用户名: 密码: 验证码:
甘草提取物与水解豌豆蛋白在乳化体系中的协同抗氧化性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶法水解蛋白可以提高蛋白的可消化性,并获得完整蛋白所不具备的一些生理活性,如抗氧化活性等。然而,在水包油(O/W)乳状液体系中,水解蛋白因大部分分布于水相环境,无法有效作用于氧化反应最为集中的界面相和油相环境,因此,需要在其它抗氧化剂的辅助作用下才能获得理想的抗氧化效果。本文采用低致敏且具有清除游离基能力的水解豌豆蛋白(PPH)为原料,考察了常用的脂溶性食品配料甘草提取物(LE)与其在乳化体系(脂质体体系和乳状液体系)中联合抑制脂肪氧化的作用,并深入探讨了二者的协同抗氧化机理。为改善PPH的乳化性能并获得更为稳定的协同抗氧化效果,采用糖基化反应对水解蛋白进行共价修饰,获得了乳化性能明显改善的新型水解豌豆蛋白产品。随后,进一步考察了甘草提取物对水解蛋白糖基化反应的影响及其与高乳化活性的糖基化水解豌豆蛋白在乳化体系中的协同抗氧化效应。
     本研究首先考察了7种常用蛋白酶(胰蛋白酶、胰凝乳蛋白酶、木瓜蛋白酶、胃蛋白酶、碱性蛋白酶、风味蛋白酶和复合蛋白酶)对豌豆蛋白的酶解作用,并对各水解蛋白的抗氧化性及乳化性进行测定。结果表明,所有水解蛋白的清除游离基能力都较完整蛋白有显著提高,但是乳化能力明显下降。风味蛋白酶和复合蛋白酶制备的水解蛋白具有最强的抑制脂质体氧化的能力和相对较好的乳化能力。酶解前对豌豆蛋白的加热处理(90C,5min)有助于改善水解蛋白的抗氧化能力和乳化能力。
     接着,在脂质体体系中考察了水溶性PPH与脂溶性LE对脂肪氧化的联合抑制作用,以每升脂质体悬浊液所含硫代巴比妥酸反应物(TBARS)的量表示脂肪氧化的程度。结果表明,大多数PPHs,尤其是加热豌豆蛋白与风味蛋白酶和复合蛋白酶的酶解产物Fla-PPH和Pro-PPH,能够与LE产生协同增效的抑制脂肪氧化的作用。这主要与PPH富含可电离氨基酸以及疏水性N末端、LE中富含抗氧化多酚物质有关。通过对抑制TBARS能力最强的多肽组分进一步分离纯化和质谱检测,鉴定出10种抗氧化肽结构,其中LQEEDNVISQ、ITPERTLQLQDLDIFVN和LANRDDNEDLVGVL与豌豆vicilin序列相匹配。另外,PPH能够在脂质体表面形成自组装的网状结构,保护了脂质体不被氧化物质破坏。LE则通过与豌豆多肽发生非共价相互作用强化了网状结构的厚度和致密程度,进一步提高了脂质体对外界氧化胁迫的抵抗能力。所以,PPH与LE协同增效的抗氧化作用是二者化学机制和物理机制共同作用的结果。
     基于以上结果,进一步考察了PPH与LE在O/W乳状液体系中对脂肪氧化的联合抑制作用。将前面得到的抑制脂质体氧化能力较强的Fla-PPH和Pro-PPH以及LE添加到Tween20为辅助乳化剂的大豆油O/W乳状液(油含量10%,pH7.0)中,采用37C自动氧化,定期测定乳状液贮藏过程中过氧化值(POV)和丙二醛反应物(TBARS)的生成量。结果表明,Fla-PPH和Pro-PPH能够有效地抑制乳状液体系中脂肪氧化的进程。电镜结果表明,PPH能够在乳化液滴表面形成了一层保护膜,从而减弱氧化物对油脂的氧化胁迫。LE显著提高了两种PPH抑制脂肪氧化的作用(协同抗氧化作用)。原因是二者的联合使用有效清除了水相和油相中的自由基,并且降低了乳化液滴的表面电势和平均粒径,促进了厚实且致密的界面保护层的形成,大大改善了界面层对外界氧化胁迫的抵抗能力。该结果进一步证明了PPH与LE的协同抗氧化效应是化学机制和物理机制共同作用的结果。芹糖甘草苷、芹糖异甘草苷、光甘草素和18β-甘草次酸是LE中主要分布在油水界面的多酚化合物,这些化合物很有可能是与PPH产生协同抗氧化效应的主要成分。
     虽然,PPH与LE能够在乳化体系中产生协同增效的抗氧化作用,但是PPH自身的乳化性能较差,无法获得稳定的乳化体系,因而限制了PPH作为多功效食品组分在生产加工中的应用以及PPH与LE的协同抗氧化功效在乳化产品中的发挥与应用。因此,本文采用温和的美拉德反应对PPH进行糖基化改性以获得具有较高乳化活性的水解蛋白,再进一步考察LE与高乳化活性的糖基化水解豌豆蛋白在乳化体系中的协同抗氧化作用。结果表明,PPH与葡萄糖、麦芽糊精和葡聚糖在pH7.0、60C保温48h后生成了以初期产物希夫碱为主要产物的美拉德反应共聚物。其中,葡聚糖,虽然反应活性低于葡萄糖和麦芽糊精,但显著改善了PPH的乳化能力,并基本保留了PPH自身的抗氧化活性。所有共聚物中,Pro-PPH与葡聚糖形成的共聚物的乳化能力改善最多。因此,可利用葡聚糖参与的美拉德反应改善水解豌豆蛋白的乳化性能,从而制备兼具良好乳化性和抗氧化性的新型水解豌豆蛋白产品。
     随后,将乳化能力改善最多的Pro-PPH–葡聚糖共聚物添加到大豆油O/W乳状液体系中,进一步检验其对乳化油滴的稳定作用及对外界环境胁迫的抵抗能力。结果表明,该共聚物具有良好的乳化性能以及抑制油脂氧化的能力。电镜结果表明,这与其具有高度交联的空间网状结构密切相关。此交联结构不仅有助于在乳化液滴表面形成坚实的保护层,也增大了体系的粘度,因此,有效限制了乳化液滴的碰撞、聚集和合并以及过氧化产物的扩散和转移。另外,此交联结构也降低了PPH与外界不良环境因素(热、酸碱等)的接触及相应的变性应激。Pro-PPH凝胶分离组分中分子量较大的PF1和PF2组分具有最强的美拉德反应活性。Pro-PPH与糖的糖基化反应容易发生在肽链的端基,检测到的糖基化肽段包括豌豆蛋白11S中的IISPPEK和LSIISPPEK及7S中的KLP、NVIVK和LSPGDVF。
     最后,探讨了LE对Pro-PPH与葡聚糖糖基化反应的影响及其与Pro-PPH–葡聚糖共聚物在乳化体系中的联合抗氧化效果。结果表明,LE具有促进Pro-PPH糖基化改性的作用,可作为桥梁媒介提高Pro-PPH与葡聚糖的反应活性,进一步改善Pro-PPH–葡聚糖共聚物的乳化性能。LE与Pro-PPH–葡聚糖共聚物依然具有协同增效的抑制脂肪氧化的作用。可见,无论糖基化反应前或后加入甘草提取物,都将对乳化体系的稳定性(物理稳定性以及化学稳定性)产生积极的改善作用。
     总之,水解豌豆蛋白与甘草提取物能够在乳化体系中产生协同增效的抑制脂肪氧化的作用。水解豌豆蛋白的糖基化改性对二者协同作用影响不大。所以,合理配比水解豌豆蛋白与甘草提取物,可用于开发具有强抗氧化效力的组合抗氧化剂产品,用以最大限度地改善乳状液产品的化学及物理稳定性,开辟豌豆蛋白与甘草提取物新的应用价值和领域,为食品工业创造更大的价值。
Enzymatic hydrolysis of protein can not only improve the digestibility, but also thebioactivities, especially the antioxidant activity. However, due to size reduction and increasedcharges, peptides are distributed preferentially in the aqueous phase, therefore more effectivein the aqueous phase than in the lipid phase where hydroperoxides and peroxide radicals aregenerated. Hence, other antioxidants were required to work with protein hydrolysates toobtain ideal inhibitory effect on lipid oxidation in oil-in-water (O/W) emulsions. In this study,radical-scavenging pea protein hydrolysate (PPH) with low-allergenicity was used toinvestigate its cooperative inhibitory effect with lipophilic licorice extract (LE) on lipidoxidation in O/W emulsions. The mechanism of synergistic antioxidative effect waselucidated. Saccharides with various lengths (glucose, maltodextrin, and dextran) wereintroduced into pea peptides via Maillard reaction to try to improve the emulsifying propertiesof PPHs in emulsions. The effect of LE on glycosylation of PPH as well as the cooperativeeffect of glycated PPH and LE on lipid oxidation in O/W emulsions were also studied.
     Pea protein isolates (PPIs) with or without heating (90C,5min) were hydrolyzed usingseven proteases (trypsin, chymotrypsin, papain, pepsin, Alcalase, Flavourzyme and Protamex)to produce pea protein hydrolysates (PPHs). Antioxidant activity and emulsifying property ofPPHs were assessed. Results showed all PPHs exhibited stronger radical scavenging activitythan intact proteins, but weaker emulsifying property. Those prepared with Flavourzymeand Protamex were most effective in inhibiting lipid oxidation in a liposomal system, and alsoshowed relatively good emulsifying property. Overall, PPHs from heated PPIs exhibited betterantioxidant activity and emulsifying property than those from native PPIs.
     The cooperative effect of PPHs in combination with LE for the inhibition of lipidoxidation in a liposomal model system was assessed. Degree of oxidation was expressed asformation of TBA reactive substances (TBARS) per liter of liposome suspension. Resultsshowed that most PPHs, especially those prepared from heated protein with Flavourzyme andProtamex (Fla-PPH and Pro-PPH) exhibited remarkable synergistic inhibitory effects with LE.The synergism was attributed to the abundant charged amino acid side chain groups and thedominating presence of hydrophobic N-terminus of constituting peptides in the proteinhydrolysates and the preponderance of phenolic compounds in licorice extract. Afterseparation and purification of peptide fractions that exhibited excellent TBARS inhibition,10peptides were identified, of which, LQEEDNVISQ, ITPERTLQLQDLDIFVN andLANRDDNEDLVGVL matched the sequence of pea vicilin. While self-assembled networksformed around lipid droplets appeared to be a prevalent physical mechanism by whichpeptides diminished the potency of oxidants, the peptides’ association with phenolic and otheractive components from licorice extract afforded a more compact and rigid protective network,providing liposomes with a stronger defense against oxidative stress. Both chemical andphysical mechanisms exerted by PPH and LE were responsible for the antioxidativeprotection.
     The cooperative inhibitory effect of PPH with LE on lipid oxidation in an O/W emulsionwas further determined. Fla-PPH and Pro-PPH, which exhibited the strongest inhibition on liposome oxidation, and LE were subjected to soybean O/W emulsions (oil phase10%, pH7)co-stabilized by Tween20. The suppression of lipid oxidation (POV and TBARS) wasassessed during storage at37°C. Results showed that both PPHs significantly retardedoxidation of the emulsions. Electron microscopy revealed an interfacial peptidyl membranearound oil droplets which afforded steric restrictions to oxidation initiators. When LE wasalso used in emulsion preparation, a remarkable synergistic oxidation inhibition was observedwith both PPHs. The combination of PPH and LE, on one hand, allowed the efficient removalof radicals in both aqueous and lipid phases; on the other hand, reduced the surface charge andparticle size of oil droplets, thereby facilitating the formation of thick and rigid interfacialmembrane which offered superior defense against oxidative stress. This result furtherconfirmed that both chemical and physical mechanisms exerted by PPH and LE wereresponsible for the antioxidative protection. Liquiritin apioside, neolicuroside, glabrene and18β-glycyrrhetic acid were the predominant compounds in LE partitioning at the oil–waterinterface and were likely responsible for the strong antioxidant activity of LE in O/Wemulsions and the notable synergism when coupled with PPHs.
     Although PPH exerted synergistic antioxidative effects with LE in O/W emulsions, thepoor emulsifying property hindered PPH from making stable emulsions and high-performancesynergistic antioxidative effects with LE in these emulsions. Hence, Maillard-typeglycosylation was employed to improve the emulsifying propery of PPH. Results showed thatinitial stage products Schiff base was generated when incubated PPHs and saccharides(glucose, maltodextrin, and dextran) in aqueous solutions at pH7.0,60C for48h. Despitethe low degree of glycation relative to glucose and maltodextrin, dextran exhibited the highestefficacy on improving emulsifying property and maintaining the antioxidant potential of PPHs.Pro-PPH–dextran conjugate showed the highest improvement in emulsifying capacity.Therefore, controlled Maillard reaction with dextran, can be used as an effective tool toimprove the emulsifying property of antioxidative pea protein hydrolysates.
     Next, apply Pro-PPH–dextran conjugates into soybean O/W emulsions to furthercharacterize their emulsifying property. Results showed that Pro-PPH–dextran conjugateswere effective emulsifiers and offered superior defense against oxidative stress. This can beattributed to their highly interactive and crosslinked network structure, which facilitated theformation of thick and rigid interfacial membrane and the improvement of viscosity. As aresult, the collision or aggregation of oil droplets was restricted, and the diffusion and transferof oxidative substrates were also hindered. Meanwhile, the stabilization of structure andfunction of PPHs in these emulsions towards environmental stresses were also strengthened.PF1and PF2, the first two largest gel filtration fractions of Pro-PPH, showed the highestMaillard reaction reactivity. N-termini of peptide chains were more accessible to saccharides.MS/MS analyses detected the glycated peptides IISPPEK and LSIISPPEK from pea protein11S, and KLP, NVIVK and LSPGDVF from pea protein7S.
     Ultimately, study the effect of LE on glycosylation of PPH as well as the cooperativeinhibitory effect of Pro-PPH–dextran conjugates with LE on lipid oxidation in O/W emulsions.Results showed that LE promoted the covalent conjugation between Pro-PPH and dextran. It can act as a bridge to enhance the reactivity between Pro-PPH and dextran, thus furtherimproving the emulsifying property of Pro-PPH–dextran conjugates. On the other hand,synergistic antioxidative effects were still observed on Pro-PPH–dextran conjugates and LE inO/W emulsions. Hence, the addition of LE either before of after glycosylation of PPH, canbring positive improvements to the properties of emulsion-type food products containing PPH.
     Overall, pea protein hydrolysates when used in combination with licorice extract, canproduce a synergistic inhibition on lipid oxidation in O/W emulsions. Glycosylation of PPHshowed little affect on its synergism with LE, but enhaced the reliability of synergism inemulsions. Hence, enzymatic pea protein hydrolysates and licorice extract can be appliedtogether to develop superior antioxidant ingredient and to maximize the stability of emulsion-type food products, both physically and chemically.
引文
1. Sosulski F W, McCurdy A R. Functionality of flours, protein fractions and isolates from field peas andbean[J]. J. Food Sci.1987,52:1010–1014.
    2. Bishnoi S, Khetarpaul N. Variability in physico-chemical properties and nutrient composition ofdifferent pea cultivars[J]. Food Chem,1993,47:371–373.
    3. Boye J I, Aksay S, Roufik S, et al. Comparison of the functional properties of pea, chickpea and lentilprotein concentrates processed using ultrafiltration and isoelectric precipitation techniques[J]. Food ResInt,2010,43:537–546.
    4. Davidsson L, Dimitriou T, Walczyk T, et al. Iron absorption from experimental infant formulas basedon pea (Pisum sativum) protein isolate: the effect of phytic acid and ascorbic acid[J]. Brit J Nutr,2001,85:59–63.
    5. Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. FAOFood and Nutrition Paper,2011,92.
    6. Sumner A K, Nielsen M A.; Youngs, C. G. Production and evaluation of pea protein isolate[J]. J FoodSci,1981,46:364–366.
    7. Swanson B G. Pea and lentil protein extraction and functionality[J]. JAOCS,1990,67(5):276–280.
    8. Shand P J, Ya H, Pietrasik Z, et al. Physicochemical and textural properties of heat-induced pea proteinisolate gels[J]. Food Chem,2007,102:1119–1130.
    9. Osen R, Toelstede S, Wild F, et al. High moisture extrusion cooking of pea protein isolates: Rawmaterial characteristics, extruder responses, and texture properties[J]. J Food Eng,2014,127:67–74.
    10. Su Y K, Bowers J A, Zayas J F. Physical characteristics and microstructure of reduced-fat frankfurtersas affected by salt and emulsified fats stabilized with nonmeat proteins[J]. J Food Sci,2000,65(1):123–128.
    11. Marco C, Rosell C M. Effect of different protein isolates and transglutaminase on rice flourproperties[J]. J Food Eng,2008,84:132–139.
    12.孙聃,田少君,郭兴凤.豌豆蛋白及豌豆粉对馒头品质的影响[J].粮油加工,2008,3:81–83.
    13. Nunes M C, Batista P, Raymundo A, et al. Vegetable proteins and milk puddings[J]. Colloid Surf B:Biointerfaces,2003,31:21–29.
    14. Nieto G, Castillo M, Xiong Y L, et al. Antioxidant and emulsifying properties of alcalase-hydrolyzedpotato proteins in meat emulsions with different fat concentrations[J]. Meat Sci,2009,83:24–30.
    15. Jiang J, Chen J, Xiong Y L. Structural and emulsifying properties of soy protein isolate subjected toacid and alkaline pH-shifting processes[J]. J Agric Food Chem,2009,57:7576–7583.
    16. Hiller B, Lorenzen P C. Functional properties of milk proteins as affected by Maillard reaction inducedoligomerisation[J]. Food Res Int,2010,43:1155–1166.
    17. Achouri A, Boye J I. Thermal processing, salt and high pressure treatment effects on molecularstructure and antigenicity of sesame protein isolate[J]. Food Res Int,2013,53:240–251.
    18. DonsìF, Senatore B, Huang Q, et al. Development of novel pea protein-based nanoemulsions fordelivery of nutraceuticals[J]. J Agric Food Chem,2010,58:10653–10660.
    19. Shand PJ, Ya H, Pietrasik Z, et al. Transglutaminase treatment of pea proteins: Effect onphysicochemical and rheological properties of heat-induced protein gels[J]. Food Chem,2008,107:692–699.
    20. Choi W, Han J H. Film-forming mechanism and heat denaturation effects on the physical and chemicalproperties of pea-protein-isolate edible films[J]. J Food Sci,2002,67(4):1399–1406.
    21. Baniel A, Caer D, Colas B, et al. Functional properties of glycosylated derivatives of the11s storageprotein from pea (Pisum sativum L.)[J]. J Agric Food Chem,1992,40:200–205.
    22. Gueguen J. Relation between conformation and surface hydrophobicity of pea (Pisum sativum L.)globulins[J]. J Agric Food Chem,1989,37:1236–1241.
    23. Barac M, Cabrilo S, Stanojevic S,et al. Functional properties of protein hydrolysates from pea (Pisumsativum, L) seeds[J]. Int J Food Sci Tech,2012,47:1457–1467.
    24. Vermeirssen V, Van Camp J, Verstraete W. Fractionation of angiotensin I converting enzymeinhibitory activity from pea and whey protein in vitro gastrointestinal digests[J]. J Sci Food Agric,2005,85:399–405.
    25. Li H, Aluko R E. Identification and inhibitory properties of multifunctional peptides from pea Proteinhydrolysate[J]. J Agric Food Chem,2010,58:11471–11476.
    26. Pownall T L, Udenigwe C C, Aluko R E. Amino acid composition and antioxidant properties of peaseed (Pisum sativum L.) enzymatic protein hydrolysate fractions[J]. J Agric Food Chem,2010,58:4712–4718.
    27. Humiski L.M, Aluko R E. Physicochemical and bitterness properties of enzymatic pea proteinhydrolysates[J]. J Food Sci,2007,72(8): S605–S611.
    28. wi tecka D, wi tecki A, Kostyra H, et al. The impact of pea protein hydrolysates on bacterialphysiological activity—An in vitro study[J]. Int J Food Microbiol,2010,140:263–270.
    29. Adler-Nissen J. Enzymic Hydrolysis of Food Proteins[M]. London, UK: Elsevier Applied SciencePublishers,1986.427.
    30. Xiong Y L. Antioxidant peptides. In: Bioactive Proteins and Peptides as Functional Foods andNeutraceuticals[M]. Hoboken, NJ: Wiley-Blackwell,2010.29–42.
    31. Chen H, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-Conglycinin[J]. J Agric Food Chem,1995,43:574–578.
    32. Park P, Jung W, Nam K, et al. Purification and characterization of antioxidative peptides from proteinhydrolysate of lecithin-free egg yolk[J]. J Am Oil Chem Soc,2001,78:651–656.
    33. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates ofβ-lactoglobulin in food lipid dispersions[J]. J Agric Food Chem,2006,54:9565–9572.
    34. Park E Y, Imazu H, Matsumura Y, et al. Effects of peptide fractions with different isoelectric pointsfrom wheat gluten hydrolysates on lipid oxidation in pork meat patties[J]. J Agric Food Chem,2012,60:7483–7488.
    35. Kong B, Xiong Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possiblemode of action[J]. J Agric Food Chem,2006,54:6059–6068.
    36. Hirose A, Miyashita K. Inhibitory effect of proteins and their hydrolysates on the oxidation oftriacylglycerols containing docosahexaenoic acids in emulsion[J]. J Jpn Soc Food Sci Technol,1999,46:799–805.
    37. Cheng Y, Xiong Y L, Chen J. Antioxidant and emulsifying properties of potato protein hydrolysate insoybean oil-in-water emulsions[J]. Food Chem,2010,120:101–108.
    38. Chen H, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on theantioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem,1996,44:2619–2623.
    39. Sarmadi B H, Ismail A. Antioxidative peptides from food proteins: A review[J]. Peptides,2010,31:1949–1956.
    40. Ma Y, Xiong Y L. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests[J]. JAgric Food Chem,2009,57:4372–4380.
    41. Klompong V, Benjakul S, Yachai M, et al. Amino acid composition and antioxidative peptides fromprotein hydrolysates of yellow stripe trevally (Selaroides leptolepis)[J]. J Food Sci,2009,74: C126–C133.
    42. Tong L M, Sasaki S, McClements D J, et al. Antioxidant activity of whey in a salmon oil emulsion[J]. JFood Sci,2000,65:1325–1329.
    43. Zhu L, Chen J, Tang X, et al. Reducing, radical scavenging, and chelation properties of in vitro digestsof Alcalase-treated zein hydrolysate[J]. J Agric Food Chem,2008,56:2714–2721.
    44. Tang X, He Z, Dai Y, et al. Peptide fractionation and free radical scavenging activity of zeinhydrolysate[J]. J Agric Food Chem,2010,58:587–593.
    45. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillarproteins by protease treatment[J]. J Agric Food Chem,2003,51:3661–3667.
    46. Frankel E N, Huang S, Kanner J, et al. Interfacial phenomena in the evaluation of antioxidants: bulkoils vs emulsions[J]. J Agric Food Chem,1994,42:1054–1059.
    47. McClement, D J, Decker E A. Lipid oxidation in oil-in-water emulsions: impact of molecularenvironment on chemical reactions in heterogeneous food systems[J]. J Food Sci,2000,65:1270–1282.
    48. Coupland J N, McClements D J. Lipid oxidation in food emulsions[J]. Trends Food Sci Tech,1996,7(3):83–91.
    49. Huang S, Frankel E N, Aeschbach R, et al. Partition of selected antioxidants in corn oil–water modelsystems[J]. J Agric Food Chem,1997,45:1991–1994.
    50. McClements D J. Interfacial properties and their characterization. In: Food Emulsions: Principles,Practice, and Techniques[M]: second edition. Boca Raton, FL: CRC,2005.
    51. Mei L, McClements D J, Decker E A. Lipid oxidation in emulsions as affected by charge status ofantioxidants and emulsion droplets[J]. J Agric Food Chem,1999,47(6):2267–2273.
    52. Chen J, Dickinson E. Protein/surfactant interracial interactions Part3. Competitive adsorption ofprotein+surfactant in emulsions[J]. Colloids Surf A Physicochem Eng Asp,1995,101:77–85.
    53. Bishov S J, Henick A S. Antioxidant effect of protein hydrolysates in freeze-dried model systems.Synergistic action with a series of phenolic antioxidants[J]. J Food Sci1975,40:345–348.
    54. Bonilla F, Mayen M, Merida J, et al. Extraction of phenolic compounds from red grape marc for use asfood lipid antioxidants[J]. Food Chem,1999,66:209–215.
    55.张欣,赵新淮.几种多酚化合物抗氧化性的不同化学评价及相关性分析[J].食品科学,2008,29(10):85–89.
    56. Maqsood S, Benjakul S. Comparative studies of four different phenolic compounds on in vitroantioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince[J].Food Chem,2010,119:123–132.
    57. Viljanen K, Kylli P, Kivikari R, et al. Inhibition of protein and lipid oxidation in liposomes by berryphenolics[J]. J Agric Food Chem,2004,52:7419–7424.
    58. Kong B, Zhang H, Xiong Y L. Antioxidant activity of spice extracts in a liposome system and incooked pork patties and the possible mode of action[J]. Meat Sci,2010,85:772–778.
    59. Kathirvel P, Gong Y, Richards M P. Identification of the compound in a potent cranberry juice extractthat inhibits lipid oxidation in comminuted muscle[J]. Food Chem,2009,115:924–932.
    60. Ganh o R, Estévez M, Kylli P, et al. Characterization of selected wild Mediterranean fruits andcomparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties[J]. JAgric Food Chem,2010,58:8854–8861.
    61. Sekhon-Loodu S, Warnakulasuriya S N, Rupasinghe H P V, et al. Antioxidant ability of fractionatedapple peel phenolics to inhibit fish oil oxidation[J]. Food Chem,2013,140:189–196.
    62.方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社.2002.
    63.凌关庭.抗氧化食品与健康[M].北京:化学工业出版社,2004.112–123
    64. Rice-Evans C A, Miller N J, Paganga G. Structure–antioxidant activity relationships of flavonoids andphenolic acids[J]. Free Rad Biol Med,1996,20:933–956.
    65. Hagerman A E, Rice M E, Ritchard N T. Mechanisms of protein precipitation for two tannins,pentagalloyl glucose and epicatechin16(4→8) catechin (procyanin)[J]. J Agric Food Chem,1998,46:2590–2595.
    66. Kroll J, Rawel H M, Rohn S. Reactions of plant phenolics with food proteins and enzymes underspecial consideration of covalent bonds[J]. Food Sci Technol Res,2003,9(3):205–218.
    67. Charlton A J, Baxter N J, Khan M L, et al. Polyphenol/peptide binding and precipitation[J]. J AgricFood Chem,2002,50:1593–1601.
    68. Hagerman A E, Butler L G. The specificity of proanthocyanidin-protein interactions[J]. J Biol Chem,1981,256:4494–4497.
    69. Medina I, Tombo I, Satué-Gracia M T, et al. Effects of natural phenolic compounds on the antioxidantactivity of lactoferrin in liposomes and oil-in-water emulsions[J]. J Agric Food Chem,2002,50:2392–
    2399.
    70. Ozdal T, Capanoglu E, Altay F. A review on protein–phenolic interactions and associated changes[J].Food Res Int,2013,51:954–970.
    71. Cheel J, Van Antwerpen P, T mová L, et al. Free radical-scavenging, antioxidant andimmunostimulating effects of a licorice infusion (Glycyrrhiza glabra L.)[J]. Food Chem,2010,122:508–517.
    72. Hu C, Liu H, Du J, et al. Estrogenic activities of extracts of Chinese licorice (Glycyrrhiza uralensis)root in MCF-7breast cancer cells[J]. J Steroid Biochem Mol Biol,2009,113:209–216.
    73. Kalaiarasi P, Kaviarasan K, Pugalendi K V. Hypolipidemic activity of18β-glycyrrhetinic acid onstreptozotocin-induced diabetic rats[J]. Eur J Pharmacol,2009,612:93–97.
    74. Vaya J, Belinky P A, Aviram M. Antioxidant constituents from licorice roots: isolation, structureelucidation and antioxidative capacity toward LDL oxidation[J]. Free Radical Biol Med,1997,23:302–313.
    75. Dehpour A R, Zolfaghari M E, Samadian T, et al. Antiulcer activities of liquorice and its derivatives inexperimental gastric lesion induced by ibuprofen in rats[J]. Int J Pharm,1995,119:133–138.
    76. Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice)[J]. JChromatogr A,2009,1216:1954–1969.
    77. Gordon M H, An J. Antioxidant activity of flavonoids isolated from licorice[J]. J Agric Food Chem,1995,43:1784–1788.
    78. Zhang H, Kong B, Xiong Y L, et al. Antimicrobial activities of spice extracts against pathogenic andspoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices storedat4C[J]. Meat Sci,2009,81:686–692.
    79. Kong B, Zhang H, Xiong Y L. Antioxidant activity of spice extracts in a liposome system and incooked pork patties and the possible mode of action[J]. Meat Sci,2010,85:772–778.
    80. Jiang J, Zhang X, True A D, et al. Inhibition of lipid oxidation and rancidity in precooked pork pattiesby radical-scavenging licorice (Glycyrrhiza glabra) extract[J]. J Food Sci,2013,78(11): C1686–C1694.
    81. van Boekel M A J S. Effect of heating on Maillard reactions in milk [J]. Food chem,1998,62(4):403–414
    82. Yeboah F K, Alli I, Yaylayan V A, Konishi Y, Stefanowicz P. Monitoring Glycation of Lysozyme byElectrospray Ionization Mass Spectrometry [J]. J Agric Food Chem,2000,48:2766–2774
    83. Saeki H. Preparation of neoglycoprotein from Carp myofibrillar protein by Maillard reaction withglucose: biochemical properties and emulsifying properties[J]. J Agric Food Chem,1997,45:680–684.
    84. Zhu D, Damodaran S, Lucey J A. Formation of whey protein isolate (WPI)-dextran conjugates inaqueous solutions[J]. J Agric Food Chem,2008,56:7113–7118.
    85. Zhu D, Damodaran S, Lucey J A. Physicochemical and emulsifying properties of whey protein isolate(WPI) dextran conjugates produced in aqueous solution[J]. J Agric Food Chem,2010,58:2988–2994
    86. Kato A, Minaki K, Kobayashi K. Improvement of emulsifying properties of egg white proteins by theattachment of polysaccharide through Maillard reaction in a dry state[J]. J Agric Food Chem,1993,41:540–543.
    87. Kato A, Shimokawa K, Kobayashi K. Improvement of the functional properties of insoluble gluten bypronase digestion followed by dextran conjugation[J]. J Agric Food Chem,1991,39:1053–1058.
    88. Shu Y, Sahara S, Nakamura S, et al. Effects of the length of polysaccharide chains on the functionalproperties of the Maillard-type lysozyme-polysaccharide conjugate[J]. J Agric Food Chem,1996,44:2544–2548.
    89. Kato A. Industrial applications of Maillardetype proteinepolysaccharide conjugates[J]. Food SciTechnol Res,2002,8:193–199.
    90. Akhtar M, Dickinson E. Whey protein–maltodextrin conjugates as emulsifying agents: An alternativeto gum Arabic[J]. Food Hydrocolloid,2007,21:607–616.
    91. Dickinson E, Izgi E. Foam stabilization by protein–polysaccharide complexes[J]. Colloid Surf A:Physicochem Eng Asp,1996,113:191–201.
    92. Trofimova D, de Jongh H H J. Modification of b-lactoglobulin by oligofructose: Impact of proteinadsorption at the air–water interface[J]. Langmuir,2004,20:5544–5552.
    93. Ganzevles R A, Stuart M A C, van Vliet T, et al. Use of polysaccharides to control protein adsorptionto the air–water interface[J]. Food Hydrocolloid,2006,20:872–878.
    94. Aminlari M, Ramezani R, Jadidi F. Effect of Maillard-based conjugation with dextran on the functionalproperties of lysozyme and casein[J]. J Sci Food Agric,2005,85:2617–2624.
    95. Diftis N G, Kiosseoglou V D. Stability against heat-induced aggregation of emulsions prepared with adry-heated soy protein isolate–dextran mixture[J]. Food Hydrocolloid,2006,20:787–792.
    96. Spotti M J, Perduca M J, Piagentini A, et al. Gel mechanical properties of milk whey proteinedextranconjugates obtained by Maillard reaction[J]. Food Hydrocolloid,2013,31:26–32
    97. Babiker E E, Hiroyuki A, Matsudomi N, et al. Effect of polysaccharide conjugation or transglutaminasetreatment on the allergenicity and functional properties of soy protein[J]. J Agric Food Chem,1998,46:866–871.
    98. Nakamura S, Kato A J, Kobayashi K. Bifunctional lysozyme galactomannan conjugate havingexcellent emulsifying properties and bactericidal effect[J]. J Agric Food Chem,1992,40:735–739.
    99. Nakamura S, Ogawa M, Nakai S, et al. Antioxidant activity of a Maillard-type phosvitin-galactomannan conjugate with emulsifying properties and heat stability[J]. J Agric Food Chem,1998,46:3958–3963.
    1. Davidsson L, Dimitriou T, Walczyk T, et al. Iron absorption from experimental infant formulas basedon pea (Pisum sativum) protein isolate: the effect of phytic acid and ascorbic acid[J]. Brit J Nutr,2001,85:59–63.
    2. Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. FAOFood and Nutrition Paper,2011,92.
    3. Pe a-Ramos E A, Xiong Y L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked porkpatties[J]. Meat Sci,2003,64:259–263.
    4. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates ofβ-lactoglobulin in food lipid dispersions[J]. J Agric Food Chem,2006,54:9565–9572.
    5. Rao S, Sun J, Liu Y, et al. ACE inhibitory peptides and antioxidant peptides derived from in vitrodigestion hydrolysate of hen egg white lysozyme[J]. Food Chem,2012,135:1245–1252.
    6. Tong L M, Sasaki S, McClements D J, et al. Antioxidant activity of whey in a salmon oil emulsion[J]. JFood Sci,2000,65:1325–1329.
    7. Pe a-Ramos E A, Xiong Y L. Antioxidative activity of whey protein hydrolysates in a liposomalsystem[J]. J Dairy Sci,2001,84:2577–2583.
    8. Jiang J, Chen J, Xiong Y L. Structural and emulsifying properties of soy protein isolate subjected toacid and alkaline pH-shifting processes[J]. J Agric Food Chem,2009,57:7576–7583.
    9. Boye J I, Aksay S, Roufik S, et al. Comparison of the functional properties of pea, chickpea and lentilprotein concentrates processed using ultrafiltration and isoelectric precipitation techniques[J]. Food ResInt,2010,43(2):537–546.
    10. Liu G, Xiong Y L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidizedmyosin[J]. J Agric Food Chem,2000,48:624–630.
    11. Snyder S L, Sobocinski P Z. An improved2,4,6-trinitrobenzenesulfonic acid method for thedetermination of amines[J]. Anal Biochem,1975,64:284–288.
    12. Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radicalcation decolorization assay[J]. Free Radic Biol Med,1999,26(9/10):1231–1237.
    13. Aruoma O I. Deoxyribose Assay for detecting hydroxyl radicals[J]. Method Enzymol,1994,233:57–
    66.
    14. Hsu B, Coupar I M, Ng K. Antioxidant activity of hot water extract from the fruit of the Doum palm,Hyphaene thebaica[J]. Food Chem,2006,98:317–328.
    15. Boyer R F, Mccleary C J. Superoxide ion as a primary reductant in ascorbate-mediated ferritin ironrelease[J]. Free Radic Biol Med,1987,3:389-395.
    16. Sinnhuber R O, Yu T C. The2-thiobarbituric acid reaction, an objective measure of the oxidativedetermination occurring in fats and oils[J]. J Jpn Soc Fish Sci,1977,26:259–267.
    17. Pearce K N, Kinsella J E. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J].J Agric Food Chem,1978,26:716–723.
    18. Shand P J, Ya H, Pietrasik Z, et al. Physicochemical and textural properties of heat-induced pea proteinisolate gels[J]. Food Chem,2007,102:1119–1130.
    19. Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysate bytrinitrobenzensulfonic acid[J]. J Agric Food Chem,1979,27:1256–1262.
    20. Marcuse R. Antioxidative effect of amino acids[J]. Nature,1960,186:886–887.
    21. Klompong V, Benjakul S, Yachai M, et al. Amino acid composition and antioxidative peptides fromprotein hydrolysates of yellow stripe trevally (Selaroides leptolepis)[J]. J Food Sci,2009,74: C126–C133.
    22. Ma Y, Xiong Y L. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests[J]. JAgric Food Chem,2009,57:4372–4380.
    23. Chen H, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-Conglycinin[J]. J Agric Food Chem,1995,43:574–578.
    24. Hirose A, Miyashita K. Inhibitory effect of proteins and their hydrolysates on the oxidation oftriacylglycerols containing docosahexaenoic acids in emulsion[J]. J Jpn Soc Food Sci Technol,1999,46:799–805.
    25. Park E Y, Imazu H, Matsumura Y, et al. Effects of peptide fractions with different isoelectric pointsfrom wheat gluten hydrolysates on lipid oxidation in pork meat patties[J]. J Agric Food Chem,2012,60:7483–7488.
    26. Pownall T L, Udenigwe C C, Aluko R E. Amino acid composition and antioxidant properties of peaseed (Pisum sativum L.) enzymatic protein hydrolysate fractions[J]. J Agric Food Chem,2010,58:4712–4718.
    27. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillarproteins by protease treatment[J]. J Agric Food Chem,2003,51:3661–3667.
    1. Chen H, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-Conglycinin[J]. J Agric Food Chem,1995,43:574–578.
    2. Park P, Jung W, Nam K, et al. Purification and characterization of antioxidative peptides from proteinhydrolysate of lecithin-free egg yolk[J]. J Am Oil Chem Soc,2001,78:651–656.
    3. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates ofβ-lactoglobulin in food lipid dispersions[J]. J Agric Food Chem,2006,54:9565–9572.
    4. Park E Y, Imazu H, Matsumura Y, et al. Effects of peptide fractions with different isoelectric pointsfrom wheat gluten hydrolysates on lipid oxidation in pork meat patties[J]. J Agric Food Chem,2012,60:7483–7488.
    5. Kong B, Xiong Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possiblemode of action[J]. J Agric Food Chem,2006,54:6059–6068.
    6. Hirose A, Miyashita K. Inhibitory effect of proteins and their hydrolysates on the oxidation oftriacylglycerols containing docosahexaenoic acids in emulsion[J]. J Jpn Soc Food Sci Technol,1999,46:799–805.
    7. Cheng Y, Xiong Y L, Chen J. Antioxidant and emulsifying properties of potato protein hydrolysate insoybean oil-in-water emulsions[J]. Food Chem,2010,120:101–108.
    8. Rice-Evans C A, Miller N J, Paganga G. Structure–antioxidant activity relationships of flavonoids andphenolic acids[J]. Free Rad Biol Med,1996,20:933–956.
    9. Huang S, Frankel E N, Aeschbach R, et al. Partition of selected antioxidants in corn oil-water modelsystems[J]. J Agric Food Chem,1997,45:1991–1994.
    10. Bishov S J, Henick A S. Antioxidant effect of protein hydrolysates in freeze-dried model systems.Synergistic action with a series of phenolic antioxidants[J]. J Food Sci,1975,40:345–348.
    11. Chen H, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on theantioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem,1996,44:2619–2623.
    12. Farag M A, Porzel A, Wessjohann L A. Comparative metabolite profiling and fingerprinting ofmedicinal licorice roots using a multiplex approach of GC–MS, LC–MS and1D NMR techniques[J].Phytochemistry,2012,76:60–72.
    13. Liao W, Lin Y, Chang T, et al. Identification of two licorice species, Glycyrrhiza uralensis andGlycyrrhiza glabra, based on separation and identification of their bioactive components[J]. FoodChem,2012,132:2188–2193.
    14. Brand-Williams W, Cuvelier, M E, Berset C. Use of a free radical method to evaluate antioxidantactivity[J]. Lebensm-Wiss u-Technol,1995,28:25–30.
    15. Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice)[J]. JChromatogr A,2009,1216:1954–1969.
    16. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillarproteins by protease treatment[J]. J Agric Food Chem,2003,51:3661–3667.
    17. Tong L M, Sasaki S, McClements D J, et al. Antioxidant activity of whey in a salmon oil emulsion[J]. JFood Sci,2000,65:1325–1329.
    18. Pe a-Ramos E A, Xiong Y L. Antioxidant activity of soy protein hydrolysates in a liposomal system[J].J Food Sci,2002,67:2952–2956.
    19. Porter W L, Black E D, Drolet A M. Use of polyamide oxidative fluorescence test on lipid emulsions:Contrast in relative effectiveness of antioxidants in bulk versus dispersed systems[J]. J Agric FoodChem,1989,37:615–624.
    20. Medina I, Tombo I, Satué-Gracia M T, et al. Effects of natural phenolic compounds on the antioxidantactivity of lactoferrin in liposomes and oil-in-water emulsions[J]. J Agric Food Chem,2002,50:2392–
    2399.
    21. Arora A, Byrem T M, Nair M G, et al. Modulation of liposomal membrane fluidity by flavonoids andisoflavonoids[J]. Arch Biochem Biophys,2000,373:102–109.
    22. Liang J, Tian Y, Fu L, et al. Daidzein as an antioxidant of lipid: effects of the microenvironment inrelation to chemical structure[J]. J Agric Food Chem,2008,56:10376–10383.
    23. Almajano M P, Gordon M H. Synergistic effect of BSA on antioxidant activities in model foodemulsions[J]. J Am Oil Chem Soc,2004,81:275–280.
    24. Charlton A J, Baxter N J, Khan M L, et al. Polyphenol/peptide binding and precipitation[J]. J AgricFood Chem,2002,50:1593–1601.
    25. Hagerman A E, Rice M E, Ritchard N T. Mechanisms of protein precipitation for two tannins,pentagalloyl glucose and epicatechin16(4→8) catechin (procyanin)[J]. J Agric Food Chem,1998,46:2590–2595.
    26. Hagerman A E, Butler L G. The specificity of proanthocyanidin-protein interactions[J]. J Biol Chem,1981,256:4494–4497.
    27. Freire J M, Domingues M M, Matos J, et al. Using zeta-potential measurements to quantify peptidepartition to lipid membranes[J]. Eur Biophys J,2011,40:481–487.
    28. Elias R J, Kellerby S S, Decker E A. Antioxidant activity of proteins and peptides[J]. Crit Rev Food SciNutr,2008,48:430–441.
    29. Xiong Y L. Antioxidant peptides. In: Bioactive Proteins and Peptides as Functional Foods andNeutraceuticals[M]. Hoboken, NJ: Wiley-Blackwell,2010.29–42.
    30. Zhao J, Xiong Y L, McNear D H. Changes in structural characteristics of antioxidative soy proteinhydrolysates resulting from scavenging of hydroxyl radicals[J]. J Food Sci,2013,78: C152–159.
    31. Guy M, Tremblay M, Voyer N, et al. Formation and stability of nanofibers from a milk-derivedpeptide[J]. J Agric Food Chem,2011,59:720–726.
    32. Lamm M S, Rajagopal K, Schneider J P, et al. Laminated morphology of nontwisting β-sheet fribrilsconstructed via peptide self-assembly[J]. J Am Chem Soc,2005,127:16692–16700.
    33. Schneider J P, Pochan D J, Ozbas B, et al. Responsive hydrogels from the intramolecular folding andself-assembly of a designed peptide[J]. J Am Chem Soc,2002,124:15030–15037.
    34. Dong H, Paramonov S E, Aulisa L, et al. Self-assembly of multidomain peptides: Balancing molecularfrustration controls conformation and nanostructures[J]. J Am Chem Soc,2007,129:12468–12472.
    35. Sarmadi B H, Ismail A. Antioxidative peptides from food proteins: A review[J]. Peptides,2010,31:1949–1956.
    36. Ma Y, Xiong Y L, Zhai J, et al. Fractionation and evaluation of radical scavenging peptides from invitro digests of buckwheat protein[J]. Food Chem,2010,118:582–588.
    37. Cheng Y, Xiong Y L, Chen J. Fractionation, separation, and identification of antioxidative peptides inpotato protein hydrolysate that enhance oxidative stability of soybean oil emulsions[J]. J Food Sci,2010,75: C760–C765.
    1. McClements D J, Decker E A. Lipid oxidation in oil-in-water emulsions: impact of molecularenvironment on chemical reactions in heterogeneous food systems[J]. J Food Sci,2000,65:1270–1282.
    2. Huang S, Frankel E N, Aeschbach R, et al. Partition of selected antioxidants in corn oil–water modelsystems[J]. J Agric Food Chem,1997,45:1991–1994.
    3. Richards M P, Chaiyasit W, McClements D J, et al. Ability of surfactant micelles to alter thepartitioning of phenolic antioxidants in oil-in-water emulsions[J]. J Agric Food Chem,2002,50:1254–1259.
    4. Bishov S J, Henick A S. Antioxidant effect of protein hydrolysates in freeze-dried model systems.Synergistic action with a series of phenolic antioxidants[J]. J Food Sci,1975,40:345–348.
    5. Chen J, Dickinson E. Protein/surfactant interracial interactions Part3. Competitive adsorption ofprotein+surfactant in emulsions[J]. Colloids Surf A Physicochem Eng Asp,1995,101:77–85.
    6. Chen H, Muramoto K, Yamauchi F, et al. Antioxidant activity of designed peptides based on theantioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem,1996,44:2619–2623.
    7. Pearce K N, Kinsella J E. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J].J Agric Food Chem,1978,26:716–723.
    8. AOCS. Peroxide value–acetic acid-chloroform method. In Official Methods and RecommendedPractices of the American Oil Chemists’ Society,5th ed. American Oil Chemists’ Society: Champaign,IL,1998.
    9. Mei L, McClements D J, Wu J, et al. Iron-catalyzed lipid oxidation in emulsion as affected bysurfactant, pH and NaCl[J]. Food Chem,1998,61,307–312.
    10. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248–254.
    11. Jiang J, Zhu B, Liu Y, et al. Interfacial structural role of pH-shifting processed pea protein in theoxidative stability of oil/water emulsions[J]. J Agric Food Chem,2014,62:1683–1691.
    12. Berton C, Genot C, Ropers M. Quantification of unadsorbed protein and surfactant emulsifiers in oil-in-water emulsions[J]. J Colloid Interface Sci,2011,354:739–748.
    13. Di Mattia C D, Sacchetti G, Mastrocola D, et al. Surface properties of phenolic compounds and theirinfluence on the dispersion degree and oxidative stability of olive oil O/W emulsions[J]. FoodHydrocolloid,2010,24:652–658.
    14. Elias R J, Bridgewater J D, Vachet R W, et al. Antioxidant mechanisms of enzymatic hydrolysates ofβ-lactoglobulin in food lipid dispersions[J]. J Agric Food Chem,2006,54:9565–9572.
    15. Zhao J, Xiong Y L, McNear D. H. Changes in structural characteristics of antioxidative soy proteinhydrolysates resulting from scavenging of hydroxyl radicals[J]. J Food Sci,2013,78: C152–159.
    16. Arora A, Byrem T M, Nair M G, et al. Modulation of liposomal membrane fluidity by flavonoids andisoflavonoids[J]. Arch Biochem Biophys,2000,373:102–109.
    17. McClements D J, Dungan S R. Light scattering study of solubilization of emulsion droplets by non-ionic surfactant solutions[J]. Colloids Surf A Physicochem Eng Asp,1995,104:127–135.
    18. Toro C, Sanchez S A, Zanocco A, et al. Solubilization of lipid bilayers by myristyl sucrose ester: effectof cholesterol and phospholipid head group size[J]. Chem Phys Lipids,2009,157:104–112.
    19. Frankel E N, Huang S, Kanner J, et al. Interfacial phenomena in the evaluation of antioxidants: bulkoils vs emulsions[J]. J Agric Food Chem,1994,42:1054–1059.
    20. McClements D J. Interfacial properties and their characterization. In: Food Emulsions: Principles,Practice, and Techniques[M]: second edition. Boca Raton, FL: CRC,2005.
    21. Sarker D K, Wilde P J, Clark D C. Control of surfactant-induced destabilization of foams throughpolyphenol-mediated protein–protein interactions[J]. J Agric Food Chem,1995,43:295–300.
    22. Hotrum N E, Cohen Stuart M A, van Vliet T, et al. Flow and fracture phenomena in adsorbed proteinlayers at the air/water interface in connection with spreading oil droplets[J]. Langmuir2003,19,10210–10216.
    23. Atarés L, Marshall L J, Akhtar M, et al. Structure and oxidative stability of oil in water emulsions asaffected by rutin and homogenization procedure[J]. Food Chem,2012,134:1418–1424.
    24. Ali M, Homann T, Khalil M, et al. Milk whey protein modification by coffee-specific phenolics: effecton structural and functional properties[J]. J Agric Food Chem,2013,61:6911–6920.
    25. Aluko R E. Bioactive peptides. In: Functional Foods and Nutraceuticals[M]. New York: Springer,2012,37–61.
    26. Charlton A. J, Baxter N J, Khan M L, et al. Polyphenol/peptide binding and precipitation[J]. J AgricFood Chem,2002,50:1593–1601.
    27. Lamm M S, Rajagopal K, Schneider J P, et al. Laminated morphology of nontwisting β-sheet fribrilsconstructed via peptide self-assembly[J]. J Am Chem Soc,2005,127:16692–16700.
    28. Mei L, Decker E A, McClements D J. Evidence of iron association with emulsion droplets and itsimpact on lipid oxidation[J]. J Agric Food Chem,1998,46:5072–5077.
    29. Ogawa S, Decker E A, McClements D J. Production and characterization of O/W emulsions containingdroplets stabilized by lecithin–chitosan–pectin mutilayered membranes[J]. J Agric Food Chem,2004,52:3595–3600.
    30. Nakaya K, Ushio H, Matsukawa S, et al. Effects of droplet size on the oxidative stability of oil-in-wateremulsions[J]. Lipids,2005,40:501–507.
    31. Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice)[J]. JChromatogr A,2009,1216:1954–1969.
    32. Belinky P A, Aviram M, Mahmood S, et al. Structural aspects of the inhibitory effect of glabridin onLDL oxidation[J]. Free Radic Biol Med,1998,24:1419–1429.
    1. Saeki H. Preparation of neoglycoprotein from carp myofibrillar protein by Maillard reaction withglucose: Biochemical properties and emulsifying properties[J]. J Agric Food Chem,1997,45:680–684.
    2. O’Regan J, Mulvihill D M. Preparation, characterisation and selected functional properties of sodiumcaseinate–maltodextrin conjugates[J]. Food Chem,2009,115:1257–1267.
    3. Hiller B, Lorenzen P C. Functional properties of milk proteins as affected by Maillard reaction inducedoligomerisation[J]. Food Res Int,2010,43:1155–1166.
    4. van Boekel M A J S. Effect of heating on Maillard reactions in milk [J]. Food chem,1998,62(4):403–414.
    5. Yeboah F K, Alli I, Yaylayan V A, Konishi Y, Stefanowicz P. Monitoring glycation of lysozyme byelectrospray ionization mass spectrometry [J]. J Agric Food Chem,2000,48:2766–2774.
    6. Zhu D, Damodaran S, Lucey J A. Formation of whey protein isolate (WPI)-dextran conjugates inaqueous solutions[J]. J Agric Food Chem,2008,56:7113–7118.
    7. Ames J M. Control of the Maillard reaction in food systems[J]. Trends Food Sci Tech,1990,1:150–154.
    8. Kato A. Industrial applications of Maillard-type proteinepolysaccharide conjugates[J]. Food SciTechnol Res,2002,8:193–199.
    9. Jiménez-Casta o L, Villamiel M, Martín-álvarez P J, et al. Effect of the dry-heating conditions on theglycosylation of β-lactoglobulin with dextran through the Maillard reaction[J]. Food Hydrocolloid,2005,19:831–837.
    10. Laroque D, Inisan C, Berger C, et al. Kinetic study on the Maillard reaction. Consideration of sugarreactivity[J]. Food Chem,2008,111(4):1032–1042.
    11. Ajandouz E H, Desseaux V, Tazi S, et al. Effects of temperature and pH on the kinetics ofcaramelisation, protein cross-linking and Maillard reactions in aqueous model systems[J]. Food Chem,2008,107:1244–1252.
    12. Kim J, Lee Y. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine,diglycine, and triglycine model systems as a function of heating time[J]. Food Chem,2009,116:227–232.
    13. Jiménez-Castaňo L, López-Fandiňo R, Olano A, et al. Study on β-lactoglobulin glycosylation withdextran: effect on solubility and heat stability[J]. Food Chem,2005,93:689–695.
    14. Shu Y, Sahara S, Nakamura S, et al. Effects of the length of polysaccharide chains on the functionalproperties of the Maillard-type lysozyme-polysaccharide conjugate[J]. J Agric Food Chem,1996,44:2544–2548.
    15. Li Y, Zhong F, Ji W, et al. Functional properties of Maillard reaction products of rice proteinhydrolysates with mono-, oligo-and polysaccharides[J]. Food Hydrocolloid,2013,30:53–60.
    16. Dickinson E, Galazka V B. Emulsion stabilization by ionic and covalent complexes of β-lactoglobulinwith polysaccharides[J]. Food Hydrocolloid,1991,5:281–296.
    17. Babiker E E, Hiroyuki A, Matsudomi N, et al. Effect of polysaccharide conjugation or transglutaminasetreatment on the allergenicity and functional properties of soy protein[J]. J Agric Food Chem,1998,46:866–871.
    18. Handa A, Kuroda N. Functional improvements in dried egg white through the Maillard reaction[J]. JAgric Food Chem,1999,47:1845–1850.
    19. Guo X, Xiong Y L. Characteristics and functional properties of buckwheat protein–sugar Schiff basecomplexes[J]. LWT-Food Sci Technol,2013,51:397–404.
    1. Dunlap C A, C téG L. D-lactoglobulin–dextran conjugates: Effect of polysaccharide size on emulsionstability[J]. J Agric Food Chem,2005,53:419–423.
    2. Mu M, Pan X, Yao O, et al. Acidic solution properties of β-graftdextran copolymer prepared throughMaillard reaction[J]. J Colloid Interface Sci,2006,301:98–106.
    3. Hiller B, Lorenzen P C. Functional properties of milk proteins as affected by Maillard reaction inducedoligomerisation[J]. Food Res Int,2010,43:1155–1166.
    4. Mishra S, Mann B, Joshi V K. Functional improvement of whey protein concentrate on interaction withpectin[J]. Food Hydrocolloid,2001,15:9–15.
    5. Morris G A, Sims I M, Robertson A J, et al. Investigation into the physical and chemical properties ofsodium caseinate–maltodextrin glycoconjugates[J]. Food Hydrocolloid,2004,18:1007–1014.
    6. Einhorn-Stoll U, Ulbrich M, Sever S, et al. Formation of milk protein-pectin conjugates with improvedemulsifying properties by controlled dry heating[J]. Food Hydrocolloid,2005,19:329–340.
    7. Diftis N G, Biliaderis C G, Kiosseoglou V D. Rheological properties and stability of model saladdressing emulsions prepared with a dry-heated soybean protein isolate–dextran mixture[J]. FoodHydrocolloid,2005,19:1025–1031.
    8. Wooster T J, Augustin M A. β-Lactoglobulin–dextran–Maillard conjugates: Their effect on interfacialthickness and emulsion stability[J]. J Colloid Interface Sci,2006,303:564–572.
    9. McClements D J. Emulsion stability. In: Food Emulsions: Principles, Practice, and Techniques[M]:second edition. Boca Raton, FL: CRC,2005.
    10. Kulmyrzaev A, Sivestre M P C, McClements D J. Rheology and stability of whey protein stabilizedemulsions with high CaCl2concentrations[J]. Food Res Int,2000,33:21–25.
    11. Quemada D, Berli C. Energy of interaction in colloids and its implications in rheological modeling[J].Adv Colloid Interface Sci,2002,98:51–85.
    12. Lamm M S, Rajagopal K, Schneider J P, et al. Laminated morphology of nontwisting β-sheet fribrilsconstructed via peptide self-assembly[J]. J Am Chem Soc,2005,127:16692–16700.
    13. Hagerman A E, Rice M E, Ritchard N T. Mechanisms of protein precipitation for two tannins,pentagalloyl glucose and epicatechin16(4→8) catechin (procyanin)[J]. J Agric Food Chem1998,46:2590–2595.
    14. Charlton A J, Baxter N J, Khan M L, et al. Polyphenol/peptide binding and precipitation[J]. J AgricFood Chem,2002,50:1593–1601.
    15. Cheng Y, Xiong Y L, Chen J. Antioxidant and emulsifying properties of potato protein hydrolysate insoybean oil-in-water emulsions[J]. Food Chem,2010,120:101–108.
    16. Kerstens S, Murray B S, Dickinson E. Microstructure of β-lactoglobulin-stabilized emulsionscontaining non-ionic surfactant and excess free protein: Influence of heating[J]. J Colloid Interface Sci,2006,296(1):332–341.
    17. Nakamura S, Ogawa M, Nakai S, et al. Antioxidant activity of a Maillard-type phosvitin-galactomannan conjugate with emulsifying properties and heat stability[J]. J Agric Food Chem,1998,46:3958–3963.
    18. Djordjevic D, Cercaci L, Alamed J, et al. Chemical and physical stability of citral and limonene insodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions[J]. J Agric FoodChem,2007,55:3585–3591.
    19. Gu Y S, Regnier L, McClements D J. Influence of environmental stresses on stability of oil-in-wateremulsions containing droplets stabilized by β-lactoglobulin–ι-carrageenan membranes[J]. J ColloidInterface Sci,2005,286:551–558.
    20. Kim J, Lee Y. Study of Maillard reaction products derived from aqueous model systems with differentpeptide chain lengths[J]. Food Chem,2009,116:846–853.
    21. Lapolla A, Fedele D, Reitano R, et al. Enzymatic digestion and mass spectrometry in the study ofadvanced glycation end products/peptides[J]. J Am Soc Mass Spectrom,2004,15:496–509.
    22. Frolov A, Hoffmann P, Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry[J]. J Mass Spectrom,2006,41:1459–
    1469.
    23. Meltretter J, Seeber S, Humeny A, et al. Site-specific formation of Maillard, oxidation, andcondensation products from whey proteins during reaction with lactose[J]. J Agric Food Chem,2007,55:6096–6103.
    24. Plumb R S, Johnson K A, Rainville P, et al. UPLC/MSE; a new approach for generating molecularfragment information for biomarker structure elucidation[J]. Rapid Commun Mass Spectrom,2006,20:19891994.
    25. Chen Y, Liang L, Liu X, et al. Effect of fructose and glucose on glycation of β-lactoglobulin in anintermediate-moisture food model system: analysis by liquid chromatography mass spectrometry(LC MS) and data-independent acquisition LC MS (LC MSE)[J]. J Agric Food Chem,2012,60:1067410682.
    26. Marvin L F, Parisod V, Fay L B, et al. Characterization of lactosylated protein of infant formulapowders using two-dimesional gel electrophoresis and nanoelectrospary mass spestrometry[J].Electrophoresis,2002,23:25052512.
    27. Frolov A, Hoffmann P, Hoffmann R. Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry[J]. J Mass Spectrom,2006,41:14591469.
    28. Molle D, Morgan F, Bouhallab S, et al. Selective detection of lactolated peptides in hydrolysates byliquid chromatography/eletrospray tandem mass spectrometry[J]. Anal Biochem,1998,259:152161.
    1. Hagerman A E, Butler L G. The specificity of proanthocyanidin-protein interactions[J]. J Biol Chem,1981,256:4494–4497.
    2. Hagerman A E, Rice M E, Ritchard N T. Mechanisms of protein precipitation for two tannins,pentagalloyl glucose and epicatechin16(4→8) catechin (procyanin)[J]. J Agric Food Chem,1998,46:2590–2595.
    3. Charlton A J, Baxter N J, Khan M L, et al. Polyphenol/peptide binding and precipitation[J]. J AgricFood Chem,2002,50:1593–1601.
    4. Ali M, Homann T, Khalil M, et al. Milk whey protein modification by coffee-specific phenolics: effecton structural and functional properties[J]. J Agric Food Chem,2013,61:6911–6920.
    5. Rawel H M, Rohn S, Kruse H, et al. Structural changes induced in bovine serum albumin by covalentattachment of chlorogenic acid[J]. Food Chem,2002,78:443–455.
    6. Dunlap C A, C téG L. D-lactoglobulin–dextran conjugates: Effect of polysaccharide size on emulsionstability[J]. J Agric Food Chem,2005,53:419–423.
    7. Dickinson E, Galazka V B. Emulsion stabilization by ionic and covalent complexes of β-lactoglobulinwith polysaccharides[J]. Food Hydrocolloid,1991,5:281–296.
    8. Guo X, Xiong Y L. Characteristics and functional properties of buckwheat protein–sugar Schiff basecomplexes[J]. LWT-Food Sci Technol,2013,51:397–404.
    9. Kulmyrzaev A, Sivestre M P C, McClements D J. Rheology and stability of whey protein stabilizedemulsions with high CaCl2concentrations[J]. Food Res Int,2000,33:21–25.
    10. McClements D J. Emulsion stability. In: Food Emulsions: Principles, Practice, and Techniques[M]:second edition. Boca Raton, FL: CRC,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700