DDQ介导的交叉去氢偶联反应方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为现代有机合成中最重要的组成部分之一,人们一直以来都在寻求高效经济的C-C键构建方法。其中,以Suzuki, Negishi, Heck等为代表的过渡金属催化的偶联反应是最成功的典范。近年来交叉去氢偶联(CDC)概念的提出无疑又为C-C键的构建提供了一种有效的合成新方法和新策略,它具有操作简单、条件温和、原料廉价易得、原子利用率高等优点。而2,3-二氯-5,6-二氰基对苯醌(DDQ)作为CDC反应常用的氢受体,则被赋予了很高的应用价值。
     本论文结合课题组在合成(杂)多环骨架中的思路,并以交叉去氢偶联为C-C键构建的基本策略,开展了一系列具有潜在应用价值的(杂)多环骨架的新型合成方法学研究。主要的研究工作包括以下三个方面:
     一、DDQ介导的苯并噻唑衍生物的脱氢化反应方面:
     基于我们课题组在苯并噻唑骨架的新型合成方法学研究的基础上,我们将DDQ应用到了苯并噻唑衍生物的脱氢化反应中,发展了一类温和高效的不饱和酯的合成方法。
     二、DDQ介导的邻位含有杂原子的sp3 C-H键活化方面:
     采用以DDQ为氧化剂活化邻位含有杂原子的sp3 C-H键并使之发生分子内CDC反应的策略,我们以苯乙基芳甲基醚作为反应底物,经历两次DDQ氧化和一次分子内傅一克酰基化类型反应得到一系列二芳基甲酮类化合物。该反应无需任何催化剂,并且具有很高的区域选择性,为芳基甲酮类化合物的选择性合成提供了新的思路。
     三、DDQ介导的烯丙位甲基sp3 C-H键活化方面:
     采用以DDQ为氧化剂活化苄位和烯丙位sp3 C-H键并使之发生CDC反应的策略,我们以1,2-二芳基丙烯为反应底物,通过分子间的自身偶联反应得到多芳基取代的环戊烯衍生物,而没有得到分子内CDC反应的产物2-芳基茚。以此为基础,我们添加苯乙烯作为偶联试剂,在FeCl3催化下通过DDQ参与的串联的CDC反应及后续的傅-克亲电环化反应和芳构化反应得到了一系列多取代萘衍生物。该反应的实现突破性的扩展了CDC反应的底物适用范围,并且一锅多步,高效方便地构建了具有很大应用价值的多芳基取代的萘衍生物。此外,该反应原料简单易得,催化剂廉价且稳定性好,条件温和,对空气和水分不敏感,不仅可以与己报道的多取代萘衍生物的合成方法形成方法互补,还具有较多的优越性和潜在应用价值。
As one of the most important part of modern organic synthesis, developing efficient and atom economic C-C bond formation methods is always of most interest for chemists. Among them, transition metal catalytic coupling reaction, represented by Suzuki, Negishi, Heck reactions, is the most successful example. However, the recent emerged cross-dehydrogenative coupling (CDC) provides undoubtedly a more efficient strategy for C-C bond formation. It has many advantages such as simple operation, mild condition, cheap materials and high atom economy.2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), which usually is applicated in CDC raction as hydrogen acceptor, is proved to be of high value.
     Inspired by the ideas in (hetero)polycyclic skeleton formation, we take cross-dehydrogenative coupling as the basic strategy to carry out a series of new synthetic methodological studies in (hetero)polycyclic skeleton formation, which may of great potential for application. Our work mainly includes three aspects as below.
     1. DDQ-mediated dyhrogenation of benzothiazole derivatives
     On the base of our prior study in synthetic methodological studies of benzothiazole derivatives, DDQ was used as a dehydrogenative reagent in dehydrogenation of benzothiazole derivatives, which was proved to be a mild and efficient methold for the synthesis of unsaturated ester.
     2. DDQ-mediated activation of sp3 C-H bonds adjacent to heteratoms
     Taking DDQ-mediated activation of sp3 C-H bonds adjacent to heteratoms and restulted intramolecular CDC reaction as the strategy, we obtained a series of benzophenone derivatives from phenethyl benzyl ethers through DDQ-oxidation followed by intramoleculer Friedel-Crafts type reaction. This reaction needs no catalyst and has high regioselectivity, which leads a new way to the regioselective synthesis of benzophenone derivatives.
     3. DDQ-mediated activation of benzylic and allylic sp3 C-H bonds
     Taking DDQ-mediated activation of benzylic and allylic sp3 C-H bonds and restulted CDC reaction as the strategy, we designed and synthesized a series of 1,2-diarylprop-l-ene derivatives as substrates. Instead of obtaining 2-arylindene as the product via intramolecular CDC reaction, sbustituted cyclopentene derivatives were obtained via intermolecular self-coupling of the substrates when no nucleophilic reagent was added. Inspired by this, we used styrenes as nucleophilic reagents and fortunatly obtained a series of polysbstituted naphthalene derivatives through DDQ mediated tandem CDC reaction with subsequent Friedel-Crafts type reaction and aromatization catalyzed by FeCl3. The success of this reaction largely expends the scope of the substrates for CDC reaction and constructs polysubstituted naphthalenes, which are considered to be of much use, in high efficiency due to its high regioselectivity and mutistep in one-pot. What's more, all of the advantages, summarized as simple substrate, cheap and stable catalyst, mild condition and tolerance of air and moisture, make this reaction to be complementary to previous reported synthetic method for polysubstituted naphthalenes, and even to be of more superiority and potential value for application.
引文
[1]Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates:reactions and mechanistic aspects. Chem. Rev.2002,102(5):1731-1769
    [2]Yu, J.-Q.; Shi, Z. C-H activation. Topics in Current Chemistry,2010,292
    [3]Li, Z.; Li, C.-J. CuBr-Catalyzed Efficient Alkynylation of sp3 C-H Bonds Adjacent to a Nitrogen Atom. J. Am. Chem. Soc.2004,126(38):11810-11811
    [4]Li, Z.; Li, C.-J. Catalytic Enantioselective Alkynylation of Prochiral sp3 C-H Bonds Adjacent to a Nitrogen Atom. Org. Lett.2004,6(26):4997-4999
    [5]Zhao, L.; Li, C.-J. New Approaches to Functionalize Glycine Derivatives via Direct C-C Bond Formation. Angew. Chem., Int. Ed.2008,47:7075-7078
    [6]Niu, M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Coupling of Tertiary Aliphatic Amines with Terminal Alkynes to Propargylamines via C-H Activation. J. Org. Chem.2008, 73(10):3961-3963
    [7]Volla, C. M. R.; Vogel, P. Chemoselective C-H Bond Activation:Ligand and Solvent Free Iron-Catalyzed Oxidative C-C Cross-Coupling of Tertiary Amines with Terminal Alkynes. Reaction Scope and Mechanism. Org. Lett.2009,11(8):1701-1704
    [8]Li, Z.; Li, C.-J. CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative-Coupling between sp3 C-H and sp2 C-H Bonds. J. Am. Chem. Soc. 2005,127(19):6968-6969
    [9]Li, Z.; Bohle, D. S.; Li, C.-J. Cu-Catalyzed Cross-Dehydrogenative Coupling (CDC) Reactions:A Versatile Strategy for C-C Bond Formation via Oxidative Activation sp3 C-H Bonds Adjacent to a Nitrogen Atom. Proc. Natl. Acad. Sci. U.S.A.2006,103(24):8928-8933
    [10]Cheng, K.; Huang, L.; Zhang, Y CuBr-Mediated Oxyalkylation of Vinylarenes under Aerobic Conditions via Cleavage of sp3 C-H Bonds to Oxygen. Org. Lett.2009,11(13): 2908-2911
    [11]Ying, B.-P.; Trogden, B. G.; Kohlman, D. T.; Liang, S. X.; Xu, Y.-C. Oxidative C-C Bond-Forming Reaction of Electron-Rich Alkylbenzyl Ether with Trimethylvinyl-oxysilane. Org. Lett.2004,6(10):1523-1256
    [12]Tu, W.; Liu, L.; Floreancig, P. E. Diastereoselective Tetrahydropyrone Synthesis through Transition-Metal-Free Oxidative Carbon-Hydrogen Bond Activation. Angew. Chem. Int. Ed. 2008,47:4184-4817
    [13]Tu, W.; Floreancig, P. E. Oxidative Carbocation Formation in Macrocycles:Synthesis of the Neopeltolide Macrocycle. Angew. Chem. Int. Ed.2009,48:4567-4571
    [14]Liu, L.; Floreancig, P. E. Structurally and Stereochemically Diverse Tetrahydropyran Synthesis through Oxidative C-H Activation. Angew. Chem. Int. Ed.2010,49:3069-3072
    [15]Liu, L.; Floreancig, P. E.2,3-Dichloro-5,6-dicyano-1,4-benzoquinone-Catalyzed Reactions Employing MnO2 as a Stoichiometric Oxidant. Org. Lett.2010,12(20):4686-4689
    [16]Yu, B.; Jiang, T.; Li, J.; Su, Y.; Pan, X.; She, X. A Novel Prins Cyclization through Benzylic/Allylic C-H Activation. Org. Lett.2009,11(15):3442-3445
    [17]Li, Z.; Li, C.-J. Highly Efficient Copper-Catalyzed Nitro-Mannich Type Reaction: Cross-Dehydrogenative-Coupling between sp3 C-H Bond and sp3 C-H Bond. J. Am. Chem. Soc.2005,127(11):3672-3673
    [18]Li, Z.; Li, C.-J. Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds. Eur. J. Org. Chem. 2005,15:3173-3176
    [19]Basle, O.; Li, C.-J. Copper catalyzed oxidative alkylation of sp3 C-H bond adjacent to a nitrogen atom using molecular oxygen in water. Green Chem.,2007,9:1047-1050
    [20]Zhang, Y.; Li, C.-J. Highly Efficient Cross-Dehydrogenative-Coupling between Ethers and Active Methylene Compounds. Angew. Chem. Int. Ed.2006,45:1949-1952
    [21]Zhang, Y.; Li, C.-J. DDQ-Mediated Direct Cross-Dehydrogenative-Coupling (CDC) between Benzyl Ethers and Simple Ketones. J. Am. Chem. Soc.2006,128(13):4242-4243
    [22]Li, Z.; Yu, R.; Li, H. Iron-Catalyzed C-C Bond Formation by Direct Functionalization of C-H Bonds Adjacent to Heteroatoms. Angew. Chem. Int. Ed.2008,47:7497-7500
    [23]Li, Z.; Li, H.; Guo, X.; Cao, L.; Yu, R.; Li, H.; Pan, S. C-H Bond Oxidation Initiated Pummerer-and Knoevenagel-Type Reactions of Benzyl Sulfide and 1,3-Dicarbonyl Compounds. Org. Lett.2008,10(5):803-805
    [24]Li, H.; He, Z.; Guo, X.; Li, W.; Zhao, X.; Li, Z. Iron-Catalyzed Selective Oxidation of N-Methyl Amines:Highly Efficient Synthesis of Methylene-Bridged bis-1,3-Dicarbonyl Compounds. Org. Lett.2009,11(18):4176-4179
    [25]Dubs, C.; Hamashima, Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.; Hashizume, D.; Sodeoka, M. Mechanistic Studies on the Catalytic Asymmetric Mannich-Type Reaction with Dihydroisoquinolines and Development of Oxidative Mannich-Type Reactions Starting from Tetrahydroisoquinolines. J. Org. Chem.2008,73(15):5859-5871
    [26]Mo, H.; Bao, W. Iron-Promoted Synthesis of Substituted 1-Halo-1,4-pentadienes by Reaction of 1,3-Diarylpropenes with Ethynylbenzenes via sp3 C-H Bond Activation. J. Org. Chem. 2010,75(14):485-4859
    [27]Correiaa, C. A.; Li, C.-J. Copper-Catalyzed Cross-Dehydrogenative Coupling (CDC) of Alkynes and Benzylic C-H Bonds. Adv. Synth. Catal.2010,352:1446-1450
    [28]Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Cross Dehydrogenative Arylation (CDA) of a Benzylic C-H Bond with Arenes by Iron Catalysis. Angew. Chem. Int. Ed.2009,48: 3817-3820
    [29]Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-P.; Li, H.; Gan, L.-B.; Shi, Z.-J. Direct functionalization of benzylic C-Hs with vinyl acetates via Fe-catalysis. Chem. Commun. 2009,40:6002-6004
    [30]Mo, H.; Bao, W. Efficient Palladium-Catalyzed Oxidative Indolation of Allylic Compounds with DDQ via sp3 C-H Bond Activation and Carbon-Carbon Bond Formation Under Mild Conditions. Adv. Synth. Catal.2009,351:2845-2849
    [31]Damu, G L. V.; Selvama, J. J. P.; Rao, C. V.; Venkateswarlu, Y. DDQ-Mediated Oxidative Cross-Coupling between Propargylic sp3 and Indoles sp2 Carbons. Tetrahedron Lett.2009,50: 6154-6158
    [32]Li, Z.; Li, C.-J. Catalytic Allylic Alkylation via the Cross-Dehydrogenative-Coupling Reaction between Allylic sp3 C-H and Methylenic sp3 C-H Bonds. J. Am. Chem. Soc.2006, 128(1):56-57
    [33]Li, Z.; Cao, L.; Li, C.-J. FeCl2-Catalyzed Selective C-C Bond Formation by Oxidative Activation of a Benzylic C-H Bond. Angew. Chem. Int. Ed.2007,46:6505-6507
    [34]Cheng, D.; Bao,W. Propargylation of 1,3-Dicarbonyl Compounds with 1,3-Diarylpropynes via Oxidative Cross-Coupling between sp3 C-H and sp3 C-H. J. Org. Chem.2008,73(17): 6881-6883
    [35]Cheng, D.; Bao,W. Highly Efficient Metal-Free Cross-Coupling by C-H Activation between Allylic and Active Methylenic Compounds Promoted by DDQ. Adv. Synth. Catal.2008,350: 1263-1266
    [36]Ramesh, D.; Ramulu, U.; Rajaram, S.; Prabhakar, P.; Venkateswarlu, Y. Metal-free Oxidative C-C Bond Formation of Active Methylenic sp3 C-H Bonds with Benzylic sp3 C-H and Allylic sp3 C-H Bonds Mediated by DDQ. Tetrahedron Lett.2010,51:4898-4903
    [37]Benfatti, F.; Capdevila, M. G.; Zoli, L.; Benedetto, E.; Cozzi, P. G Catalytic Stereoselective Benzylic C-H Functionalizations by Oxidative C-H Activation and Organocatalysis. Chem. Commun.2009,39:5919-5921
    [38]Guo, C.; Song, J.; Luo,S.-W.; Gong, L.-Z. Enantioselective Oxidative Cross-Coupling Reaction of 3-Indolylmethyl C-H Bonds with 1,3-Dicarbonyls Using a Chiral Lewis Acid-Bonded Nucleophile to Control Stereochemistry. Angew. Chem. Int. Ed.2010,49: 5558-5563
    [39]Walker, D.; Hiebert, J. D.2,3-Dichloro-5,6-Dicynaobenzoquinone and its Reactions. Chem. Rev.1967,67(2):153-195
    [40]Fu, P. P.; Harvey R. G. Dehydrogenation of Polycyclic Hydroaromatic Compounds. Chem. Rev.1978,78(4):317-361
    [41]Joshi, B. P.; Sharma, A.; Sinha, A. K. Ultrasound-Assisted Convenient Synthesis of Hypolipidemicactive Natural Methoxylated (E)-Arylalkenes and Arylalkanones. Tetrahedron. 2005,61:3075-3080
    [42]Chang, J. Zhao, K.; Pan, S. Synthesis of 2-Arylbenzoxazoles via DDQ promoted Oxidative Cyclization of Phenolic Schiff Bases-a Solution-Phasestrategy for Library Synthesis. Tetrahedron Lett.2002,43:951-954
    [43]Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone Deacetylase Inhibitors:From Bench to Clinic. J. Med. Chem.2008,51(6):1505-1529
    [44]Shi,D.-F.; Bradshaw,T. D.; Wrigley,S.; McCall,C. J.; Lelieveld, P.; Fichtner, I.; Stevens, M. F. G. Antitumor Benzothiazoles.3. Synthesis of 2-(4-Aminophenyl)-benzothiazoles and Evaluation of Their Activities against Breast Cancer Cell Lines in Vitro and in Vivo. J. Med. Chem.,1996,39 (17):3375-3384
    [45]Takayama, W.; Shirasaki, Y.; Sakai, Y.; Nakayima, E.; Fujita, S.; Sakamoto-Mizutani, K.; Inoue, J. Synthesis and PDF Inhibitory Activities of Novel Benzothiazolylidene-hyroxamic Acid Derivatives. Bioorg. Med. Chem. Lett.,2003,13:3273-3276
    [46]Oikawa, Y.; Yoshioka, T.; Yonemitsu,O. Specific removal of o-methoxybenzyl protection by DDQ oxidation. Tetrahedron Lett.1982,23(8):885-888
    [47]Ivanov, I.; Nikolova, S.; Angelov, P.; Statkova-Abeghe, S.; Kochovska, E. Regioselective Acylation of β-enaminones of Homoveratrylamine. ARKIVOC,2007,15:11-17
    [48]Ivanov, I.; Nikolova, S.; Kochovska, E.; Statkova-Abeghe, S. Application of Ortho-acylated Phenylacetic Acid Esters to the Synthesis of 1-Substituted Isochromanes. ARKIVOC,2007, 15:31-44
    [49]Bevacqua, F.; Basso, A.; Gitto, R.; Bradleyb, M.; Chimirri, A. Solid-phase Friedel-Crafts Acylation on Polystyrene Resins-Synthesis of Antiepiletic 1-aryl-3,5-dihydro-4H-2,3-benzodiazepin-4-ones. Tetrahedron Lett.,2001,42:7683-7685
    [50]Guiso, M.; Marra, C.; Piccioni, F. DDQ Oxidation of Hydroxyisochromans and Homologues. Natural Product Research,2010,24(4):331-340
    [51]Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Takahashi, M.; Kotera, J.; Ikeo, T. 1-Arylnaphthalene Lignan:A Novel Scaffold for Type 5 Phosphodiesterase Inhibitor. J. Med. Chem.1999,42(7):1293-1305
    [52]Hallock, Y F.; Manfredi, K. P.; Blunt, J. W.; Cardellina, II., J. H.; Schaffer, M.; Gulden, K.-P.; Bringmann, G.; Lee, A. Y.; Clardy, J.; Francois, G.; Boyd, M. R. Korupensamines A-D, Novel Antimalarial Alkaloids from Ancistrocladus korupensis. J. Org. Chem.1994,59(21): 6349-6355
    [53]Boyd, M. R.; Hallock, Y F.; Cardellina, Ⅱ., J. H.; Blunt, J. W.; McMahon, J. B.; R, W.; Buckheit, J.; Bringmann, G.; Scha ffer, M.; Cragg, G M.; Thomas, D. W.; Jato, J. G J. Med. Anti-HIV Michellamines from Ancistrocladus Korupensis. Chem.1994,37(12):1740-1745
    [54]Kaur, I.; Stein, N. N.; Kopreski, R. P.; Miller, G P. Exploiting Substituent Effects for the Synthesis of a Photooxidatively Resistant Heptacene Derivative. J. Am. Chem. Soc.,2009, 131 (10):3424-3425
    [55]Ether. Smith, W. B. Some Observations on the Iodination of 2-Naphthol and its Methyl Ether. J. Org. Chem.1985,50(19):3649-3651
    [56]Saito, S.; Yamamoto, Y. Recen tAdvances in the Transition-Metal-Catalyzed Regioselective Approaches To Polysubstituted Benzene Derivatives. Chem. Rev.2000,100(8):2901-2915
    [57]Takahashi, T.; Kitamura, M.; Shen, B.; Nakajima, K. Straight forward Method for Synthesis of Highly Alkyl-Substituted Naphthacene and Pentacene Derivatives by Homologation. J. Am. Chem. Soc.2000,122(51):12876-12877
    [58]Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y Palladium-Catalyzed Controlled Carbopalladation of Benzyne. J. Am. Chem. Soc.2000,122(30):7280-7286
    [59]Viswanathan, G. S.; Wang, M.; Li, C.-J. A Highly Regioselective Synthesis of Polysubstituted Naphthalene Derivatives through Gallium Trichloride Catalyzed Alkyne-Aldehyde Coupling. Angew. Chem., Int. Ed.2002,41(12):2138-2141
    [60]Katritzky, A. R.; Zhang, G.; Xie, L. Benzotriazole-Assisted Aromatic Ring Annulation: Efficient and General Syntheses of Polysubstituted Naphthalenes and Phenanthrenes. J. Org. Chem.1997,62(3):721-725
    [61]Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. Lewis Acid-Catalyzed Benzannulation via Unprecedented [4+2] Cycloaddition of o-Alkynyl(oxo)benzenes and Enynals with Alkynes. J. Am. Chem. Soc.2003,125(36):10921-10925
    [62]Asao, N.; Aikawa, H. Lewis Acid-Catalyzed [4+2] Benzannulation between Enynal Units and Enols or Enol Ethers:Novel Synthetic Tools for Polysubstituted Aromatic Compounds Including Indole and Benzofuran Derivatives. J. Org. Chem.2006,71(14):5249-5253
    [63]Kabalka, G W.; Ju, Y.; Wu, Z. A new Titanium Tetrachloride Mediated Annulation of a-Aryl-Substituted Carbonyl Compounds with Alkynes:Asimple and Highly Efficient Method for the Regioselective Synthesis of Polysubstituted Naphthalene derivatives. J. Org. Chem.2003,68(20):7915-7917
    [64]Fukutani, T.; Hirano, K.; TetsuyaSatoh, T.; Miura, M. Synthesis of Highly Substituted Naphthalene and Anthracene Derivatives by Rhodium-Catalyzed Oxidative Coupling of Arylboronic Acids with Alkynes. Org. Lett.2009,11(22):5198-5201
    [65]Shahzad, S. A.; Vivant, C.; Wirth, T. Selenium-Mediated Synthesis of Biaryls through Rearrangement. Org. Lett.2010,12(6):1364-1367
    [66]Wu, J.; Cui, X.; Mi, X.; Li, Y.; Wu, Y Palladium Catalyzed Synthesis of highly Substituted Naphthalenes via directring Construction from Amides with Alkynes. Chem. Commun.,2010, 46:6771-6773
    [67]Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. Intra/Intermolecular Direct Allylic Alkylation via Pd(II)-Catalyzed Allylic C-H Activation. J. Am. Chem. Soc.2008,130(39): 12901-12903
    [68]Shi, M.; Xu, B. VO(acac)2-Catalyzed Oxidative Coupling Reactions of Phosphonium Salts. J. Org. Chem.2002,67(1):294-297
    [69]Benkeser, R. A.; Snyder, D. C. Mechanism of the Reaction between Benzylmagnesium Chloride and Carbonyl Compounds. A Detailed Study with Formaldehyde. J. Org. Chem. 1982,47(7):1243-1249
    [70]Tolbert, L. M.; Ali, M. Z. Carbanion Photochemistry.8. Effect of Substituent Reduction Potential on the Ground-and Excited-State Isomerization of 2-Aryl-1,3-diphenyl-propenyl Anions. J. Org. Chem.1985,50(18):3288-3295
    [71]Simandi, T. L.; Simandi, L. I. Oxidation of Styrene by 2,3-Dichloro-5,6-Dicyano-benzoquinone. React. Kinet. Catal. Lett.1997,62(2):257-262
    [72]Wang, L.; Seiders, J. R.; Floreancig, P. E. Structure Reactivity Relationships in Oxidative Carbon Carbon Bond Forming Reactions:A Mild and Efficient Approach to Stereoselective Syntheses of 2,6-Disubstituted Tetrahydropyrones. J. Am. Chem. Soc.2003,126(39): 12596-12603
    [73]Merkel, P. B.; Luo, P.; Dinnocenzo, J. P.; Farid, S. Accurate Oxidation Potentials of Benzene and Biphenyl Derivatives via Electron-Transfer Equilibria and Transient Kinetics. J. Org. Chem.2009,74(15):5163-5173
    [74]Schepp, N. P.; Johnston, L. J. Reactivity of Radical Cations. Effect of Radical Cation and Alkene Structure on the Absolute Rate Constants of Radical Cation Mediated Cycloaddition Reactions. J. Am. Chem. Soc.1996,118(12):2872-2881
    [75]Floreancig, P. E. Development and Applications of Electron-Transfer-Initiated Cyclization Reactions. Synlett,2007,2:191-203
    [76]Bendig, J.; Beyermare, M.; Kreysig, D.; Schoneich, R.; Siegmund, M. Photochemische (E)-(Z)-lsomerisierung substituierter Stilbene und Stilbenanaloger in Gegenwart von n-Akzeptoren. Journal f. prakt. Chemie.1978,320(5):798-802
    [77]Seebach, D.; Boes, M.; Naef, R.; Schweizer, W. S. Alkylation of Amino Acids without Loss of the Optical Activity:Preparation of a-Substituted Proline Derivatives. A Case of Self-Reproduction of Chirality. J. Am. Chem. Soc.1983,105(16):5390-5398
    [78]Friedrich, B.; Juergen, S.; Richard. S.1,2-Dithiacyclopentenes. ⅩⅩⅩⅠ.3-Methyl-2-methylenebenzothiazolines from Chloro[N-methyl-N-(phenyl) thiocarbamoyl] Thioacetic S-phenyl ester. Investigations on the Preparation of a Thiirene. Justus Liebigs Annalen der Chemie,1976,12:2267-2271
    [79]Sun, M; Lu, H.; Wang, Y.; Yang, H.; Liu, H. Highly Efficient Formal Synthesis of Cephalotaxine, Using the Stevens Rearrangement Acid Lactonization Sequence as A Key Transformation. J. Org. Chem.2009,74(5):2213-2216
    [80]Lopez-Calahorra, F.; Ballart, B.; Hombrados, F.; Marti, J. A New High Yield Preparation of Benzyl Phenethyl Ethers by Phase Transfer Catalysis.1998,28(5):795-800
    [81]Cotter, J.; Hogan, A.-M.; OShea, D. F. Development and Application of a Direct Vinyl Lithiation of cis-Stilbeneanda Directed Vinyl Lithiation of an Unsymmetrical cis-Stilbene. Org. Lett.2007,9(8):1493-1496
    [82]Guo, H.; Ma, S. Highly Regio-and Stereoselective Palladium(0)-Catalyzed Addition of Organoboronic Acids with 1,2-Allenic Sulfones, Sulfoxides, or Alkyl-or Aryl-Substituted Allenes in the Presence of Acetic Acid:An Efficient Synthesis of E-Alkenes. Synthesis, 2007,17:2731-2745
    [83]Harvey, R.G.; Zhang, J.-T.; Luna, E.; Pataki, J. Synthesis of Benzo[s]piceneandits Putative Carcinogenic trans-3,4-Dihydrodiol and Region anti-Diol Epoxide Metabolites. J. Org. Chem. 1998,63(18):6405-6408
    [84]Majima, T.; Tojo, S.; Ishida, A.; Takamuku, S. Cis-Trans Isomerization and Oxidation of Radical Cations of Stilbene Derivatives. J. Org. Chem.1996,61(22):7793-7800
    [85]Katritzky, A. R.; Cheng, D.; Henderson, S. A.; Li, J. Trans-Selective Olefination of Carbonyl Compounds by Low-Valent Titanium-Mediated Dehydroxybenzotria-zolylation. J. Org. Chem.1998,63(19):6704-6709
    [86]Knappke, C. E. I.; Neudorf, J. M.; Wangelin, A. J. On new N-heterocycliccarbene derived alkylidene imidazolines. Org. Biomol. Chem.,2010,8:1695-1705
    [87]Barber, H. J.; Slack, R. Preparation of some stilbene derivatives. Ⅲ. J. Chem. Soc.,1944, 612-615
    [88]Marsh, G P.; Parsons, P. J.; Carthy, C. M.; Corniquet, X. G An Efficient Synthesis of Nitroalkenes by Alkene Cross Metathesis:Facile Access to Small Ring Systems. Org. Lett. 2007,9(14):2613-2616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700