供者自然杀伤细胞输注及IL-2、IL-15治疗在异基因及单倍型相合造血干细胞移植中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、小鼠脾NK细胞纯化、体外培养和鉴定
     目的:探讨小鼠NK细胞分选方法、体外NK细胞培养扩增体系的建立及体外培养对NK细胞杀伤活性的影响。
     方法:采用流式细胞术检测小鼠脾脏淋巴细胞亚群百分比。采用抗Thy-1.2抗体标记免疫磁珠去除T细胞及抗DX5抗体标记免疫磁珠正选NK细胞。流式细胞仪检测分选NK细胞纯度。采用含IL-2或(和)IL-15的体外培养体系,比较不同培养体系培养扩增效率。采用LDH释放法检测NK细胞杀伤活性。
     结果:B6成年小鼠脾脏CD3~-DX5~+NK细胞占3.0-5.5%。经磁珠两步法分选后CD3~-DX5~+NK细胞纯度高于95%。含10ng/mL rhlL-2和100ng/mL rhIL-15的DMEM完全培养基培养分选的脾NK细胞第3天、6天、9天、12天、15天时细胞计数倍数为1.27±0.05、3.14±0.18、6.23±0.28、10.81±0.92、23.10±1.44。NK细胞培养后免疫表型为CD3~-DX5~+,CD3~-DX5~+NK细胞占95.0%以上。静息NK细胞杀伤活性弱。效:靶比为10:1时NK细胞毒性为28.7%,而培养激活后效:靶比为10:1时NK细胞毒性为96.3%。
     结论:采用抗Thy-1.2和DX5免疫磁珠可高纯度分选小鼠NK细胞,体外含IL-2和IL-15的DMEM完全培养基可有效扩增NK细胞,联合应用可提高培养扩增效率,体外培养扩增的NK细胞免疫表型仍为CD3~-DX5~+,扩增后NK细胞杀伤活性比静息NK细胞杀伤活性高。
     二、建立小鼠异基因造血干细胞移植aGVHD和白血病模型
     目的:建立B6→BALB/c小鼠异基因造血细胞移植后非致死性aGVHD模型和EL9611白血病异基因造血细胞移植模型。
     方法:32只SPF级BALB/c小鼠随机分为4组,各组小鼠分别接受6、7、8、9Gy X射线全身照射。C57BL/6(H-2~b,♂)小鼠为供鼠,BALB/c小鼠(H-2~d,♀)为受鼠。32只BALB/c小鼠经预处理后随机分为4组,分别尾静脉输注1×10~6、2.5×10~6、5×10~6、10×10~6个骨髓细胞重建造血。在能重建造血的基础上建立aGVHD模型,输注BMCs基础上输注5×10~6、10×10~6或20×10~6个脾细胞。6-7周龄SPF级BALB/C小鼠尾静脉接种1×10~6个EL9611细胞。接种8天后分组:无TBI对照、TBI对照、同基因BMT对照、异基因BMT组,每组8只。
     结果:接受6Gy剂量的小鼠全部生存。接受7Gy TBI预处理的小鼠中位生存期为28.0天,33天内全部死亡。8Gy TBI预处理的小鼠中位生存期为12.7天,15天内全部死亡。四组生存时间采用Log-rank检验,x~2=47.24,P<0.0001。输注2.5×10~6骨髓细胞不能全部重建造血,100天生存率分别为62.5%,其余死于内脏出血。输注5×10~6骨髓细胞可全部重建造血,100天生存率为100%。单纯输注骨髓细胞不能诱发aGVHD。低剂量脾细胞输注小鼠aGVHD疾病程度轻未出现aGVHD相关死亡,中剂量脾细胞输注小鼠25%出现aGVHD相关死亡,高剂量脾细胞输注小鼠41天内100%死于aGVHD。单纯TBI处理组小鼠处理后14天内全部死于造血衰竭。同基因对照小鼠20天内全部死于白血病。异基因BMT组1/8只小鼠长期生存,7/8只小鼠于BMT后45天内死于白血病复发。四组生存时间采用Log-rank检验,x~2=40.22,P<0.0001。+28d外周血细胞及脾细胞均达到完全供者嵌合体状态。
     结论:TBI 8Gy对于BALB/c小鼠是清髓性预处理。预处理后输注输注5×10~6个骨髓细胞可全部重建造血。输注5×10~6个脾细胞可诱发轻至中度aGVHD,不出现致死性aGVHD。移植前8天尾静脉接种1×10~6个EL9611白血病细胞可成功建立白血病微小残留病模型。
     三、供者NK细胞输注及IL-2、IL-15治疗对异基因造血干细胞移植后GVHD、白血病复发和免疫重建的影响
     目的:探讨体外培养扩增的供者NK细胞输注及IL-2、IL-15治疗对异基因造血干细胞移植后GVHD、白血病复发和淋系免疫重建的影响。
     方法:采用临床GVHD积分方法评价小鼠GVHD严重程度;定量PCR方法检测脾细胞sjTREC评价胸腺输出功能;RT-PCR方法检测T细胞受体β链谱型;流式细胞仪检测淋系重建;外周血涂片瑞氏染色检测白血病复发。在GVHD模型中40只小鼠随机分为4组。BMT对照组:输注B6小鼠来源BMCs 5×10~6个;GVHD对照组:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个;NK细胞输注组:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个+NK 1×10~7个;NK细胞输注及IL2、IL-15治疗组:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个+NK 1×10~7个,移植后每天腹腔注射IL-2、IL-15共7天。在EL9611白血病模型中BALB/c小鼠移植前.8d尾静脉接种1×10~6个EL9611细胞,70只小鼠分为6组,每组9-12只。TBI对照组:单纯TBI处理;同基因造血细胞移植对照组:输注BALB/c小鼠来源BMCs 5×10~6个+SCs 5×10~6个;异基因造血细胞移植对照组:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个;NK细胞输注组:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个+NK 1×10~7个;NK细胞输注及IL2、IL-15治疗组一:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个+NK1×10~7个,移植后每天腹腔注射IL-2、IL-15共7天;NK细胞输注及IL2、IL-15治疗组二:输注B6小鼠来源BMCs 5×10~6个+SCs 5×10~6个+NK 1×10~7个,移植后每天腹腔注射IL-2、IL-15共14天。
     结果:骨髓移植对照组BALB/c小鼠不出现GVHD表现。GVHD对照组小鼠移植后7天时出现不同程度的GVHD表现,并出现GVHD相关体重减轻。NK细胞输注组小鼠也出现aGVHD表现,但临床GVHD评分比对照组评分低(P<0.05)。NK细胞输注及IL2、IL-15治疗组小鼠各观察时间点临床GVHD评分比对照组评分明显低(P<0.01)。单纯异基因骨髓移植组小鼠的皮肤、肝脏和肠道未见明显的病理改变。GVHD组小鼠出现皮肤、肝脏和肠道可见明显的病理改变。NK细胞输注组小鼠GVHD靶器官病理改变较GVHD对照组轻。同基因造血细胞移植组小鼠20天内全部死于白血病,无长期生存小鼠。异基因造血细胞移植组小鼠中位生存28天,90%(9/10只)于移植后52天内死于白血病复发,10%(1/10只)小鼠长期生存。NK细胞输注组小鼠中44.4%(4/9只)死于白血病复发,55.6%(5/9只)小鼠长期生存,与异基因HCT组比较生存期明显延长(x~2=4.487,P=0.0342)。NK细胞输注及IL2、IL-15治疗组一小鼠20%死于白血病复发,80%(8/10只)长期生存,与NK细胞输注组比较生存期延长(x~2=1.065,p=0.3022)。NK细胞输注及IL2、IL-15治疗组二小鼠8.3%(1/12只)死于白血病复发,91.7%(11/12只)长期生存,与NK细胞输注组比较生存期延长(x~2=4.018,P=0.0450)。NK细胞输注及IL-2、IL-15治疗组、NK细胞输注组和对照组小鼠移植后28天脾细胞计数分别为(4.78±0.51)×10~7、(3.98±0.43)×10~7、(3.45±0.23)×10~7,NK细胞输注及细胞因子治疗小鼠脾细胞总数明显高于对照组小鼠(P<0.01)。而且NK细胞输注及细胞因子治疗组小鼠T细胞、B细胞、NK细胞均高于对照组小鼠(P<0.01)。对照组移植小鼠sjTREC拷贝数为136.6±13.7/10~5,NK细胞输注组和NK细胞输注及细胞因子治疗组小鼠SjTREC拷贝数为222.2±11.4/10~7、287.5±10.9/10~5,均明显高于对照组(P<0.01)。移植后一个月时NK细胞输注组脾脏TRBV重建明显比对照组TRBV重建快。
     结论:体外培养扩增的供者NK细胞输注及IL-2、IL-15治疗可减轻异基因造血干细胞移植后GVHD严重程度,保护胸腺增强输出功能促进T细胞谱型重建,促进外周T细胞、B细胞、NK细胞等淋系重建,增强移植物抗白血病作用减少白血病复以。
     四、供者NK细IN输注及IL-2、IL-15治疗对单倍型相合造血干细胞移植后GVHD、白血病复发和免疫重建的影响
     目的:建立B6→CB6F1单倍型相合造血细胞移植后非致死性aGVHD模型,探讨体外培养扩增的供者NK细胞输注及IL-2、IL-15治疗对单倍型相合造血细胞移植后GVHD、白血病复发和免疫重建的影响。
     方法:采用临床GVHD积分和病理组织学方法评价小鼠GVHD严重程度;实时定量PCR方法检测SjTREC拷贝数评价移植后胸腺输出功能;RT-PCR结合毛细管电泳检测T细胞受体β链谱型评价TRBV谱型;多参数流式细胞仪检测脾脏淋系重建;外周血涂片瑞氏染色检测白血病复发。在GVHD模型中40只小鼠随机分为4组,每组10只。骨髓移植对照组:输注B6小鼠来源BMCs 5×10~6个;GVHD对照组:输注B6小鼠来源BMCs 5×10~6个+SCs 15×10~6个;NK细胞输注组:输注B6小鼠来源BMCs 5×10~6个+SCs 15×10~6个+NK 1×10~7个;NK细胞输注及IL2、IL-15治疗组:输注B6小鼠来源BMCs 5×10~6个+SCs 15×10~6个+NK 1×10~7个,移植后每天腹腔注射IL-2、IL-15共7天。在EL9611白血病模型中CB6F1小鼠移植时尾静脉接种2×10~6个EL9611白血病细胞,每组10只。单倍型相合造血细胞移植对照组:输注B6小鼠来源BMCs 5×10~6个+SCs 10×10~6个;NK细胞输注组:输注B6小鼠来源BMCs5×10~6个+SCs 10×10~6个+NK 1×10~7个;NK细胞输注及IL2、IL-15治疗组一:输注B6小鼠来源BMCs 5×10~6个+SCs 10×10~6个+NK 1×10~7个,移植后每天腹腔注射IL-2、IL-15共7天;NK细胞输注及IL2、IL-15治疗组二:输注B6小鼠来源BMCs5×10~6个+SCs 10×10~6个+NK 1×10~7个,移植后每天腹腔注射IL-2、IL-15共14天。
     结果:11.5Gy X线TBI对于CB6F1小鼠为清髓性预处理。GVHD对照组小鼠移植后7天时出现GVHD表现。NK细胞输注组小鼠各时间点临床GVHD评分比对照组评分低(P<0.05)。NK细胞输注及IL2、IL-15治疗组小鼠各观察时间点临床GVHD评分比对照组评分明显低(P<0.01)。GVHD对照组小鼠出现皮肤、肝脏和肠道可见明显的病理改变。NK细胞输注组小鼠GVHD靶器官病理改变较GVHD对照组轻。单倍型相合造血细胞移植对照组小鼠100天生存率为20%(2/10只),80%(8/10只)于移植后死于白血病复发。NK细胞输注组小鼠中10%(1/10只)死于白血病复发,90%(9/10只)小鼠长期生存。NK细胞输注IL-2I与L-15治疗组小鼠均长期生存,无死于白血病小鼠。四组生存时间采用Log-rank检验,x~2=30.69,P<0.0001。NK细胞输注及IL-2、IL-15治疗组、NK细胞输注组和对照组小鼠移植后28天脾细胞计数分别为(5.39±0.59)×10~7、(4.42±0.39)×10~7、(3.68±0.47)×10~7,NK细胞输注及细胞因子治疗小鼠脾细胞总数明显高于对照组小鼠(P<0.01)。而且NK细胞输注及细胞因子治疗组小鼠T细胞、B细胞、NK细胞、NKT细胞计数均高于对照组小鼠(P<0.01)。对照组移植小鼠sjTREC拷贝数为155.3±10.7/10~5,NK细胞输注组和NK细胞输注及细胞因子治疗组小鼠sjTREC拷贝数为246.5±29.4/10~5、298.5±16.0/10~5,均明显高于对照组(P<0.05)。移植后一个月时NK细胞输注组脾脏TRBV重建明显比对照组TRBV重建快。
     结论:体外培养扩增的供者NK细胞输注及IL-2、IL-15治疗可减轻单倍型相合造血干细胞移植后aGVHD严重程度,保护胸腺增强输出功能促进T细胞谱型重建,促进外周T细胞、B细胞、NK细胞等淋系重建,增强移植物抗白血病作用减少白血病复发。
PartⅠ:Isolation,culture and identification of mouse splenic NK cells
     Objective:To explore NK cell separation method and NK cell culture system and to study the cytotoxicity activity of expanded NK cells.
     Methods:Lymphoid cell subset percentages were analysed by flow cytometry (FCM).T cells were depleted by using CD90(Thy1.2) MicroBeads prior to NK cell enrichment by using CD49b(DX5) MicroBeads,an MiniMACS separator and an MS column.The purity of NK cell separation product was assaied by FCM.NK cells were cultured in complete DMEM medium containing IL-2 and/or IL-15.NK cell cytotoxicity was detected by using CytoTox96 kit.
     Results:CD3~-DX5~+NK accounts for 3.0-5.5%of total splenocytes of adult B6 mice.NK cell separation product had a purity of more than 95%.NK cell count increased by 1.27±0.05,3.14±0.18,6.23±0.28,10.81±0.92,23.10±1.44 folds after 3,6,9,12,15 days culture in complete DMEM medium containing 10ng/mL rhIL-2 and 100ng/mL rhIL-15. NK cell immunotype was CD3~-DX5~+,CD3~-DX5~+NK cells accounts for 95.0%.Resting NK cell had mild cytotoxicity of 28.7%at an E:T ratio of 10:1,while activated NK cell had a cytotoxicity of 96.3%at an E:T ratio of 10:1.
     Conclusion:NK cell could be highly pure separated from mouse splenocytes by using CD90(Thy1.2) MicroBeads and CD49b(DX5) MicroBeads.NK cell could be efficiently expanded in complete DMEM medium containing IL-2 and IL-15.The immunotype of expanded NK was CD3~-DX5~+.NK cell cytotoxicity was increased after expanded and activated by IL-2 and IL-15.
     PartⅡEstablishment of a murine nonlethal aGVHD model post allogeneic hematopoietic stem cell transplantation and transplantable leukemia model
     Objective:To establish a murine nonlethal aGVHD model post allogeneic hematopoietic stem cell transplantation and EL9611 erythroleukemia allogeneic hematopoietic stem cell transplantation model.
     Methods:Thirty-two SPF grade BALB/c mice were randomly assigned to four groups,mice received 6,7,8 or 9Gy X ray total body irradiation.Adult C57BL/6(H-2~b) males were donor mice and BALB/c(H-2d,♀) were recipient mice.Thirty-two SPF grade BALB/c mice were randomly assigned to four groups post TBI conditioning and were reconstituted with 1×10~6,2.5×10~6,5×10~6 or 10×10~6 BMCs via lateral tail vein injection.GVHD model was established by coinfusion of 5×10~6,10×10~6 or 20×10~6 splenocytes via tail vein.Six- to seven-weeks old SPF grade BALB/c females were inoculated with 1×10~6 EL9611 cells via lateral vein.Leukemia-loaded mice were randomly assigned to 4 groups as no treatment group,TBI group,syngeneic group,allogeneic HCT.
     Results:All mice survived 6 Gy TBI conditioning.The median survival time of mice conditioned with 7Gy TBI was 28.0d and for 8Gy TBI was 12.7d.The survival time was compare by Log-rank test,with x~2=47.24,P<0.0001.The survival rate at 100d was 62.5%when mice were injected with 2.5×106BMCs.All mice survived 100d post-HCT when reconstituted with 5×10~6BMCs.No overt aGVHD was observed when mice were reconstituted with BMCs alone.Non-lethal aGVHD was induced when mice were reconstituted with 5×10~6 splenocytes.Lethal aGVHD was induced when mice were reconstituted with 10×10~6 or 20×10~6 splenocytes.Mice received syngeneic HCT died of EL9611 leukemia within 20 days.In the allo-BMT group 1/8 mouse survived 100d free of leukemia.The survival time was compare by Log-rank test,with x~2=40.22,P<0.0001. Complete donor chimerism was achieved on +28d after allo-HCT.
     Conclusion:It was myeloablative conditioning when BALB/c mice received 8Gy TBI treatment.Hematopoietic recovery could achieve when BALB/c mice were reconstituted with 5×10~6 BMCs.Nonlethal aGVHD could induced when mice were injected with 5×10~6 splenocytes.Leukemia residual disease could be established when BALB/c mice were inoculated with 1×10~6 EL9611 leukemia cells on -8d.
     PartⅢDonor-derived NK cell infusion and IL-2,IL-15 treatment efficacy in allogeneic hematopoietic cell transplantation
     Objective:To explore the effects of ex vivo-expanded donor NK cell infusion and IL-2,IL- 15 treatment on GVHD,leukemia relapse,and immune reconstitution.
     Methods:Real-time quantitative PCR was used to assay sjTREC in splenocytes. RT-PCR and runoff PCR were used to assay TRBV family spectrum.FCM was used to assay splenic lymphoid immune reconstitution.Forty BALB/c mice were randomly assigned to BMT control group,GVHD control group,NK cell infusion group,and NK cell infusion,cytokines treatment group in the GVHD model.Seventy BALB/c mice were inoculated with 1×10~6 EL9611 cell on -8d and were assigned to six groups.
     Results:GVHD was observed as early as +7d after allo-HCT in the control mice.The clinical GVHD score of NK cell infusion group was lower than that of GVHD control group.The lesion of skin,liver and ileum of NK cell infusion group was less severe than that of GVHD control group.All syngeneic HCT control recipient mice died of leukemia within 20 days.The median survival time of allogeneic HCT recipient mice was 28 days and 10 percent(1/10) survived +100 d.In the NK cell infusion group,44.4 percent died of leukemia and 55.6 percent survived +100 day,had prolonged survival than allogeneic HCT control group(x~2=4.487,P=0.0342).Eighty percent(8/10) mice of NK cell infusion and IL-2,IL-15 treatment for one week group survived +100 day.Eleven of 12 mice of NK cell infusion and IL-2,IL-15 treatment for two week group survived +100 day.The survival time of this group was longer than that of NK infusion group.The total splenocytes of mice in NK cell infusion and IL-2,IL-15 treatment group were(4.78±0.51)×10~7, (3.98±0.43)×10~7 and(3.45±0.23)×10~7,respectively.The splenic T,B,NK cell counts in NK cell infusion and cytokines treatment group were higher than those of control group. The sjTREC level of control group was 136.6±13.7 per 10~5 cells,while the sjTREC level of NK cell infusion group and combination treatment group were 222.2±11.4 and 287.5±10.9 per 10~5 cells,respectively.TRBV spectrum reconstitution in NK cell infusion group was faster than that of control group.
     Conclusion:Ex vivo-expanded NK cell infusion and IL-2,IL-15 treatment could mitigate GVHD severity,protect thymus output,promote lymphoid immune reconstitution and enhance graft-versus-leukemia effect in murine allogeneic HCT.
     PartⅣDonor-derived NK cell infusion and IL-2,IL-15 treatment efficacy in haploidentical hematopoietic cell transplantation
     Objective:To establish a nonlethal GVHD model post B6→CB6F1 haploidentical hematopoietic cell transplantation(HID) and to explore the effects of ex vivo-expanded donor NK cell infusion and IL-2,IL-15 treatment on aGVHD,leukemia relapse,and lymphoid immune reconstitution.
     Methods:Clinical GVHD score and histopathological examination were used to evaluate GVHD severity.Real-time quantitative PCR was used to assay sjTREC level post haploidentical HCT.RT-PCR and runoff PCR were used to assay TRBV family spectrum. FCM was used to assay splenic lymphoid immune reconstitution.In the GVHD model, forty CB6F1 mice were randomly assigned to four groups as BMT control group,GVHD control group,NK cell infusion group and NK cell infusion and IL-2,IL-15 treatment group.We established the CB6F1 leukemia model by coinfusion of 2×10~6 EL9611 leukemia cells with stem cell graft per mice at the time of HCT.In the leukemia model, fourty CB6F1 females were randomly assigned to four groups as HCT control group,NK cell infusion group,NK cell infusion and cytokine treatment for 1 week group and NK cell infusion and cytokine treatment for 2 weeks group.
     Results:Lethal myeloablative conditioning was achieved after CB6F1 mice were treated with 11.5 Gy TBI.GVHD was evident in GVHD control mice on +7d post HID. NK cell infusion group mice had lower clinical GVHD scores than GVHD control group mice(P<0.05).The clinical GVHD scores of NK cell infusion and cytokines treatment group mice were lower than those of control group mice at several time points(P<0.01). Overt GVHD lesion could be detected in skin,liver and ileum of GVHD control mice. Twenty percent(2/10) of control group mice survived +100 d post HID and eighty percent of mice died of leukemia.Ten percent of mice died of leukemia and ninety percent of mice survived +100 d post HID in the NK cell infusion group.All mice of NK cell infusion and cytokines treatment group mice survived +100d post HID.The survival time of four group mice were significantly different(x~2=30.69,P<0.0001).Total splenocyte counts of NK cell infusion and cytokines treatment group,NK cell infusion group,control group were (5.39±0.59)×10~7,(4.42±0.39)×10~7,(3.68±0.47)×10~7 at +28d,respectively.The sjTREC level of control group was 155.3±10.7 per 10~5 cells,while the sjTREC level of NK cell infusion group and combination treatment group were 246.5±29.4 and 298.5±16.0 per 10~5 cells,respectively.TRBV spectrum reconstitution in NK cell infusion group was faster than that of control group.
     Conclusion:We established a nonlethal GVHD model and a leukemia model post HID.Donor NK cell infusion and IL-2,IL-15 treatment could mitigate GVHD severity, promote lymphoid immune reconstitution and enhance graft-versus-leukemia effect in murine haploidentical HCT.
引文
1.Kiessling R,Klein E and Wigzell H.'Natural' killer cells in the mouse.I.Cytotoxic cells with specificity for mouse Moloney leukemia cells.Specificity and distribution according to genotype.Eur J Immunol 1975;5:112-117.
    2.Caligiuri MA.Human natural killer cells.Blood 2008;112:461-469.
    3.Vivier E,Tomasello E,Baratin M,et al.Functions of natural killer cells.Nat Immunol 2008;9:503-510.
    4.Colucci F,Caligiuri MA and Di Santo JP.What does it take to make a natural killer?Nat Rev Immunol 2003;3:413-425.
    5.Cooper MA,Fehniger TA and Caligiuri MA.The biology of human natural killer-cell subsets.Trends Immunol 2001;22(11):633-640.
    6.Arase H,Saito T,Phillips JH,et al.The mouse NK cell-associated antigen recognized by DX5 moncoclonal antibody is CD49b(α2 integrin,very late antigen-2).J Immunol 2001,167:1141-1144.
    7.Karlhofer FM and Yokoyama WM.Stimulation of murine natural killer(NK) cells by a monoclonal antibody specific for the NK1.1 antigen.IL-2-activated NK cells possess additional specific stimulation pathways.J Immunol 1991;146(10):3662-3673.
    8.Ljunggren HG and Malmberg KJ.Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7: 329-339.
    9. Mühlen KA, Schümann J, Wittke F, et al. NK Cells, but not NKT Cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J Immunol 2004; 172: 3034-3041.
    10. Lundqvist A, McCoy JP, Samsel L and Childs R. Reduction of GVHD and enhanced anti-tumor effects after adoptive infusion of alloreactive Ly49-mismatched NK-cells from MHC-matched donors. Blood 2006; 109: 3603-3606.
    11. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193: 1285-1294.
    12. Haeryfar SMM and Hoskin DW. Thy-1: more than a mouse pan-T cell marker. J Immunol, 2004,173: 3581-3588.
    13. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood 2001; 97: 14-32.
    14. Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56~+ natural killer cells from CD34~+ hematopoietic progenitor cells. Blood 1996; 87: 2632-2640.
    15. Ranson T, Vosshenrich C, Corcuff E, et al. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101: 4887-4893.
    16. Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669-676.
    17. Koka R, Burkett P, Chien M, et al. Cutting edge: murine dendritic cells require IL-15Ra to prime NK cells. J Immunol 2004; 173: 3594-3598.
    18. Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8~+ T cell lineages in interleukin 15-deficient mice. J Exp Med 2001; 91: 771-780.
    19. Alpdogan O, Eng JM, Muriglan SJ, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865-873.
    20. Ma A, Koka R and Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657-679.
    21. Onu A, Pohl T, Krause H and Bulfone-Paus S. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol 1997; 158: 255-262.
    22. Luhm J, Brand JM, Koritke P, et al. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res 2002; 11: 651-657.
    23. Carlens S, Gilljam M, Chambers BJ, et al. A new method for in vitro expansion of cytotoxic human CD3~-CD56~+ natural killer cells. Human Immunol 2001; 62: 1092-1098.
    24. Kalberer CP, Siegler U, and Wodnar-Filipowicz A. Human NK cell development in NOD/SCID mice receiving grafts of cord blood CD34~+ cells. Blood 2003; 102: 127-135.
    25. Fehniger TA, Suzuki K, Ponnappan A, et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8~+ T Cells. J ExpMed 2001; 193:219-231.
    1.Lorenz E,Uphoff D,Reid TR,et al.Modification of irradiation injury in mice and guinea pigs by bone marrow injections.J Natl Cancer Inst 1951;12:197-201.
    2.Hollingsworth JW and Perfetto MC.Immunologic mechanisms in heavily irradiated mice treated with bone marrow.Blood 1959 14:548-557.
    3.Thomas ED,Lochte HL Jr.,Lu WC,Ferrebee JW.Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy.N Engl J Med 1957;257:491-496.
    4.Reddy P,Negrin R,Hill GR.Mouse models of bone marrow transplantation.Bio Blood Marrow Transplant 2008;14:129-135.
    5.Ryu T,Hosaka N,Miyake T,et al.Transplantation of newborn thymus plus hematopoietic stem cells can rescue supralethally irradiated mice.Bone Marrow Transplantation 2008;41:659-666.
    6.Korngold R and Friedman TM.Murine models for Graft-vs.-Host Disease.Blume KG, Forman SJ,Appelbaum FR.Thomas' Hematopoietic Cell Transplantation(Third Edition),2004 by Blackwell Publishing Ltd.
    7.Glass B,Uharek L,Zeis M,et al.Allogeneic peripheral blood progenitor cell transplantation in a murine model:evidence for an improved graft-versus-leukemia effect.Blood 1997;90(4):1694-1700.
    8.Zeng D,Hoffmann P,Lan F,et al.Unique patterns of surface receptors,cytokine secretion,and immune functions distinguish T cells in the bone marrow from those in the periphery:impact on allogeneic bone marrow transplantation.Blood 2002;99(4):1449-1457.
    9.Chen BJ,Cui X,Liu C,et al.Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process.Blood 2002;99(9):3083-3088.
    10.Sato K,Torimoto Y,Tamura Y,et al.Immunotherapy using heat-shock protein preparations of leukemia cells after syngeneic bone marrow transplantation in mice.Blood 2001;98(6):1852-1857.
    11.丁顺利,褚建新,赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性.中华血液学杂志;1998;12:637-641.
    12.段连宁,郭坤元,褚建新,等.小鼠红白血病细胞在半相合型小鼠体内的生物特性.中国实验血液学杂志,2002,10(3):218-221.
    13.陈广华,吴德沛,孙爱宁,等.IL-2和IL-15激活供者自然杀伤细胞在异基因造血干细胞移植应用的实验研究.中华血液学杂志,2008;29(8):526-530.
    14.Chen G,Wu D,Wang Y,et al.Expanded donor natural killer cell and IL-2,IL-15treatment efficacy in allogeneic hematopoietic stem cell transplantation.Eur J Haematol.2008:81(3):226-235.
    15.王春燕,郭坤元,吴秉毅,等.NK细胞促进小鼠MHC半相合骨髓移植后造血重建的实验研究冲华血液学杂志,2004,25(5):290-292.
    16.Cooke KR,Kobzik L,Martin TR,et al.An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation:I.The roles of minor H antigens and endotoxin.Blood 1996;88:3230-3239.
    17.Taylor PA,Panoskaltsis-Mortari A,Swedin JM,et al.L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection.Blood 2004;104(12):3804-3812.
    18.Hill GR,Crawford JM,Cooke KR,et al.Total body irradiation and acute graft-versus-host disease:the role of gastrointestinal damage and inflammatory cytokines.Blood 1997;90:3204-3213.
    19.Sun K,Wilkins D,Anver MR,et al.Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease(GVHD):delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity.Blood 2005;106(9):3293-3299.
    20.Green EL.Biology of the laboratory mouse,second edition.DOVER PUBLICATIONS,INC.,NEW YORK 1966
    21.Billingham R.The biology of graft-versus-host reactions.The Harvey Lectures,Vol.62.Academic Press,1966:21-78.
    22.裴夫瑜,李春富,唐湘凤.大小鼠之间造血干细胞嵌合体抗异种移植物抗宿主病.第一军医大学学报 2003;23(7):709-713.
    23.Taylor PA,Panoskaltsis-Mortari A,Swedin JM,et al.L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection.Blood,Dec 2004;104:3804-3812.
    24.Blazar BR,Sharpe AH,Chen AI,et al.Ligation of OX40(CD134) regulates graft-versus-host disease(GVHD) and graft rejection in allogeneic bone marrow transplant recipients.Blood 2003;101:3741-3748.
    25.Finkelstein SE,Heimann DM,Klebanoff CA,et al.Bedside to bench and back again:how animal models are guiding the development of new immunotherapies for cancer.J Leukoc Biol 2004;76:333-337.
    26.Taylor PA,Panoskaltsis-Mortari A,Freeman GJ,et al.Targeting of inducible costimulator(ICOS) expressed on alloreactive T cells down-regulates graft-versus-host disease(GVHD) and facilitates engraftment of allogeneic bone marrow(BM).Blood 2005;105:3372-3380.
    27.Edinger M,Cao YA,Verneris MR,et al.Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging.Blood 2003;101:640-648.
    28.Tsukada N,Kobata T,Aizawa Y,et al.Graft-Versus-Leukemia Effect and Graft-Versus-Host Disease Can Be Differentiated by Cytotoxic Mechanisms in a Murine Model of Allogeneic Bone Marrow Transplantation. Blood 1999; 93: 2738-2747.
    
    29. Lan F, Zeng D, Huie P, et al. Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-ap. Blood 2001; 97: 3458-3465.
    1. Lapierre V, Oubouzar N, Auperin A, et al. Influence of the hematopoietic stem cell source on early immunohematologic reconstitution after allogeneic transplantation. Blood 2001; 97: 2580-2586.
    2. Jakubowski AA, Small TN, Young JW, et al. T cell-depleted stem-cell transplantation for adults with hematologic malignancies: sustained engraftment of HLA-matched related donor grafts without the use of antithymocyte globulin. Blood 2007; 110: 4552-4559.
    3. Billingham R. The biology of graft-versus-host reactions. The Harvey Lectures, Vol.62. Academic Press, 1966; 21-78.
    4. Welniak LA, Blazar BR, and Murphy WJ. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu Rev Immunol 2007; 25: 139-170.
    5. Ljunggren HG and Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nature Rev Immunol 2007; 7: 329-339.
    6. Johnston S and Wettstein P. Spectratyping of TCRexpressed by CTL-infiltrating male antigen (HY)-disparate allografts. J Immunol 1998; 160: 3374-3384.
    7. Schilbach K, Schick J, Fluhr H, et al. Organ-specific T cell receptor repertoire in target organs of murine graft-versus-host after transplantation across minor mistocompatibility antigen barriers. Transplantation 2004; 78: 31-40.
    8. Gorski J, Yassai M, Zhu X, et al. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 1994; 152: 5109-5119.
    9. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 1999; 94: 333-339.
    10. Ruggeri L, Capanni M, E Urbani, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097-2100.
    11. Ranson T, Vosshenrich C, Corcuff E, et al. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101: 4887-4893.
    12. Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8~+ T cell lineages in interleukin 15-deficient mice. J Exp Med 2001; 91: 771-780.
    13. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657-679.
    14. Broers A, Sluijs S, Spits H, et al. Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants. Blood 2003; 102: 1534-1540.
    15. Hazenberg M, Verschuren M, Hamann D, et al. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med 2001; 79: 631-640.
    16. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230-3239.
    17. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectinhi but not the L-selectinlo CD4~+25~+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104(12): 3804-3812.
    18. Gillespie G, Stewart-Jones G, Rengasamy J, et al. Strong TCR conservation and altered T cell cross-reactivity characterize a B*57-restricted immune response in HIV-1 Infection. J Immunol 2006; 177: 3893-3902.
    19. Miles J, Elhassen D, Borg N, et al. CTL recognition of a bulged viral peptide involves biased TCR selection. J Immunol 2005; 175: 3826-3834.
    20. Esser J, Holt B, Meijer E, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood 2001; 98: 972-978.
    21. Wu C, Chillemi A, Alyea E, et al. Reconstitution of T-cell receptor repertoire diversity following T-cell depleted allogeneic bone marrow transplantation is related to hematopoietic chimerism. Blood 2000; 95: 352-359.
    22. Godthelp B, Tol M, Vossen J, et al. T-cell immune reconstitution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood 1999; 94: 4358-4369.
    23. Finkelstein SE, Heimann DM, Klebanoff CA, et al. Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J Leukoc Biol 2004;76:333-337.
    24.陈广华,吴德沛,孙爱宁,等.IL-2和IL-15激活供者自然杀伤细胞在异基因造血干细胞移植应用的实验研究.中华血液学杂志,2008;29(8):526-530.
    25.Chen G,Wu D,Wang Y,et al.Expanded donor natural killer cell and IL-2,IL-15treatment efficacy in allogeneic hematopoietic stem cell transplantation.Eur J Haematol.2008;81(3):226-235.
    26.Alpdogan O,Eng JM,Muriglan SJ,et al.Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation.Blood 2005;105:865-873.
    27.Rossi S,Blazar B,Farrell C,et al.Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease.Blood 2002;100:682-691.
    28.Koh CY,Ortaldo JR,Blazar BR,et al.NK-cell purging of leukemia:superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade.Blood 2003;102:4067-4075.
    29.李玉华,郭坤元,陈永乐,等.Ly49A转基因小鼠脾细胞对半相合异基因骨髓移植后GVHD和GVL的作用.中华血液学杂志 2002;23(4):411-414.
    30.Miller JS,Soignier Y,Panoskaltsis-Mortari A,et al.Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.Blood 2005;105:3051-3057.
    31.Shi J,Tricot G,Szmania S,et al.Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation.Bri J Haematol 2008;143:641-653.
    32.黄纯兰,刘霆,孟文彤,等.供者自然杀伤细胞减轻急性移植物抗宿主病的实验研究.中华血液学杂志 2006;27(11):744-748.
    33.Fahlen L,Lendahl U,and Sentman C.MHC class Ⅰ-Ly49 interactions shape the Ly49repertoire on murine NK cells.J Immunol 2001;166:6585-6592.
    34.Tay C,Yu L,Kumar V,et al.The role of LY49 NK cell subsets in the regulation of murine cytomegalovirus infections.J Immunol 1999;162:718-726.
    35.Chklovskaia E,Nowbakht P,Nissen C,et al.Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation:effects of endogenous flt3 ligand.Blood 2004;103:3860-3868.
    36.Nguyen S,Dhedin N,Vernant J,et al.NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations:immaturity of NK cells and inhibitory effect of NKG2A override GvL effect.Blood 2005;105:4135-4142.
    37.Peggs K and Mackinnon S.Immune reconstitution following haematopoietic stem cell transplantation.Bris J Haematol 2004;124:407-420.
    38.符粤文,吴德沛,岑建农,等.HLA同胞全相合异基因造血干细胞移植后T细胞重建的规律.中华内科杂志 2007;46(9):743-746.
    39.Fu Y,Wu D,Cen J,et al.Patterns of T-cell reconstitution by assessment of T-cell receptor excision circle and T-cell receptor clonal repertoire after allogeneic hematopoietic stem cell transplantation in leukemia patients—a study in Chinese patients.Eur J Haematol 2007;79(2):138-145.
    40.符粤文,吴德沛,孙爱宁,等.异基因造血干细胞移植后T细胞免疫重建的分子特征.中华血液学杂志 200;28(5):312-317.
    41.Broers A,Sluijs S,Spits H,et al.Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants.Blood 2003;102:1534-1540.
    42.丁顺利,褚建新,赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性.中华血液学杂志;1998;12:637-641.
    1.Spitzer TR.Haploidentical Stem Cell Transplantation:The Always Present but Overlooked Donor.American Society of Hematology Education Program Book Hematology 2005:390-395.
    2.Szydlo R,Goldman JM,Klein JP,et al.Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings.J Clin Oncol 1997;15:1767-1777.
    3.Spitzer TR,McAfee SL,Dey BR,et al.Nonmyeloablative haploidentical stem-cell transplantation using anti-CD2 monoclonal antibody(MEDI-507)-based conditioning for refractory hematologic malignancies.Transplant 2003;75:1448-1751.
    4.Bethge WA,Faul C,Bornh(a|¨)user M,et al.Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning:an update.Biol Blood Marrow Transplant 2008;40(1):13-19.
    5.Ruggeri L,Capanni M,Casucci M,et al.Role of Natural Killer Cell Alloreactivity in HLA-Mismatched Hematopoietic Stem Cell Transplantation.Blood 1999;94:333-339.
    6.Ruggeri L,Capanni M,E Urbani,et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.Science 2002;295:2097-2100.
    7.Perruccio K,Tosti A,Burchielli E,et al.Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation.Blood 2005;106:4397-4406.
    8.Ciceri F,Labopin M,Aversa F,et al.A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia:a risk factor analysis of outcomes for patients in remission at transplantation.Blood 2008;112:3574-3581.
    9.Symons HJ and Fuchs EJ.Hematopoietic SCT from partially HLA-mismatched (HLA-haploidentical) related donors.Bone Marrow Transplant 2008;42:365-377.
    10.Lu D,Dong L,Wu T,et al.Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation.Blood 2006;107:3065-3073.
    11.Huang X,Liu D,Liu K,et al.Donor lymphocyte infusion for the treatment of leukemia relapse after HLA-mismatched/haploidentical T-cell-replete hematopoietic stem cell transplantation.Haematologica 2007;92:414-417.
    12.Nguyen S,Dhedin N,Vernant J,et al.NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations:immaturity of NK cells and inhibitory effect of NKG2A override GvL effect.Blood 2005;105:4135-4142.
    13.丁顺利,褚建新、赵钧铭,等.可移植性BALB/c小鼠红白血病模型的建立及其生物学特性明.中华血液学杂志,1998,19(12):638-641.
    14.段连宁,郭坤元,褚建新,等.小鼠红白血病细胞在半相合型小鼠体内的生物特性.中国实验血液学杂志,2002,10(3):218-221.
    15.陈广华,吴德沛,孙爱宁,等.IL-2和IL-15激活供者自然杀伤细胞在异基因造血干细胞移植应用的实验研究.中华血液学杂志,2008;29(8):526-530.
    16.Chen G,Wu D,Wang Y,et al.Expanded donor natural killer cell and IL-2,IL-15treatment efficacy in allogeneic hematopoietic stem cell transplantation.Eur J Haematol 2008;81(9):226-235.
    17.刘希民,葛林阜.H-2半相合小鼠EL9611红白血病模型的建立.青岛大学医学院 学报2004;40:319-322.
    18.Xu L,Duan L,Cao K,et al.Predominant immature CD8α+ dendritic cells prevent graft-vs.-host disease but do not increase the risk of leukemia recurrence.Eur J Haematol 2007;78:235 -245
    19.陈广华,吴德沛,王易,等.输注供者自然杀伤细胞对小鼠单倍型相合造血干细胞移植的影响.中华器官移植杂志 2008;29(12):745-748.
    20.Ranson T,Vosshenrich C,Corcuff E,et al.IL-15 is an essential mediator of peripheral NK-cell homeostasis.Blood 2003;101:4887-4893.
    21.Ma A,Koka R,Burkett P.Diverse functions of IL-2,IL-15,and IL-7 in lymphoid homeostasis.Annu Rev Immunol 2006;24:657-679.
    22.Prlic M,Kamimura D,and Bevan MJ.Rapid generation of a functional NK-cell compartment.Blood 2007;110:2024-2026.
    23.Cornish G,Sinclair L,and Cantrell D.Differential regulation of T-cell growth by IL-2and IL-15.Blood 2006;108:600-608.
    24.Cooper M,Bush J,Fehniger T,et al.In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells.Blood 2002;100:3633-3638.
    25.陈广华,吴德沛,王易,等.小鼠胸腺输出功能及免疫重建研究方法的建立.苏州大学学报医学版 2009;(2):123-127.
    26.李玉华,郭坤元,陈永乐,等.Ly49A转基因小鼠脾细胞对半相合异基因骨髓移植后GVHD和GVL的作用.中华血液学杂志 2002;23(4):411-414.
    27.Glass B,Uharek L,Zeis M,et al.Allogeneic peripheral blood progenitor cell transplantation in a murine model:evidence for an improved graft-versus-leukemia effect.Blood 1997;90(4):1694-1700.
    28.Zeng D,Hoffmann P,Lan F,et al.Unique patterns of surface receptors,cytokine secretion,and immune functions distinguish T cells in the bone marrow from those in the periphery:impact on allogeneic bone marrow transplantation.Blood 2002;99(4):1449-1457.
    29.Tsukada N,Kobata T,Aizawa Y,et al.Graft-Versus-Leukemia Effect and Graft-Versus-Host Disease Can Be Differentiated by Cytotoxic Mechanisms in a Murine Model of Allogeneic Bone Marrow Transplantation.Blood 1999;93:2738-2747.
    30. Jenq R, King C, Volk C, et al. Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation. Blood 2009;113:1574-1580.
    31. Cooke KR, Kobzik L, Martin TR, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I The roles of minor H antigens and endotoxin. Blood 1996; 88: 3230-3239.
    32. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, et al. L-Selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104(12): 3804-3812.
    33. Johnston S and Wettstein P. Spectratyping of TCRexpressed by CTL-infiltrating male antigen (HY)-disparate allografts. J Immunol 1998; 160: 3374-3384.
    34. Asnafi V, Beldjord K, Boulanger E, et al. Analysis of TCR, pTa, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693-2703.
    35. Wlodarski M, Gondek L, Nearman Z, et al. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood 2006; 108: 2632-2641.
    36. Broers A, Sluijs S, Spits H, et al. Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants. Blood 2003; 102: 1534-1540.
    37. Schmid C, Schleuning M, Schwerdtfeger R, et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006; 108: 1092-1099.
    38. Chen G, Wang Y, Huang H, et al. Combination of DNA methylation inhibitor 5-azacytidine and arsenic trioxide has synergistic activity in myeloma. Eur J Haematol 2009; 82(3): 176-183.
    39. Badros A, Barlogie B, Morris C, et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001; 97: 2574-2579.
    40. Morris E, Thomson K, Craddock C, et al. Outcomes after alemtuzumab-containing reduced-intensity allogeneic transplantation regimen for relapsed and refractory non-Hodgkin lymphoma. Blood 2004; 104: 3865-3871.
    41. Powles R, Kay H, Clink H, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukemia. Lancet 1983; 1: 612-615.
    42. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 1998; 339: 1186-1193.
    43. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051-3057.
    44. Shi J, Tricot G, Szmania S, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Bri J Haematol 2008; 143: 641-653.
    45. Reddy P, Negrin R, Hill GR. Mouse models of bone marrow transplantation. Bio Blood Marrow Transplant 2008; 14:129-135.
    46. Korngold R and Friedman TM. Murine models for Graft-vs.-Host Disease. Blume KG, Forman SJ, Appelbaum FR. Thomas' Hematopoietic Cell Transplantation (Third Edition), 2004 by Blackwell Publishing Ltd.
    47. Fahlen L, Lendahl U, and Sentman C. MHC class I-Ly49 interactions shape the Ly49 repertoire on murine NK cells. J Immunol 2001; 166: 6585-6592.
    48. Tay C, Yu L, Kumar V, et al. The role of LY49 NK cell subsets in the regulation of murine cytomegalovirus infections. J Immunol 1999; 162: 718-726.
    49. Peggs K and Mackinnon S. Immune reconstitution following haematopoietic stem cell transplantation. Bris J Haematol 2004; 124: 407-420.
    50. Broers A, Sluijs S, Spits H, et al. Interleukin-7 improves T-cell recovery after experimental T-cell-depleted bone marrow transplantation in T-cell-deficient mice by strong expansion of recent thymic emigrants. Blood 2003; 102: 1534-1540.
    51. Hazenberg M, Verschuren M, Hamann D, et al. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med 2001; 79: 631-640.
    52. Fu Y, Wu D, Cen J, et al. Patterns of T-cell reconstitution by assessment of T-cell receptor excision circle and T-cell receptor clonal repertoire after allogeneic hematopoietic stem cell transplantation in leukemia patients—a study in Chinese patients.Eur J Haematol 2007;79(2):138-145.
    53.符粤文,吴德沛,孙爱宁,等.异基因造血干细胞移植后T细胞免疫重建的分子特征.中华血液学杂志200;28(5):312-317.
    54.Schilbach K,Schick J,Fluhr H,et al.Organ-specific T cell receptor repertoire in target organs of murine graft-versus-host after transplantation across minor mistocompatibility antigen barriers.Transplantation 2004;78:31-40.
    1.Kovanen PE,Leonard WJ.Cytokines and immunodeficiency diseases:critical roles of the γc-dependent cytokines interleukins 2,4,7,9,15,and 21,and their signaling pathways.Immunol Rev 2004;202:67-83.
    2.Fehniger TA,Cooper MA,Caligiuri MA.Interleukin-2 and interleukin-15:immunotherapy for cancer.Cytokine Growth Factor Rev 2002;13:169-183.
    3.Miyazaki T,Liu ZJ,Kawahara A,et al.Three distinct IL-2 signaling pathways mediated by bcl-2,c-myc,and lck cooperate in hematopoietic cell proliferation.Cell 1995;81:223-231.
    4.Fehniger TA,Caligiuri MA.Interleukin 15:biology and relevance to human disease.Blood 2001;97:14-32.
    5.Waldmann TA,Dubois S,Tagaya Y.Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes:implications for immunotherapy.Immunity 2001;14:105-110.
    6.Maloy KJ,Powrie F.Fueling regulation:IL-2 keeps CD4~+ Treg cells fit.Nat Immunol 2005; 6:1071-1072.
    7. Marks-Konczalik J, Dubois S, Losi JM, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci 2000; 97: 11445-11450.
    8. Li XC, Demirci G, Ferrari-Lacraz S, et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 2001; 7: 114-118.
    9. Przepiorka D, Kernan NA, Ippoliti C, et al. Daclizumab, a humanized anti-interleukin-2 receptor alpha chain antibody, for treatment of acute graft- versus -host disease. Blood 2000; 95: 83-89.
    10. Morris JC, Janik JE, White JD, et al. Preclinical and Phase I clinical trial of blockade of IL-15 using Mikβ1 monoclonal antibody in T cell large granular lymphocyte leukemia. Proc Natl Acad Sci 2006; 103: 401-406.
    11. Ranson T, Vosshenrich C, Corcuff E, et al. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101: 4887-4893.
    12. Willerford DM, Chen J, Ferry JA, et al. Interleukin-2 receptor a chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3: 521-530.
    13. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75: 253-261.
    14. Lodolce JP, Boone DL, Chai S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669-676.
    15. Koka R, Burkett P, Chien M, et al. Cutting edge: murine dendritic cells require IL-15R(?) to prime NK cells. J Immunol 2004; 173: 3594-3598.
    16. Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8~+ T cell lineages in interleukin 15-deficient mice. J Exp Med 2001; 91: 771-780.
    17. Alpdogan O, Eng JM, Muriglan SJ, et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865-873.
    18. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657-679.
    19. Dubois S, Shou W, Haneline LS, et al. Distinct pathways involving the FK506-binding proteins 12 and 12.6 underlie IL-2-versus IL-15-mediated proliferation of T cells. Proc Natl Acad Sci 2003; 100: 14169-14174.
    20. Mahaffey CL, Mummert ME. Hyaluronan synthesis is required for IL-2-mediated T cell proliferation. J Immunol 2007; 179: 8191-8199.
    21. Brandenburg S, Takahashi T, de la Rosa M, et al. IL-2 induces in vivo suppression by CD4+CD25~+Foxp3~+ regulatory T cells. Eur J Immunol 2008; 38: 1643-1653.
    22. Luhm J, Brand JM, Koritke P, et al. Large-scale generation of natural killer lymphocytes for clinical application. J Hematotherapy Stem Cell Res 2002; 11: 651-657.
    23. Kobayashi H, Dubois S, Sato N, et al. Role of transs-cellular IL-15 presentation in the activation of NK cell-mediated killing, which leads to enhanced tumor immunosurveillance. Blood 2005; 105: 721-727.
    24. Zhang J, Sun R, Wei H, et al. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004; 89: 338-347.
    25. Oh S, Berzofsky JA, Burke DS, et al. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci 2003; 100: 3392-3397.
    26. Lee SJ, Zahrieh D, Agura E, et al. Effect of up-front daclizumab when combined with steroids for the treatment of acute graft-versus-host disease: results of a randomized trial. Blood 2004; 104: 1559-1564.
    27. Zhang Z, Zhang M, Garmestani K, et al. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25. Blood 2006; 108: 1007-1012.
    28. Alleva DG, Kaser SB, Monroy MA, et al. IL-15 functions as a potent autocrine regulator of macrophage proinflammatory cytokine production: evidence for differential receptor subunit utilization associated with stimulation or inhibition. J Immunol 1997; 159: 2941-2951.
    29. Kim YS, Maslinski W, Zheng XX, et al. Targeting the IL-15 receptor with an antagonist IL-15 mutant/Fcγ2a protein blocks delayedtype hypersensitivity. J Immunol 1998; 160: 5742-5748.
    30. Ruchatz H, Leung BP, Wei X, et al. Soluble IL-15 receptor a-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J Immunol 1998; 160: 5654-5660.
    1.Kiessling R,Klein E and Wigzell H.'Natural' killer cells in the mouse.I.Cytotoxic cells with specificity for mouse Moloney leukemia cells.Specificity and distribution according to genotype.Eur J Immunol 1975;5:112-117.
    2.Terme M,Ullrich E,Delahaye NF,et al.Natural killer cell-directed therapies:moving from unexpected results to successful strategies.Nature Immunol 2008;9:486-494.
    3.Cooper MA,Fehniger TA,Caligiuri MA.The biology of human natural killer-cell subsets.Trends in Immunol 2001;22:633-640.
    4.Farag SS,Caligiuri MA.Human natural killer cell development and biology.Blood Rev 2006;20:123-137.
    5.Mrozek E,Anderson P,Caligiuri MA.Role of interleukin-15 in the development of human CD56~+ natural killer cells from CD34~+ hematopoietic progenitor cells.Blood 1996;87:2632-2640.
    6.Fehniger TA,Cooper MA,Nuovo GJ,et al.CD56~(bright) natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2:a potential new link between adaptive and innate immunity. Blood. 2003; 101: 3052-3057.
    7. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nature Rev Immunol 2006; 6: 595-601.
    8. Ghiringhelli F, Menard C, Terme M, et al. CD4~+CD25~+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-p-dependent manner. J Exp Med 2005; 202: 1075-1085.
    9. Terme M, Ullrich E, Delahaye NF, et al. Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nature Immunol 2008; 9: 486-494.
    10. Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23: 225-274.
    11. Ruggeri L, Cappani M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097-2100.
    12. Cooley S, McCullar V, Wangen R, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 2005; 106: 4370-4376.
    13. Ljunggren HG and Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nature Rev Immunol 2007; 7: 329-339.
    14. Lundqvist A, McCoy JP, Samsel L and Childs R. Reduction of GVHD and enhanced anti-tumor effects after adoptive infusion of alloreactive Ly49-mismatched NK-cells from MHC-matched donors. Blood 2006; 109: 3603-3606.
    15. Rosenberg SA, Lotze MT, Muul L, et al. Observations on the systemic administration of autologous lymphokine activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485-1492.
    16. Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105:3051-3057.
    17. Klingemann HG. Natural killer cell-based immuno-therapeutic strategies. Cytotherapy 2005; 7: 16-22.
    18. Luhm J, Brand JM, Koritke P, et al. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res 2002; 11:651-657.
    19. Gattinoni L, Powell DJ, Rosenberg SA and Restifo NP. Adoptive immunotherapy for cancer: building on success. Nature Rev Immunol 2006; 6: 383-393.
    20. Stewart CA, Laugier-Anfossi F, Vely F, et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc Natl Acad Sci 2005; 102:13224-13229.
    21. Farag SS and Caligiuri MA. Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 2004; 51: 295-318.
    22. Koh CY, Ortaldo JR, Blazar BR, et al. NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 2003; 102: 4067-4075.
    23. Chaput N, Flament C, Viaud S, et al. Dendritic cell derived-exosomes: biology and clinical implementations. J Leukoc Biol 2006; 80: 471-478.
    24. Imai C, Iwamoto S and Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106: 376-383.
    25. Uherek C, Torsten T, Barbara U, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 2002; 100: 1265-1273.
    26. Pende D, Spaggiari GM, Marcenaro S, et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066-2073.
    27. Bryceson YT, March ME, Ljunggren HG and Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006; 107: 159-166.
    28. Chiesa MD, Carlomagno S, Frumento G, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 2006; 108: 4118-4125.
    29. Skov S, Pedersen MT, Andresenet L, et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 2005; 65: 11136-11145.
    30. Bulanova E, Budagian V, Duitman E, et al. Soluble interleukin (IL)-15Rα is generated by alternative splicing or proteolytic cleavage and forms functional complexes with IL-15. J Biol Chem 2007; 282: 13167-13179.
    31. Dredge K, Marriott JB, Macdonald CD, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 2002; 87: 1166-1172.
    32. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcyRIIIa gene. Blood 2002; 99:754-758.
    33. Khan KD, Emmanouilides C, Benson DM, et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clin Cancer Res 2006; 12: 7046-7053.
    34. Bruenke J, Barbin K, Kunert S, et al. Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcγRIII (CD16). Br J Haematol 2005; 130: 218-228.
    35. Hartmann F, Renner C, Jung W, et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 2001; 7: 1873-1881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700