M~(2+)(Ca~(2+)、Mg~(2+))配位囊泡相的形成及其模板作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂在水溶液中的浓度高于临界胶束浓度时,可以发生自聚集,形成多种形态的聚集体,如胶束、囊泡、微乳液、溶致液晶等。其中,囊泡相由于其在生命科学和材料科学等方面的广泛应用而成为研究的热点。近年来,人们将氢键、静电作用和金属配位作用作为水溶液中形成囊泡相的三种典型的非共价键相互作用力。本文对二价金属离子(Ca~(2+)和Mg~(2+))为反离子的阴离子表面活性剂与具有配位作用的十四烷基二甲基氧化胺(C_(14)DMAO)的表面活性剂复配体系进行了研究,具体内容如下:
     1将Ca~(2+)和Mg~(2+)为反离子的阴离子表面活性剂十四烷基酰胺甲基硫酸钙[(CH_3(CH_2)_(13)NHCOCH_2OSO_3)_2Ca]和十二烷基硫酸镁[Mg(DS)_2]分别与具有配位作用的十四烷基二甲基氧化胺(C_(14)DMAO)复配,相行为研究表明:在一定的配比范围内观察到囊泡相的存在,该囊泡相的形成是由于Mg~(2+)、Ca~(2+)与C_(14)DMAO的头基紧密结合形成配位键,金属离子的配位作用是此体系形成囊泡相的驱动力,此结论可由十四烷基酰胺甲基硫酸钠[CH_3(CH_2)_(13)NHCOCH_2OSO_3Na]和十二烷基硫酸钠(SDS)分别与C_(14)DMAO复配,只得到粘稠的胶束相得到验证。囊泡相的结构与性质通过偏光显微镜、负染色透射电镜及流变仪等进行了表征。
     2利用所得到的囊泡相作为聚集体模板反应器制备了草酸钙(CaC_2O_4)晶体和片状氧化镁(MgO)。草酸二甲酯作为沉淀剂在水溶液可以水解得到草酸和甲醇,草酸与溶液中的Ca~(2+)反应生成草酸钙沉淀,发生如下反应:Ca~(2+)+H_2C_2O_4→CaC_2O_4↓+2H~+。反应产生的H~+与C_(14)DMAO结合,C_(14)DMAO被质子化为阳离子C_(14)DMAOH~+,即C_(14)DMAO+H~+→C_(14)DMAOH~+。最终,溶液中的C_(14)DMAOH~+与CH_3(CH_(12))_(13)NHCOCH_2SO_4~-构筑了一个新的阴/阳离子表面活性剂混合体系;在Mg~(2+)诱导形成的囊泡相中反应制得Mg(OH)_2,Mg(OH)_2经高温煅烧得到纳米级片状MgO。CaC_2O_4和MgO晶体的性质经X射线衍射(XRD)、扫描电镜(SEM)等手段进行表征。试验表明囊泡相的存在可以抑制颗粒间的聚集,改变晶体的生长习惯。
Above the critical micelle concentration (cmc) , surfactants can form various self-assembly aggregates, such as micelles, vesicles, micro-emulsions and liquid crystals etc. Vesicle phase, as one of them, has been a subject of fascinating research due to their potential applications in various fields such as colloid chemistry, bionics and material science. In recent years, three typical noncovalent interactions to form vesicles: hydrogen bonds, metal ion coordination and electrostatic attraction have been used as noncovalent attractive intermolecular interactions to control the self-assemblies of surfactants. Several surfactant systems in aqueous solutions are studied in this paper and the results are summarized as following:
     1 Ca~(2+)/Mg~(2+)-ligand coordinated vesicle phase was prepared in the mixed aqueous solution of tetradecyldimethylamine oxide (C_(14)DMAO) with calcium tetradecylamidomethylsulfate [(CH_3(CH_2)_(13)NHCOCH_2SO_4)_2Ca] and magnesium dodecylsulfate[Mg(DS)_2], respectively. At the right mixing ratios, Ca~(2+)/Mg~(2+)-ligand coordination results in the formation of molecular bilayers. The structures of the birefringent solutions were determined by transmission electron microscopy (TEM) images and rheological measurements, demonstrating the samples consist of vesicles.
     2 Ca~(2+)-ligand complex vesicle phase was used as microreactors to prepare CaC_2O_4 crystals (Ca~(2+) + H_2C_2O_4→CaC_2O_4↓+ 2H~+). Dimethyl oxalate as a precursor, which can hydrolyze to oxalic acid and ethanol. should precipitate Ca~(2+) ions coordinated in the bilayer films to produce CaC_2O_4 crystals. After removal of CaC_2O_4 particles, a new cationic/anionic (cataniomc) vesicle-phase solution was constructed from cationic C_(14)DMAOH~+ (C_(14)DMAO + H~+→C_(14)DMAOH~+) and anionic CH_3(CH_(12))_(13)NHCOCH_2SO_4~-. Magnesium oxide nanoplates was synthesized using ammonia hydroxide as precipitator in the presence of Mg~(2+)-induced vesicle phase. The morphologies and structures of the synthesized crystals have been characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is believed that the vesicle phase as microreactors play an important role in controlling the morphologies of crystals.
引文
[1] R. Zana, M. In, H. Levy, G. Duportail. Alkanediyl-α ,ω -bis(dimethylalkylammonium bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity, Langmuir 1997,13, 5552-5557.
    
    [2] M. In, V. Bec, O. Aguerre-Chariol, R. Zana. Quaternary Ammonium Bromide Surfactant Oligomers in Aqueous Solution: Self-Association and Microstructure, Langmuir 2000,16, 141-148.
    
    [3] Y. Yan, J. B. Huang, Z. C. Li, F. Han, J. M. Ma. Aggregates Transition Depending on the Concentration in the Cationic Bolaamphiphile/SDS Mixed Systems, Langmuir 2003,19, 912-914
    
    [4]阎云,黄建滨,李子臣,赵小莉,马季铭.Bola型阴离子表面活性剂与溴 化十二烷基三乙铵混合体系的表面性质与聚集行为,化学学报,2002,60, 1147-1150.
    
    [5] J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, Theory of Self-assemblyof Hydrocarbon Amphiphiles into Micelles and Bilayers, J. Chem. Soc.Faraday Trans. 21976, 72, 1525-1568.
    
    [6] M. Winterhalter, W. Helfrich, Bending Elasticity of Electrically ChargedBilayers: Coupled Monolayers, Neutral Surfaces, and Balancing Stresses, J.Phys. Chem. 1992, 96, 327-330.
    
    [7] A. Zapf, R. Beck, G. Platz, H. Hoffmann, Calcium Surfactants: A Review, Adv.Colloid Inter. Sci. 2003,100-102, 349-380.
    
    [8] F. A. M. Leermakers, J. M. H. M. Scheutjens, Statistical Thermodynamics ofAssociation Colloids. 2. Lipid Vesicles, J. Phys. Chem. 1989, 93. 7417-7426.
    
    [9] S. A. Safran, P. A. Pincus, D. A. Andelman, Theory of Spontaneous VesicleFormation in Surfactant Mixtures, Science 1990, 248, 354-356.
    
    [10] Laughlin, R.G. Equilibrium Vesicles: Fact or Fiction? Colloids Surf. A 1997.27-38.
    
    [11]赵国玺,表面活性剂物理化学,北京大学出版社,北京,1984.
    
    [12] J. Hao, J. Wang, W. Liu., Abdel-Rahem R. Rami, H. Hoffmann, Zn~(2+)-inducedVesicle Formation, J. Phys. Chem. B 2004.108, 1168-1172.
    
    [13] J. Wang, A. Song, X. Jia. J. Hao, W. Liu, H. Hoffmann, Two Routes to VesicleFormation: Metal-Ligand Complexation and Ionic Interactions, J. Phys. Chem.B 2005,109, 11126-11134.
    
    [14] J. Hao, A. Song,J. Wang, X. Chen, F. Shi, F. Zhou, W. Liu, Self-assembledStructure in Room-temperature Ionic Liquids, Chem. Eur. J. 2005, 11,3936-3941.
    
    [15] S. Pevzner, O. Regev, A. Lind, M. Linden, Evidence for Vesicle Formationduring the Synthesis of Catanionic Templated Mesoscopically Ordered Silicaas Studied by Cryo-TEM, J. Am. Chem. Soc. 2003,125, 652-653.
    
    [16] S. Hudson, H. T. Jung, V. Perces, W. D. Cho, G. Johansson, G. Balagurusamy, V.S. K. Balagurusamy, Direct Visualization of Individual Cylindrical andSpherical Supramolecular Dendrimers, Science 1997, 278, 449-452.
    
    [17] J. S. Martinez, G. P. Zhang, P. D. Holt, H. T. Jung, C. J. Carrano, M. G. Haygoo,A. Butler, Self-assembling Amphiphilic Siderophores from Marine Bacteria,Science 2000, 287, 1245-1252.
    
    [18] K. Horbaschek, H. Hoffmann, J. Hao, Classic L_α-Phases as Opposed to VesiclePhases in Cationic-Anionic Surfactant Mixtures, J. Phys. Chem. B 2000, 104,2781-2784.
    
    [19] S. R. Raghavan, E. W. Kaler, Wormlike Micelles Formed by SynergisticSelf-Assembly in Mixtures of Anionic and Cationic Surfactants, Langmuir2002,75,3797-3803.
    
    [20] X. Li, H. Kunieda, Catanionic Surfactants: Microemulsion Formation andSolubilization, Curr. Opin. Colloid. Inter. Sci. 2003, 8. 327-336.
    
    [21] W. Dubois, T. Zemb, Swelling Limits for Bilayer Microstructures: theImplosion of Lamellar Structure Versus Disordered Lamellae, Curr. Opin.Colloid. Inter. Sci. 2000, 5. 27-37.
    
    [22] S. Y. Kang, B. S. Seong, Y. S. Han, H. T. Jung, Self-Organization of AmphiphilicPolymer in Vesicle Bilayers Composed of Surfactant Mixtures,??Biomacromolecules, 2003, 4, 360-365.
    
    [23] E. W. Kaler, K. A. Murthy, B. E. Rodriguez, J. A. N. Zasadzinski, SpontaneousVesicle Formation in Aqueous Mixtures of Single-tailed Surfactants. Science1989,245, 1371-1374.
    
    [24] A. Khan, E. Marques, In: I.D. Robb (Ed.), Specialist Surfactants, DordrechtKluwer, 1997, 37-80.
    
    [25] H. T. Jung, S. Y. Lee, E. W. Kaler, B. Coldren, J. A. Zasadzinski, GaussianCurvature and the Equilibrium Among Bilayer Cylinders, Spheres, and Discs,Proc. Natl. Acad. Sci. 2002, 99, 15318-15322.
    
    [26] M. Villeneuve, S. Kaneshina, T. Imae, M. Aratono. Vesicle-Micelle Equilibriumof Anionic and Cationic Surfactant Mixture Studied by Surface Tension,Langmuir 1999,15, 2029-2036.
    
    [27] L. Chen, J. Xiao, K. Ruan, J. Ma, Homogeneous Solutions of Equimolar MixedCationic-Anionic Surfactants, Langmuir 2002,18, 7250-7252.
    
    [28] S. L. Keller, P. Boltenhagen, D. J. Pine, J. A. Zasadzinski, Direct Observationof Shear-induced Structures in Wormlike Micellar Solutions by Freeze-fractureElectron Microscopy, Phys. Rev. Lett. 1998, 80, 2725-2728.
    
    [29] C. Tondre, C. Caillet, Properties of the Amphiphilic Films in MixedCationic/anionic Vesicles: a Comprehensive View from a Literature Analysis,Adv. Colloid Inter. Sci. 2001, 93, 115-134.
    
    [30] J. Oberdisse, O. Regev, G. Porte, Experimental Study of the Micelle-to-VesicleTransition, J Phys. Chem. B. 1998,102, 1102-1108.
    
    [31] S. T. Hyde, G. E. Schroder, Novel Surfactant Mesostructural Topologies:Between Lamellae and Columnar (hexagonal) Forms, Curr. Opin. Colloid Inter.Sci. 2003, 8, 5-14.
    
    [32] O. Regev, A. Khan, Cryo-TEM and NMR Studies of Solution Microstructuresof Double-Tailed Surfactant Systems: DidodecyldimethylammoniumHydroxide, Acetate, and Sulfate, J. Phys. Chem. 1994, 98, 6619-6625.
    
    [33] M. Bergstrom, J. S. Pederson, Small-Angle Neutron Scattering (SANS) Studyof Aggregates Formed from Aqueous Mixtures of Sodium Dodecyl Sulfate??(SDS) and Dodecyltrimethylammonium Bromide (DTAB), Langmuir 1998,14,3754-3761.
    
    [34] M. Bergstrom, J. S. Pederson, Formation of Tablet-Shaped and RibbonlikeMicelles in Mixtures of an Anionic and a Cationic Surfactant, Langmuir 1999,75,2250-2253.
    
    [35] H. Edlund, A. Sadaghami. A. Khan, Phase Behavior and Phase Structure forCatanionic Surfactant Mixtures: DodecyltrimethylammoniumChloride-Sodium Nonanoate-Water System, Langmuir 1997,13, 4953-4963.
    
    [36] K. Horbaschek, H. Hoffmann, C. Thunig, Formation and Properties of LamellarPhases in Systems of Cationic Surfactants and Hydroxy-Naphthoate, J. ColloidInter. Sci. 1998, 206, 439-456.
    
    [37] Th. Zemb, M. Dubois, B. Deme, Th. Gulik-Krzywicki, Self-assembly of FlatNanodiscs in Salt-free Catanionic Surfactant Solutions, Science 1999, 283,816-819.
    
    [38] M. Dubois, B. Deme, Th. Gulik-Krzywicki, J. C. Dediu, C. Vautrin, S. Desert,E. Perez, Th. Zemb, Self-assembly of Regular Hollow Icosahedra in Salt-freeCatanionic Solutions, Nature 2001, 411, 672-675.
    
    [39] Paivi Joke la, Bengt Jonsson, Ali Khan. Phase Equilibria of CatnionicSurfactant-Water Systems, J. Phys. Chem. 1987, 91, 3291-3298.
    
    [40] Th. Zemb, M. Dubois, Catanionic microcrystals: organic platelets, gigadalton'molecules', or ionic solids? Aust. J. Chem. 2003. 56, 971-979.
    
    [41] A. Song, S. Dong, X. Jia. J. Hao, W. Liu, T. Liu, An Onion-phase in Salt-freeZero Charged Catanionic Surfactant Solutions, Angew. Chem. 2005, 117,4086-4089; Angew. Chem. Int. Ed. 2005, 44, 4108-4021.
    
    [42]杨澄宇,方云,蒋惠亮,陈明清.纳米技术与纳米材料(Ⅱ)——表面活性 剂在纳米科技中的应用,日用化学工业,2003,33,115-119
    
    [43]宋根萍,郭荣.十二烷基苯磺酸钠胶束体系中聚苯乙烯/α-Fe_2O_3复合纳米粒 子的制备,应用化学,2000,17,195-197.
    
    [44] F. J. Arriagada. K. Osseo-Asare. Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsions: A statistical model of silica nucleation.??Colloids Surf. A 1999,154, 311-326.
    
    [45] F. J. Arriagada, K. Osseo-Asare. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water-surfactant molar ratio and ammoniaconcentration. Colloids Surf A 1999. 210, 210-220.
    
    [46] R. Touroude, G. Paule, M. Gilbert, et al. Preparation of colloidalplatinum-palladiumalloy particles from nonionic microemulsions:characterization and catalytic behavior. Colloids Surf. A 1999, 67, 9-19.
    
    [47] T. Prozorov, G. Kataby, S. Soeya, et al. Effect of surfactant concentration on thesize of coated ferromagnetic nanoparticles. Thin solid films, 1999, 340, 89-193.
    
    [48] T. Liu, L. Guo, Y. Tao, et al. Synthesis and interfacial structure of nanoparticlesof α-Fe_2O_3 coated with surfactant DBS and CTAB, Nanostruct. Mater. 1999,11,487-492.
    
    [49] A. Markowitz Michael, N. Dunn Derren, Chow Gan Moog, et al. The effect ofmembrane charge on gold nanoparticles synthesis via surfactant membrane, J.Colloid Interface Sci 1999, 210, 73-85.
    
    [50] J. Lin, W. Zhou and C. J. O'Connor. Formation of ordered arrays of goldnanoparticles from CTAB reverse micelles. Materials Letters 2001, 49,282-286.
    
    [51] E. E. Foos, R. M. Stroud, A. D. Berry, et al. Synthesis of NanocrystallineBismuth in Reverse Micelles, J. Am. Chem. Soc. 2000.122, 7114-7115.
    
    [52] S. Kwan, R. Kim, J. Akana, et al Synthesis and assembly of BaWO_4 nanorods.Chem. Commun. 2001, J, 447-448.
    
    [53] F. T. Quinlan, J. Kuther, W. Treme, et al. Reverse Micelle Synthesis andCharacterization of ZnSe Nanoparticles . Langmuir 2000,16, 4049-4051.
    
    [54] J. P. Cason, M. E. Miller, J. B. Murphy, et al. Solvent Effects on CopperNanoparticle Growth Behavior in AOT Reverse Micelle Systems, J. Phvs.Chem. B 2001,105, 2297-2302.
    
    [55] D. Kaneko, H. Shouji, T. Kawai, et al. Synthesis of ZnO Particles by Ammonia-Catalyzed Hydrolysis of Zinc Dibutoxide in Nonionic Reversed Micelles, Langmuir 2000,16, 4086-4089.
    
    [56] H.Usui, Y. Shimizu, T. Sasaki, et al. Photo luminescence of ZnO NanoparticlesPrepared by Laser Ablation in Different Surfactant Solutions, J. Phys. Chem. B2005.109, 120-124.
    
    [57] L. Tunik, L. Addadi, N. Garti, H. Furedi-milhofer, Morphological and phasechanges in calcium oxalate crystals grown in the presence of sodium diisooctylsulfosuccinate, J. Cryst. Growth 1996,167. 748-755.
    
    [58] M. Sikiric N. Filipovic-Vincekovic, V. Babic-Ivancic, N. Vdovic, H.Fiiredi-Milhofer, Interactions in Calcium Oxalate Hydrate/Surfactant Systems, J.Colloid Interface Sci. 1999, 212, 384-389.
    
    [59] N. R. Jana, L. Gearheart, C. J. Murphy, Wet Chemical Synthesis of High AspectRatio Cylindrical Gold Nanorods, J. Phys. Chem. B 2001,105, 4065.
    
    [60] C. C. Chen, C. Y. Chao, Z. H. Lang, Simple Solution-Phase Synthesis of SolubleCdS and CdSe Nanorods, Chem. Mater. 2000,12, 1516-1518.
    
    [61] A. R. Loukanov, C. D. Dushkin, K. I. Papazova, A. V. Kirov. M. V. Abrashev, E.Adachi., Photoluminescence depending on the ZnS shell thickness of CdS/ZnScore-shell semiconductor nanoparticles. Colloids Surf. A 2004, 245, 9-14.
    
    [62] M. L. Curri, A. Agoatiano. L. Manna, M. D. Monica, M. Catalano, L.Chiavarone, V. Spagnolo, M. Lugara, Synthesis and Characterization of CdSNanoclusters in a Quaternary Microemulsion: the Role of the Cosurfactant, J.Phys. Chem. B 2000,104, 8391-8379.
    
    [63] M. Fujiwara, K. Shiokawa, Y Tanaka, Y Nakahara. Preparation and FormationMechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/WaterInterfacial Reaction. Chem. Mater. 2004,16. 5420-5426.
    
    [64] J. Jang, H. Ha, Fabrication of Hollow Polystyrene Nanospheres inMicroemulsion Polymerization Using Triblock Copolymers, Langmnir 2002,18,5613-5618.
    
    [65] N. Zheng, Q. Wu. Y. Ding, Y Li, Synthesis of BaCO_3 Nanowires and Nanorodsin the Presence of Different Nonionic W/O microemulsions. Chem. Lett. 2000,638-639.
    
    [66] R. P. Bagwe, K. C. Khilar. Effects of Intermicellar Exchange Rate on the??Formation of Silver Nanoparticles in Reverse Microemulsions of AOT,Langmuir 2000,16, 905-910.
    
    [67] C. C. Wang, D. H. Chen, T. C. Huang, Synthesis of palladium nanoparticles inwater-in-oil microemulsions, Colloids surf. A 2001,189, 145-154.
    
    [68] S. Vaucher, M. Li, S. Mann, Synthesis of Prussian Blue Nanoparticles andNanocrystal Superlattices in Reverse Microemulsions. Angew. Chem., 2000, 112,1863-1866. Angew. Chem. Int. Ed 2000, 39, 1793-1796.
    
    [69] A. J. Zarur, J. Y. Ying, Reverse microemulsion synthesis of nanostructuredcomplex oxides for catalytic combustion. Nature, 2000, 65-67.
    
    [70] J. H. Ding, D. L. Gin, Catalytic Pd Nanoparticles Synthesized Using a LyotropicLiquid Crystal Polymer Template, Chem. Mater. 2000,12, 22-24.
    
    [71] D. H. Gray, D. L. Gin, Polymerizable Lyotropic Liquid Crystals ContainingTransition-Metal Ions as Building Blocks for Nanostructured Polymers andComposites, Chem. Mater. 1998,10, 1827-1832.
    
    [72] X.. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, Simultaneous In Situ Formationof ZnS Nanowires in a Liquid Crystal Template by (?)-Irradiation, Chem. Mater.2001,13,1213-1218.
    
    [73] P.V. Braun, S. I. Stupp, mineralization of hexagonal, lamellar, and cubiclyotropic liquid crystals. Mater. Res. Bulletin 1999, 34, 463-469.
    
    [74] X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, Oleate vesicle template route tosilver nanowires, J. Mater. Chem. 2001,11,1775-1777.
    
    [75] O. Horrath, J. H. Fender, Cadmium sulfide-particle-mediated transmembranephotoelectron transfer in surfactant vesicles. J. Phys. Chem. 1992, 96,9591-9594.
    
    [76] J. Hotz, W. Meier, Vesicle-Templated polymer Hollow Spheres, Langmuir 1998,14, 1031-1036.
    
    [77] D. H. W. Hubert, M. Jung, P. M. Fredenk, P. H. H. Bomans, J. Meuldijk, A. L.German. Vesicle-Directed Growth of Silica, Adv. Mater. 2000.12. 1286-1290.
    
    [1] J. S. Martinez, G. P. Zhang, P. D. Holt H. T. Jung, C.J.Carrano, M. G. Haygood,A. Butler, Self-Assembling Amphiphilic Siderophores from marine Bacteria,Science 2000, 287, 1245-1247.
    
    [2] T. Owen, R. Pynn, J. S. Martinez, and A. Butler, Micelle-to-Vesicle Transitionof an Iron-Chelating Microbial Surfactant, Marinobactin E, Langmuir 2005, 21,12109-12114.
    
    [3] X. Lu, Z. Zhang, Y. Liang. Complexed bilayer Membranes with NovelStructural Features Formed by Single-Chain Amphiphiles, Langmuir 1997, 13,533-538.
    
    [4] C. Li, X. Lu, X. Luo, Y. Liang. Control on the Organized Structrue ofMonoalkyethylenediamine Copper(II) Coordinated Bilayer Membranes ofCounter Ions. Chem. Commun. 2001, 1440-1441.
    
    [5] C. Li, X. Lu, Y. Liang, Effect of Counterions on the Organized Structure ofCu~(2+)-coordinated Bilayer Membranes Formed by Monalkyl Derivatives ofEthylenediamine. Langmuir 2002,18, 575-580.
    
    [6] X. Lu, Z. Zhang, Y. Liang, Bilayer Formation in dilute aqueous Solution frommonoalkylenediamine, Langmuir 1996,12, 5501-5503.
    
    [7] H. Hoffmann, D. Grabner. U. Hornfeck. G. Platz. J. Phys. Chem. B 1999, 103,611-614.
    
    [8] Th. Zemb, M. Dubois. Catanionic microcrystals: organic platelets, gigadalton'molecules', or ionic solids? Aust. J. Chem. 2003, 56, 971-979
    
    [9] U. Hornfeck, M. Gradzielski. K. Mortensen, C. Thunig, G. Platz. Highly SwollenLamellar Phases in the System Calcium Dodecyl Sulfate, Pentanol or Hexanol,and Water, Langmuir 1998.14, 2958-2964.
    
    [10] J. C. Hao, H. Hoffmann. Self-assembled structures in excess and salt-freecatanionic surfactant solutions. Curr. Opin. Colloid. Inter. Sci 2004, 9.279-293.
    
    [11] A. Zapf, U. Hornfeck, G. Platz, H. Hoffmann. Investigation of the L_3 Phase inSystems Containing Calcium Dodecyl Sulfate, Alcohol, and Water, Langmuir2001,77,6113-6118.
    
    [12] A. Khan, B. Jonsson, H. Wennerstrdm. Phase equilibria in the mixed sodiumand calcium di-2-ethylhexylsulfosuccinate aqueous system. An illustration ofrepulsive and attractive double-layer forces, J. Phys. Chem, 1985, 89,5180-5184.
    
    [13] A. Zapf, R. Hammel, G. Platz. Phase behavior of iridescent phases with calciumdodecyl sulfate, octanol or decanol, and water, and the effect of the presence ofsodium ions, Colloids and Surfaces A 2001,183-185, 213-225.
    
    [14] J. C. Hao, J. Z. Wang, W. M. Liu, R. Abdel-Rahem. H. Hoffmann.Zn~(2+)-Induced Vesicle Formation, J. Phys. Chem. B 2004,108, 1168-1172.
    
    [15] J. Hao, J. Wang, W. Liu, T. Liu. R. Abdel-Rahem, H. Hoffmann, Zn~(2+)-InducedVesicle Formation, J. Phys. Chem. B 2004,108, 1168-1172.
    
    [16] J. Wang, A. Song, X. Jia, J. Hao, W. Liu, H. Hoffmann, Two Routes to VesicleFormation: Metal-Ligand Complexation and Ionic Interactions. J. Phys. Chem.B 2005,109, 11126-11134.
    
    [17] A. Song, X. Jia, M. Teng, J. Hao, Ca~(2+)-and Ba~(2+)-Ligand CoordinatedUnilamellar, Multilamellar, and Oligovesicular Vesicles, Chem. Eur. J. 2007,13. 496-501.
    
    [18]董人豪,王丽焕,苑再武,宋爱新,郝京诚,Al~(3+)-配位作用诱导的囊泡相, 科学通报,2007,52,1987-1990.
    
    [1] S. Mann, G. A. Ozin, synthesis of inorganic materials with complex form. Nature 1996, 352,313-318.
    
    [2] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglem, M. A. El-Sayed,Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles, Science 1996,272, 1924-1926.
    
    [3] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher. A. Kadavanich, A. P.Alivisatos, shap control of CdSe nanocrystals, Nature 2000, 404, 59-61.
    
    [4] E. Matijevic, Controlled colloid formation, Curr. Opin. Colloid Interface Sci.1996, i, 176-183.
    
    [5] J. H. Adair, E. Suvaci, Morphological control of particles, Curr. Opin. ColloidInterface Sci. 2000, 5, 160-167.
    
    [6] M. Angel, Crystal Growth Shape of Whewellite Polymorphs: Influence ofStructure Distortions on Crystal Shape. Crystal Growth Design, 2001, 1,245-254.
    
    [7] I. O. Benitez, D. R. Talham, Calcium Oxalate Monohydrate Precipitation atMembrane Lipid Rafts, J. Am. Chem. Soc. 2005,127, 2814-2815.
    
    [8] P. Calvert, Biomimetic Mineralization in and on Polymers, Chem. Mater. 1996, 8,1715-1727.
    
    [9] H. Chang, P. J. Huang, Thermal Decomposition of CaC_2O_4-H_2O Studied byThermo-Raman. Spectroscopy with TGA/DTA. Anal Chem.1991, 69. 1485-1491
    
    [10] J. Jack, J. M. Dormers, R. Brigid, Control over Calcium Carbonate PhaseFormation by Dendrimer/Surfactant Templates, Chem Eur J. 2002, 8,2561-2567.
    
    [11] D. B. Zhang, L. M. Qi, J. M. Ma, H. M. Cheng, Morphological Control of Calcium Oxalate Dihydrate by a Double-Hydrophilic Block Copolymer, Chem. Mater. 2002,14, 2450-2457.
    
    [12] R. Backov, C. M. Lee, S. R. Khan, C. Mingotaud, G. E. Fanucci, D. R. Talham.??Calcium Oxalate Monohydrate Precipitation at phosphatidylglycerol langmuirmonolayers. Langmuir 2000,16, 6013-6019.
    
    [13] J. M. Ouyang, L. Duan, B. Tieke, Effects of Carboxylic acids on the crystalgrowth of calcium oxalate nanoparticles in lecithin-water liposome systems,Langmuir 2003.19, 8980-8985.
    
    [14] J. M. Ouyang, L. Duan, J. H. He. B. Tieke, crystallization of calcium oxalate inliposome solutions of different carboxylates, Chem. Lett. 2003, 32, 268-269
    
    [15] B. M. Choudary, R. S. Mulukutla, K. J. Klabunde, Benzylation of AromaticCompounds with Different Crystallites of MgO,J. Am. Chem. Soc. 2003,125,2020-2021.
    
    [16] T. Karasuda, K. Aika. Isotopic oxygen exchange between dioxygen and MgOcatalysts foroxidative coupling of methane. J. Catal 1997, 171, 439-448.
    
    [17] P. Jeevanandam. K. J. Klabunde, A Study on Adsorption of Surfactant Moleculeson Magnesium Oxide Nanocrystals Prepared by an Aerogel Route, Langmuir2002,75,5309-5313.
    
    [18] R. Kakkar, P. N. Kapoor, Theoretical Study of the Adsorption of Formaldehydeon Magnesium Oxide Nanosurfaces: Size Effects and the Role ofLow-Coordinated and Defect Sites, J. Phys. Chem. B 2004.108, 18140-18148.
    
    [19] J. V. Stark, K. J. Klabunde, Nanoscale Metal Oxide Particles/Clusters asChemical Reagents. Adsorption of Hydrogen Haiides, Nitric Oxide, and SulfurTrioxide on Magnesium Oxide Nanocrystals and Compared with Microcrystals,Chem. Mater. 1996,5, 1913-1918.
    
    [20] J. Sawai. H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, T. Sawaki, A. Hakoda,E. Kawada, T. Kokugan, M. Shimizu, Antibacterial characteristics ofmagnesium oxide powder. World J. Microbiol.Biotechnol. 2000.16, 187.
    
    [21] L. Huang, D. Q. Li, Y. J. Lin, M. Wei. D. G. Evans, X. Duan.Controllablepreparation of Nano-MgO and investigation of its bactericidal properties, J.Inorg. Biochem. 2005, 99, 986-993.
    
    [22] A. Bhargava, J. A. Alarco. I. D. R. Mackinnon. D. Page. A. Ilyushechkin.Synthesis and characterisation of nanoscale magnesium oxide powders and their??application in thick films of Bi_2Sr_2CaCu_2O_8, Mater. Lett. 1998, 34, 133-142.
    
    [23] Q. Yang, J. Sha, L. Wang, Y.W. Wang, X.Y. Ma, J. Wang, D.R. Yang, synthesisof MgO nanotube bundles, Nanotechnology 2004, 75, 1004-1008.
    
    [24] J. C. Yu, A. Xu, L. Z. Zhang, R. Q. Song, L. Wu, Synthesis andCharacterization of Porous Magnesium Hydroxide and Oxide Nanoplates, J.Phys. Chem. B 2004, 708, 64-70.
    
    [25] Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang, Y. Qian,Nanoscale MagnesiumHydroxide and Magnesium Oxide Powders: Control over Size, Shape, andStructure via Hvdrothermal Svnthesis. Chem. Mater. 2001.13, 435-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700