拟南芥GDPMPPASE和GALPPASE基因转化生菜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素C(L-ascorbic acid,AsA)是维持人体正常生长发育必需的一类微量营养物质,但是人类自身却不能合成以及储存AsA,必须从外界获取。而植物性食物是人体维生素C的重要来源,L-半乳糖途径在植物AsA的生物合成中占有主导地位。GDP-甘露糖焦磷酸化酶(GDPMPPase)和L-半乳糖-1-磷酸化酶(GalPPase)便是L-半乳糖合成途径中两个重要的关键酶, GDPMPPase催化D-甘露糖-1-P生成GDP-D-甘露糖,而GalPPase催化GDP-L-半乳糖-1- P合成L-Gal。为了提高生菜中AsA的含量,根据GenBank中拟南芥GDP-甘露糖焦磷酸化酶基因(gmp)和L-半乳糖-1-磷酸化酶基因(galp)序列设计特异引物,从拟南芥cDNA中扩增出了gmp和galp基因编码区片段,分别连上CaMV 35S启动子、MYC序列和NOS终止子后将含gmp/galp基因的表达盒插入到植物表达载体pCAMBIA2301中,获得含有gmp/galp基因的植物表达载体p2301-gmp-myc和p2301-galp-myc。通过农杆菌介导法转化生菜,分别获得了64株转gmp基因植株和56株转galp基因植株,PCR检测以及Southern Blot杂交和荧光定量PCR分析证实外源基因已被成功导入生菜基因组中并转录。采用高效液相色谱法(HPLC-ELSD)测定转基因生菜中AsA的含量,结果表明,大多数转基因生菜中AsA的含量高于对照植株。AsA含量的HPLC分析结果显示:各gmp转基因株系中AsA含量最高达到对照的2.5倍;各galp转基因株系中AsA含量最高达到对照的1.9倍。该研究证明过量表达gmp基因和galp基因是提高生菜中维生素C含量的有效方法。
Vitamin C (L-ascorbic acid, AsA) is an essential micronutrient for human life. However, AsA can not be synthesized and stored in human bodies. AsA is obtained mainly from plants. In plants AsA is synthesized with D-mannose and L-galactose as key intermediates. GDP-D-mannose pyrophosphorylase (GDPMPPASE, EC2.7.7.22) catalyzes the synthesis of GDP-D-mannose and represents the first committed step in plant AsA biosynthesis. L-Galactose-1-phosphatase catalyzes the synthesis of L-Galactose. In order to improve the content of AsA in Lactuca sativa L., GDP-mannose pyrophosphorylase gene (gmp) and L-Galactose-1-phosphatase gene(galp)were cloned with specific primers according to the GenBank sequence from cDNA of Arabidopsis thaliana. CaMV 35S promoter, MYC sequence and NOS terminator were connected to gmp /galp gene respectively to constitute a gmp -containing expression cassette and a galp -containing expression cassette, the latter cassettes were transferred into pCAMBIA2301 expression vector respectively resulting in p2301-gmp-myc and p2301-galp-myc. L. sativa was transformed with Agrobacterium strain EHA105 containing p2301-gmp-myc or p2301-galp-myc through Agrobacterium-mediated leaf-disc transformation, and 64 gmp transgenic plants and 56 galp transgenic plants were obtained. PCR, Southern Blot and Real-Time PCR confirmed the integration and expression of the introduced gmp /galp in transgenic L. sativa plants. The contents of AsA in transgenic L. sativa plants were measured by HPLC–ELSD. The results indicated that most of the transgenic plants had higher AsA contents than those of wild type plants, with the highest content of AsA being about 2.5 times(gmp) and 1.9 times(galp) of the wild type. This study demonstrates that over-expressing the gmp /galp gene is an effective method to enhance AsA content in L. sativa L.
引文
[1] Asard H, May J M, and Smirnoff N. Vitamin C Function and Biochemistry in Animals and Plants [M]. London: Bios Scientific Publishers, 2004: 159-172.
    [2] Heick H M C, Gra G L A, and Humpers J E C. The occurrence of ascorbic acid among the yeasts [J]. Can. J. Microbiol, 1969, 18: 597-600.
    [3] Padh H. Cellular functions of ascorbic acid. Biochem [J]. Cell Biol., 1990, 68: 1166-1173.
    [4] Liebler D C, Kling D S, Reed D J. Antioxidants protection of phospholipid bilayer by a-tocopherol. Control of a-tocopheol status and lipid peroxidation by ascorbic acid and glutathione[J]. J Biol Chem, 1986, 261: 12114-12119.
    [5] Asada K. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants [J]. Physiol. Plant, 1992, 85: 235-241.
    [6] Conklin P L, Williams E H, Last R L. Environmental stress sensitivity of an ascorbic acid-deficient Arabindopsis mutant [J]. Proc. Natl. Acad. Sci. USA, 1996, 93: 9970-9974.
    [7] Karpinski S, Escobar C, Karpinska B, Creissen G, Nullineaux P M. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell, 1997, 9: 627-640.
    [8] Potters G, Horemans N, Caubergs R J, Asard H. Asorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension [J]. Plant Physiol, 2000, 124: 17-20.
    [9] Innocenti A M, Bitonti M B, Arrigoni O, Liso R. The size of the quiescent center in roots of Allium cepa L.growth with ascorbic acid [J]. New Phytol, 1990, 114: 507~509.
    [10] Citterio S, Sgorbati S, Scippa S, Sparvoli E. Ascorbic acid effect on the onset of cell proliferation in pea root [J]. Physiol Plant, 1994, 92: 601~607.
    [11] Kerk N M, Feldman L J. A biochemical model for the initiation and maintenance of the quiescent center: implications for organisation of root meristems [J]. Development, 1995, 121: 2825-2833.
    [12] Arrigoni O. Ascorbate system in plant development [J]. J Bioenerg Biomembr, 1994, 26: 407~419.
    [13] Veljovic-Jovanovic S D, Pignocchi C, Noctor G, Foyer C H. Low ascorbic acid in the vtc1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system [J]. Plant Physio, 2001, 127: 426~435.
    [14] Tabata K, Oba K, Suzuki K, Esaka M. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1, 4 -lactone dehydrogenase [J]. Plant J, 2001, 27: 139~148.
    [15] Miyake C, Asada K. Thylakoid bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product, monodehydroascorbate radicals in thylakoids [J]. Plant Cell Physiol, 1992, 33: 541~553.
    [16] Smirnoff N. Ascorbate biosynthesis and function in photoprotection [J]. Phil Trans R Soc Lond Ser B Biol Sci, 2000, 355: 1455~1464.
    [17] Eskling M, Arvidsson P O, Akerlund H E. The xanthophylls cycle, its regulation and components [J]. Physiol Plant, 1997, 100: 806~816.
    [18] Kato N, Esaka M. Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells [J]. Physiol Plant, 1999, 105: 321~329.
    [19] Smirnoff N. The function and metabolism of ascorbic acid in plants [M]. Ann.Bot, 1996, 78: 661-669.
    [20] Lin L S, Varner J E. Expression of ascorbic acid oxidase in zucchini squash(Cucurbita pepo L.) [J]. Plant Physiol, 1991, 96: 159~165.
    [21] Davey M W, Van Montagu M, Inze D, Sanmartín M, Kanellis, Smirnoff N, Benzie I J J, Strain J J, Favell D, Fletcher J. Plant L-ascorbic acid: chemistry,function, metabolism, bioavailability and effects of processing [J]. J. Sci. Food Agric, 2000, 80: 825-860.
    [22] Chen Z., Young T E, Ling J, Chang S C, and Gallie D R. Increasing vitamin C content of plants through enhanced ascorbate recycling [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 3525-3530. [ 23]陈吉棣.运动营养学[M ].北京:北京医科大学出版社, 2002: 142 - 166.
    [24]顾洪雁,张媛英,翟静,等.维生素C和芦丁对力竭运动小鼠组织自由基代谢的影响[J].中国临床康复,2005 (44) : 144 - 146.
    [25]余斌,覃承诃,罗吉伟,等.抗氧化维生素对大鼠运动能力的影响[J].第一军医大学学报, 2003 (9) : 17 - 19.
    [26] Senturk UK, Yalcin O, Gunduz F, et al. Effect of antioxidant vitamin treatment on the time course of hematological and hemorheological alterations after an exhausting exercise episode in human subjects [J]. Journal of Applied Physiology, 2005, 98 (4): 1272 - 1279.
    [27]詹彤,陶靖,唐荣才,等.维生素C对人全血红细胞的抗氧化保护作用[J].中国实验血液学杂志, 2005, 13(6) : 1106 - 1108.
    [28]吕晓华.运动营养学[M].成都:四川大学出版社, 2005.
    [29]王志文,尹富玲.维生素C帮助免疫系统抵抗疾病[J].生物学杂志, 1997(1): 47.
    [30]张翔,李俊青.运动与维生素C[J].忻州师范学院学报, 2004 (2) : 93 - 94.
    [31]张秀莲,李鲁明,袁向东等.大剂量维生素C佐治60例小儿病毒性心肌炎[J] .实用儿科杂志, 1993, 8 (1) : 44.
    [32]怀富.大剂量维生素C与强的松对特发性血小板减少性紫癜疗效分析[J] .临床荟萃, 1995, 10 (1) : 32.
    [33]梁海慧.维生素C临床应用进展[J] .广东药学,2000 ,4 (10) : 62 - 64.
    [34]李彩英.维生素C的临床应用进展[J] .河南医药信息,2000 ,9 : 64.
    [35]于继鸣,卢玉琼.维生素C临床应用进展[J] .医药导报, 1999(4) : 115 - 117.
    [36]李元迎.维生素C的临床应用[J] .四川畜牧兽医, 1999, 12: 39.
    [37]张道俊.维生素C临床应用的进展[J] .综合临床医学, 1997, 13(4) :301 - 302.
    [38]闫敏,葛卫红.维生素C的临床应用进展[J] .西藏医药杂志, 2003, 24 (1) :30- 31.
    [39]殷立新,王川平,李跃峰.大剂量维生素C的临床应用进展[J] .中国药事, 1999, 13 (3) :207-208.
    [42] Ishikawa, T, Yoshimura, K., Sakai, K., Tamoi, M., Takeda, T, and Shigeoka, S. Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach[J]. Plant Cell Physiol, 1998, 39: 23-34.
    [43] Smirnoff, N., Conklin, P. L., and Loewus, F. A. Biosynthesis of ascorbic acid in plants: a renaissance.Annu. Rev. Plant Physiol[J]. Plant Mol. Biol., 2001, 52: 437-467.
    [44] Noctor, G., and Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol[J]. Plant Mol. Biol., 1998, 49: 249-279.
    [45] Ohkawa, J., Ohya, T, lto, T, Nozawa, H., Nishi, Y, Okada, N., Yoshida, K., Takano, M., and Shinmyo, A. Structure of the genomic DNA encoding cucumber ascorbate oxidase and its expression in transgenic plants[J]. Plant Cell Rep., 1994, 13: 481-488.
    [46] Green, M. A., and Fry, S. C.. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate[J]. Nature, 2005, 433: 83-87.
    [47] Claus Schnarrenberger, Anke Flechner, and William Martin. Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an lncomplete Pathway in the Cytosol of Spinach Leaves[J]. Plant Physiol. ,1995, 108: 609-614
    [48] Saito, K., Ohmoto, J., and Kuriha, N.. Incorporation of ^sup 18^O into oxalic, l-threonic and l-tartaric acids during cleavage of l-ascorbic and 5-keto-d-gluconic acids in plants[J]. Phytochemistryte, 1997: 805-809.
    [49] Helsper, J. P., and Loewus, F.A.. Metabolism of I-Threonic Acid in Rumexacutus L. and Pelargonium crispum (L.)[J]. Plant Physiol., 1982, 69: 1365-1368.
    [50] Conklin, P.L, Pallanca, J.E., Last, R.L., and Smirnoff, N.. L-Ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1[J]. Plant Physiol., 1997, 115:1277-1285.
    [51] ?stergaard, J., Persiau, G., Davey, M. W., Bauw, G., and van Montagu, M.. Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants[J]. J. Biol. Chem., 1997, 272: 30009-30016.
    [52] ?ba, K., Fukui, M., Imai, Y, lriyama, S., and Nogami, K.. Lgalactono-1, 4-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue[J]. Plant Cell Physiol., 1994, 35: 473-478.
    [53] Tabata, K., Oba, K., Suzuki, K., and Esaka, M.. Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono 1 , 4-lactone dehydrogenase[J]. Plant J., 2001, 27: 139-148.
    [54]安华明,陈力耕,樊卫国,刘庆林.刺梨果实中维生素C积累与相关酶活性的关系.植物生理与分子生物学学报, 2005, 31(4): 431- 436.
    [55] Cordenunsi, B.R., Nascimento, J.R.O., Genovese, M.I., and Lajolo, F.M.. Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil[J]. J. Agric. Food Chem., 2002, 50: 2581-2586.
    [56] Tudela, J. A., Hernández, J. A., Gil, M. A., and Espln, J. C. 2003. L-galactono-gamma-lactone dehydrogenase and vitamin C content in fresh-cut potatoes stored under controlled atmospheres[J]. J, Agric. Food Chem., 2003, 51: 4296-4302.
    [57] Gatzek, S., Wheeler, G.L., and Smirnoff, N.. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis[J]. Plant J., 2002, 30: 541-553.
    [58] Sauer, M., Branduardi, P., Valli, M., and Porro, D.. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii[J]. Appi. Environ. Microbiol., 2004, 70: 6086-6091.
    [59] Sugiyama, T., Kido, N., Komatsu, T., Ohta, M., Jann, K., Jann, B., Saeki, A., Kato, N.. Genetic analysis of Escherichia coli O9 rfb: identification and DNA sequence of phosphomannomutase and GDP-mannose pyrophosphorylase genes[J]. Microbiology, 1994, 140:59-71.
    [60] Griffin, A. M., Poelwijk, E. S., Morris, V. J., Gasson, M. J.. Cloning of the aceF gene encoding the phosphomannose isomerase and GDP-mannose pyrophosphorylase activities involved in acetan biosynthesis in Acetobacter xylinum. FEMS Microbiol. Lett., 1997, 154: 389-396.
    [61]Hashimoto, H., Sakakibara, A., Yamasaki, M., Yoda, K.. Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation[J]. J. Biol. Chem., 1997, 272:16308-16314. [62 ]Tabata, K., Takaoka, T., Esaka, M.. Gene expression of ascorbic acid-related enzyme tobacco[J]. Phytochemistry., 2002, 61: 631-635.
    [63] Keller, R., Renz, F. S. A., and Kossmann, J.. Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence[J]. Plant J., 1999, 19: 131-141.
    [64] Conklin, P. L, Nprris, S. R., Wheeler, G. L, Williams, E.H., Smirnoff, N., and Last, R. L.. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis[J]. Proc. Natl. Acad. Sci. USA, 1999, 96: 4198-4203.
    [65] Wheeler, G. L., Jones, M. A., and Smirnoff, N.. The biosynthetic pathway of vitamin C in higher plants[J]. Nature, 1998, 393: 365-369.
    [66] Wolucka, B. A., Persiau, G., Doorsselaere, J. V, Davey, M. W., Demol, H., Vandekerckhove, J., Montagu, M. V, Zabeau, M., and Wout Boerjan, W. Partial purification and identification of GDPmannose 3',5'-epimerase of Arabidopsisthaliana, a key enzyme of the plant vitamin C pathway[J]. Proc. Natl. Acad. Sci. USA, 2001, 98: 14843-14848.
    [67] Wolucka, B.A., Montagu, M.V.. GDP- mannose- 3’, 5’- epimerase forms GDPL-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants[J]. J. Biol. Chem., 2003, 278: 47483-47490.
    [68] Conklin, P.L., Gatzek, S., Wheeler, G.L., Dowdle, J., Raymond, M.J., Rolinski, S.,Isupov, M., Littlechild, J.A., Smirnoff, N.. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme[J]. J. Biol. Chem., 2006, 281: 15662-15670.
    [69] Mathews, M.C., Summers, C.B., Felton, G.W.. Ascorbate peroxidase: A novel antioxidant enzyme in insects[J]. Arch. Insect. Biochem., 1997, 34: 57-68.
    [70] Davletova, S., Rizhsky, L., Liang, H.J., Zhong, S.Q., Oliver, D.J., Coutu, J., Shulaev, V.,Schlauch, K., Mittler, R.. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell, 2005, 17: 268-281.
    [71] Wang, J., Zhang, H., Allen, R.D.. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress[J]. Plant Cell Physiol., 1999, 40: 725-732.
    [72] Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Caravieri, S., Soave, C.. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death[J]. Plant J., 2004, 38: 940-953.
    [73] ?rvar, B.L., Ellis, B.E.. Transgenic tobacco plants expression antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injure. Plant J. , 1997, 11:1297-1305. [74 ]Mittler, R., Herr, E. H., Orvar, B. L, van Camp, W., Willekens, H., Inzé, D., and Ellis, B. E.. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyper responsive to pathogen infection[J]. Proc. Natl. Acad. Sci. USA, 1999, 96: 14165-1417.
    [75] Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E.,Rodermel, S., Inzé, D., Mittler, R.. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J]. Plant J., 2002, 32: 329-342.
    [76] Yabuta, Y., Motoki, T., Yoshimura, K., Takeda, T., Zshikawa, T., Shigeoka, S.. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J]. Plant J., 2002, 32(6): 915-925.
    [77] Pastori, G.M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P.J., Noctor, G., Foyer, C.H.. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling[J]. Plant Cell, 2003, 15: 939-951.
    [78] Berry, A., Running, J., Severson, D. K., and Burlingame, R. P.. Vitamin C production in microorganisms and plants. International Patent Application, 1999, W09964618.
    [79] Verpoorte, R., Memelink, J.. Engineering secondary metabolite production in plants[J]. Curr. Opin. Biotechno., 2002, 13: 181-187.
    [80] Lin, L., and Varner, J.E.. Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.)[J]. Plant Physiol., 1991, 96:159-165.
    [81] Jain, A.K., Nessler, C.L.. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants[J]. Mol. Breed., 2000, 6: 73-78.
    [82] Kappers, I. F., Aharoni, A., van Herpen, T.W.J.M., Luckerhoff, L.L.P., Dicke, M., Bouwmeester, H.J.. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 205, 309: 2070-2072.
    [83] Miyagawa, Y., Tamoi, M., Shigeoka, S.. Overexpression of a cyanobacterial fructose-1, 6-sedoheptulose-1, 7-bisphosphatase in tobacco enhances photosynthesis and growth[J]. Nat. Biotechnol., 2001, 19: 965-969.
    [84] Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y., Kaplan, A.. Enhanced photosynthesis and growth of transgenic plants that express ictB, agene involved in HCO3- accumulation in cyanobacteria[J]. Plant Biotechnol. J., 2003, 1: 43-50.
    [85] Nunes-Nesi, A., Carrari, R, Lytovchenko, A., Smith, A. M. O., Loureiro, M. E., Ratcliffe, R. G., Sweetlove, L. J., and Fernie, A. R.. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants[J]. Plant Physiol., 2005, 137: 61 1-622.
    [86] Frykman, S. A., Tsuruta, H., Starks, C. M., Regentin, R., Carney, J. R., and Licari, P.J.. Control of secondary metabolite congener distributions via modulation of the dissolved oxygen tension[J]. Biotechnol. Prog., 2002, 18: 913-920.
    [87] Kallio, P. T., Kim, D. J., Tsai, P. S., and Bailey, J. E.. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. fw: J. Biochem., 1994, 219: 201-208.
    [88] Frey, A. D., Oberle, B. T., Farrés, J., and Kallio, P. T.. Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro[J]. Plant Biotechnol. J., 2004, 2: 221-231.
    [89] Millar, A. H., Mittova, V, Kiddle, G., Heazlewood, J. L., Bartoli, C. G., Theodoulou, F. L., and Foyer, C. H. Control of ascorbate synthesis by respiration and its implications for stress responses[J]. Plant Physiol, 2003, 133:443-447.
    [90] Crawley M J . Ecology of transgenic oilseed rape in natural habitats[J] . Nature ,1993 ,363 (17) :620 - 623.
    [91] Jorgenson R. Spontaneous hybridization between oilseed rape and weed Brassica campestris : a risk of growing genetically engineered modified oilseed rape[J] . American Journal of Botany ,1995 ,81 :1620 - 1626. [ 92] Mikkelsen T R. The risk of crop transgene spread[J] . Nature ,1996 , 380(7) :31.
    [93]莽克强.转基因植物的生物安全性的商榷[J].生物工程进展, 1996, 16(4): 2- 6.
    [94] Donegan K K. Effects of transgenic plants on soil and plant microorganisms[J] . Recent Res. Dev. Microbiol ,1999, 3:415 - 424.
    [95] Bock S A. Prospective appraisal of complaints of adverse reactions to foods in children during the first 3 years of life [J] .Pediatrics , 1987 ,79 :683 - 688.
    [96] Nordlee J A. Identification of a brazil - nut allergen in transgenic soybeans[J] . The New England Journal of Medicine , 1996 ,334(11) : 688 - 692.
    [97]中华人民共和国科学技术委员会.基因工程安全管理办法[M].生物工程进展, 1994 , 14(2) : 1- 5.
    [98] Barber, G. A. The synthesis of L-galactose by plant enzyme systems. Aren. Biochem[J]. Biophys, 1971, 147: 619-623.
    [99] Reiter, W.D. The molecular analysis of cell wall components[J]. Trends Plant Sci., 1998, 3:27-32.
    [100] Nickle, T.C., Meinke, D.W.. A cytokinesis-defective mutant of Arabidopsis (cyt1)characterized by embryonic lethality, incomplete cell walls, and excessive callose accumulation[J]. Plant J., 1998, 15: 321-332.
    [101] Matthijs, G., Schollen, E., Pardon, E., Veiga Da Cunha, M., Jaeken, J., Cassiman, J. J.,Van Schaftingen, E. Mutations in PMMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome[J]. Nat. Genet., 1997, 16: 88-92.
    [102] Bonin, C.P., Potter, I., Vanzin, G.F., Reiter, W.D. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose[J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 2085-2090.
    [103] Conklin, P.L., Gatzek, S., Wheeler, G.L., Dowdle, J., Raymond, M.J., Rolinski, S.,Isupov, M., Littlechild, J.A., Smirnoff, N. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme[J]. J. Biol. Chem., 2006, 281: 15662-15670.
    [104] Hancock, R.D., Viola, R. Biotechnological approaches for L-ascorbic acid production[J]. Trends Biotechnol, 2002, 20: 299-305
    [105] Luk owitz W., Nickle T.C., Meinke D.W., Las t R.L., Conklin P.L., Somerville C.R.. Arabidopsis cyt1 mutants are deficient in amannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glyc os y lation for cellulose biosynthesis[J]. Proc Natl Acad Sci USA, 2001, 98: 2262-2267.
    [106] Yabuta Y., Mieda T., Rapolu M., Nakamura A., Motoki T., Maruta T., Yoshimura K., Ishikawa T., Shigeoka S.. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis[J]. J. Exp. Bot., 2007, 58: 2661-2671.
    [107] Laing WA, Bulley S, Wr ight M, Coone y J, Jensen D, Barr aclough D, MacRae E. A highly specific L-galactose-1-phos phate phosphatase on the path to ascorbate bio-synthesis[J]. Proc Natl Acad Sci USA, 2004, 101:16976-16981
    [108] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring harbor, NY: Cold-Spring Harbor Laboratory Press. 1989
    [109] Baier M, Noctor G, Foyer C H, Karl-Josef Dietz K J. Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism[J]. Plant Physiol., 2000, 124: 823-832.
    [120] Naqvi S, Zhu C F, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa D P, Ros G, Sandmann G, Capell T, Christou P. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways[J]. PNAS., 2009, 106: 7762-7767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700