Tribology. Elsevier, (1978), ch.5
    [29]津谷裕子.机技研报告81,(1976)
    [30]Bowden F P, Tabor D. The friction and lubrication of solids[M]. Pt.Ⅱ.London, Oxford University Press,1964:168~172
    [31]Wells T.C, Friction materials in aerospace application[J]. Powder Metallurgy,1992,5(4):257
    [32]Dutta D, Mohan G, et al.Indigenous development and manufacture of Aircraft brake friction materials by Powder metallurgy [J]. Trans. Powder Metall. Assoe.,1989,16:14~24
    [33]谭明福,王建业.飞机粉末冶金刹车材料的试制与应用[J].中南矿冶学院学报,1994,25(4):490~493
    [34]姚萍屏,熊翔,黄伯云.粉末冶金航空刹车材料的应用现状与发展[J].粉末冶金工艺,2000,10(6):34~38
    [35]石宗利,李重庵,杜心康等.高速列车粉末冶金制动闸片材料研究[J].机械工程学报,2002,38(6):120~124
    [36]杜心康,石宗利,李重庵等.高速列车铁基烧结闸片材料的摩擦磨损性能研究[J].摩擦学学报,2001,21(4):256~259
    [37]周继承,黄伯云.列车制动摩擦材料研究进展[J].材料科学与工程,1998,17(2):91~93
    [38]齐海,樊云昌,籍凤秋.高速列车制动盘材料的研究、现状与发展趋势[J].石家庄铁道学院学报,2001,14(1):52~57
    [39]沈宝龙,吴菊清.粉末冶金发展现状及趋势[J].上海有色金属,1994,15(2):109~116
    [40]关强.纳米摩擦材料市场前景广阔[J].中国机电日报,2001.07.13
    [41]黄瑞芬,刘淑英.烧结金属摩擦材料及其工艺研究的发展[J].兵器材料科学与工程,1999,22(1):66~68
    [42]杨永连.烧结金属摩擦材料[J].机械工程材料,1995,12:1~6
    [43]沈宝龙,吴菊清.粉末冶金发展现状及趋势[J].上海有色金属,1994,15(2):109~116
    [44]杜素强.铜基陶瓷摩擦材料烧结工艺及性能研究[D].大连交通大学,2005,6:22~24
    [45]郭庚辰.粉末冶金工艺学[M].科学普及出版社.1987:340~355
    [46]廖树勋.粉末冶金闸瓦的研究与设计[D].南京理工大学,2004,6:26~27
    [47]黄培云.粉末冶金原理[M].冶金工业出版社,1982,7:261~342
    [48]石宗利.高速列车铁基金属陶瓷制动闸片材料的研究[J].铁道学报,2001,23:29~32
    [49]韩凤麟.粉末冶金机械零件[M].机械工业出版社,1987,145~231
    [50]赵田臣.高速列车金属陶瓷复合材料制动闸片研制[J].石家庄铁道学院学报,2004,17(1):64~66
    [51]赵田臣.高速列车铜基复合材料闸片研制方案研究[J].石家庄铁道学院学报,2001,14(4):11~13
    [52]李世鹏.铜基粉末冶金摩擦材料基体及其摩擦磨损性能研究[D].中南大学,2004,4:20~23
    牛顿,张光胜,周阵阵.压制压力对粉末冶金钢组织和性能的影响[J].中国材料科技与设备2009,33(9):20-23.
    张光胜,牛顿,冯思庆.压制次数对铜基粉末冶金摩擦材料物理性能的影响[J].机械工程师20010,4:109-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700