抗坏血酸对不同耐铝性小麦基因型铝毒胁迫的缓解作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据报道,pH低于5.5的酸性土壤约占全世界土地面积的30%和潜在可耕地面积的50%。在中国,酸性土壤遍布15个省区,总面积达203万平方公里,约占耕地面积的21%。酸性或生理酸性化肥的大量施用以及工业化过程造成的大范围酸性沉降加剧了土壤的酸化过程。研究表明,Al浓度低于10μmol/L就会严重抑制许多植物根系的生长以及对养分和水分的吸收,而一般酸性土壤溶液中Al的浓度为10-100μmol/L。因此,Al毒被认为是酸性土壤中限制作物生长最重要的障碍因子,严重影响酸性土壤的作物生产。虽然国内外学者针对植物铝毒胁迫及其耐性机理已开展了大量研究,但迄今为止植物适应铝胁迫的生理生化及分子机制仍不完全清楚。近年来已有一些证据表明抗坏血酸(AsA)作为一种主要的抗氧化剂在植物对铝毒胁迫的响应中起着非常重要作用,但是对铝影响植物体内AsA的机理以及外源AsA对铝毒胁迫的缓解效应及其机制等问题尚不清楚。因此,本文以前期筛选的一对耐铝性差异明显的小麦基因型鉴-864(耐性)和扬麦5号(敏感)为材料,通过水培试验研究铝对不同小麦基因型AsA代谢的影响、外源AsA或者AsA合成前体对铝毒的缓解效应及其机理,以期更加深入地揭示铝对植物的毒害及植物耐铝性机理。取得的主要研究结果如下:
     1、铝对不同小麦基因型根尖AsA含量的影响及其机理
     以2个不同耐铝性的小麦基因型为材料,采用水培试验的方法,研究铝对小麦体内抗坏血酸代谢的影响。结果表明,在0,10,30,50μmol/L AlCl3胁迫下处理24 h,鉴-864和扬麦5号根系伸长受抑制程度随着铝处理浓度的提高而加剧。在30μmol/L AlCl3胁迫下,2个基因型的相对根伸长率差异最大,鉴-864的相对根伸长率为52%,而扬麦5号仅为28%。由此可见,鉴-864是对铝毒耐性较强,而扬麦5号对铝毒较为敏感。此外,小麦根尖铝含量和MDA(脂质过氧化指标)含量也均随铝处理浓度的提高而增加,且2个基因型也在30μmol/L AlCl3胁迫下差异最大,表现为扬麦5号高于鉴-864;因此,在后面的研究中选择该浓度进行铝胁迫处理。
     铝胁迫处理显著提高2个小麦基因型根尖AsA含量、L-半乳糖酸-1,4-内脂脱氢酶(L-GalLDH)、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)抗坏血酸过氧化物酶(APX)活性、AsA/DHA比值和抗坏血酸氧化酶(AAO)活性,且均表现为鉴-864高于扬麦5号。由此可见,铝诱导小麦体内AsA含量的提高与其促进AsA的合成和循环再生有关,鉴-864具有较强的合成、循环再生与降解的平衡能力,是其抵御铝诱导的氧化胁迫损伤的重要原因。
     2、外源AsA对铝胁迫下对小麦根尖AsA含量的影响及其机理
     以2个不同耐铝性的小麦基因型为材料,采用水培试验的方法,研究了外源AsA (0.5 mmol/L)预处理6h对小麦铝毒的缓解效应及其体内抗坏血酸代谢的影响。结果显示,AsA预处理可显著增加铝胁迫下2个小麦基因型的相对根长率,降低了根尖的铝含量,并显著增加2个小麦基因型根尖的AsA含量、AsA/DHA比值、L-GalLDH、MDHAR、DHAR、APX和AAO活性,且AsA含量、MDHAR、DHAR、APX和AAO活性在扬麦5号中的增加幅度大于鉴-864。可见,外源AsA主要通过促进AsA合成和循环再生能力而提高体内AsA含量,降低小麦根尖铝含量的吸收,缓解铝毒胁迫对小麦根系伸长的抑制作用。
     3、外源L-Gal对铝胁迫下对小麦根尖AsA含量的影响及其机理
     以2个不同耐铝性的小麦基因型为材料,采用水培试验的方法,研究了外源的AsA合成前体L-Gal (0.5 mmol/L)预处理6h对小麦铝毒的缓解效应及其体内抗坏血酸代谢的影响。结果显示,L-Gal预处理可显著增加了铝胁迫下2个小麦基因型的相对根长率,降低了根尖的铝含量,并显著增加2个小麦基因型根尖的AsA含量、AsA/DHA比值、L-GalLDH、MDHAR、DHAR、APX和AAO活性。可见,外源L-Gal可通过促进AsA合成和循环再生能力而提高小麦体内AsA含量,降低小麦根尖铝含量的吸收,缓解铝胁迫对小麦根系伸长的抑制作用。
It was reported that soils with pH lower than 5.5 accounts for 30% of the world land, and 50% of the world arable land. In China, acidic soil distributed across 15 provinces, accounting for 203 square KM, and representing 21% of its arable land. Soil acidization arose from the application of acidic fertilizers and the industrialization process. Previous study indicated that when Al concentration is lower than 10μmol/L in soil, plant root growth is inhibited due to the problems in nutrients and water uptake. Normally, Al concentration varys between 10 to 100μmol/L in acidic soils. Therefore, Al toxicity is thought to be the most important inhibitor limiting crop productivity. Although there are many reports on the Al stress and its toxicity mechanism, little is known about the physiolical and molecular mechanism on the plant response againt Al toxicity.
     1. Mechanisms for the effects of Al on AsA content and As A metabolic enzymes activities between wheat genotypes differing in Al tolerance
     Hydroponic experiments were carried out to study the effects of Al on AsA metabolism for two wheat genotypes varying in Al tolerance. The results indicated that the dose-dependent experiment of 24 h exposure to 0,10,30,50μmol/L AICl3 indicated that the root elongation of Jian-864 and Yangmai-5 was inhibited with the increasing Al concentrations. The greatest difference in relative root elongation (RRE) between the two genotypes was observed at the concentration of 30μmol/L AlCl3, with the RRE 52% of Jian-864 and only 28% of Yangmai-5. This shows Yangmai-5 was more sensitive to Al than Jiang-864. In addition, The Al content and monodehydroascorbate (MDA) content of Jian-864 and Yangmai-5 was promoted with the increasing Al concentrations. The greatest difference in Al content and MDA content between the two genotypes was observed at the concentration of 30μmol/L. So,30μmol/L AICl3 concentration is chosen for the following study.
     The dose-dependent experiment indicated that the AsA content, L-galactono-1,4-lactone dehydrogenase(L-GalLDH), monodehydroascorbate reductase(MDHAR), dehydroascorbate reductase(DHAR), ascorbate peroxidase(APX), AsA/DHA radio and ascorbate oxidase (AAO) activities in 0-10 mm root apex of two genotypes increased responding to the increasing Al concentration. However, Jian-864 is still superior to Yangmai-5. The results indicated that Al can increase the AsA content, induce the activity of enzymes related to metabolism and stimulate the antioxidant system response to Al stress. Meanwhile, AsA synthesis capability and metabolic enzyme activity closely associated with the differences in Al tolerance in different wheat genotypes.
     2. Mechanisms of the effects of Al on AsA content and AsA metabolic enzymes activities in different wheat genotypes with AsA application
     Hydroponic experiments were carried out to study the effects of AsA catabatic mechanism and AsA metabolism for two wheat genotypes exposed, to 0.5 mmol/L AsA pretreatment for 6 h. The results indicated that the two wheat genotypes of relative root elongation (RRE) were increased significantly with AsA pretreatment, but Al content in roots is reduced. After AsA pretreatment, AsA content, AsA/DHA ratio, L-GalLDH, MDHAR DHAR, APX and AAO activity in wheat rose markedly. And the rate of increase of AsA content, MDHAR, DHAR, APX and AAO activity in Yangmai-5 was greater than the ones in the Jian-864. The results indicated that exogenous AsA can accelerate endogenous AsA, DHA and their metabolic enzymes involvingin synthesis, promote wheat root elongation and reduction of the aluminum absorption and relieve the Al inhibition in root apex.
     3. Mechanisms of the effects of Al on AsA content and AsA metabolic enzymes activities in different wheat genotypes with L-Gal application
     Hydroponic experiments were carried out to study the effects of AsA catabatic mechanism and AsA metabolism for two wheat genotypes exposed to 0.5 mmol/L L-Gal pretreatment for 6 h. The results indicated that After L-Gal pretreatment, the RRE of two wheat genotypes were increased significantly, but Al content in roots is reduced. And AsA content, AsA/DHA ratio, L-GalLDH, MDHAR DHAR, APX and AAO activity in wheat were also promoted. The results indicated that exogenous L-Gal can promote the biosynthesis of endogenous AsA, DHA and their metabolic enzymes involved in synthesis, reduce the absorption of aluminum content and relieve the Al inhibition in root apex.
引文
1. Achary VMM, Jena S, Panda KK. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety. 2008,70:300-310.
    2. Agius F, Gonzalez-Lamothe R, Caballero JL, et al. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnology.2003,21,177-181.
    3. Ali S, Bai P, Zhang GP, et al. The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environmental and Experimental Botany.2011,70:185-191.
    4. Alscher RG, Donahue JH, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plantarum.1997,100:224-33.
    5. Aniol A. Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor. Apppl. Genet.1995,91:510-516.
    6. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.2004,55:373-399.
    7. Athar H, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exper Bot.2008,63:224-231.
    8. Arrigoni O, Calabreseg, Degara L, et al. Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings. Plant Physlol.1997,150: 302-308.
    9. Arrigoni O. Ascorbate system in plant development. J Bioenerg Biomember.1994, 26:407-419.
    10. Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol.1999, 50:601-639.
    11. Ashraf M, Athar H, Khan A. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany. 2008,63:224-231.
    12. Bartoli CG, Guiamet JJ, Kiddle G, et al. Ascorbate content of wheat leaves is not determined by maximall-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress. Plant cell Environ,2005,28:1073-1081.
    13. Beck A, Bernier F. Regulated expression of a wheat genmin gene in vobacco: oxalate oxidase activity and apoplastic localization of the heterologous Protein. Plant MolBiol.1997,33:417-429.
    14. Beck E, Burkert A, Hofmann M. Uptake of L-ascorbate by intact spinach chloroplasts. Plant Physio.1983,73:41-45.
    15. Bi SP, Wang CY, Cao Q, et al. Studies on the Mechanism of Hydrolysis and Polymerization of Aluminum Salts in Aqueous Solution:Correlations between the "Core-links" Model and "Cage-like" Keggin-Al_(13) Model. Coordination Chemistry Reviews,2004,248(5-6):44-455.
    16. Blarney FPC, Nishizawa NK, Yoshimura E. Timing, magnitude, and location of initial soluble aluminum injuries to mungbearl roots. Soil Sci Plant Nutr, 2004,50:67-76.
    17. Chao YY, Hong CY, Kao CH. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiology and Biochemistry. 2010,1:1-8.
    18. Chokri H, Maria C. Romero-Puertas, Luis A. del Rio, et al. Differential antioxidative response in barley leaves subjected to the interactive effects of salinity and potassium deprivation. Plant Soil.2010,3.
    19. Ciamporova M. Morphoological and structure responses of plant roots to aluminum at organ, tissue, and cellular levels. Biologia Plantarum.2002, 45(2):161-171.
    20. Conklin PL, Saracco SA, Norris SR, et al. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants.Genetics,2000,154:847-856.
    21. Conklin PL, Williamse H, Laster L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA,1996,93: 9970-9974.
    22. Conklin PL. Recent advance in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ,2001,24:383-394.
    23. Cordoba-Pedregosa MC, Villalba JM, Gonzalez-Reyz JA, et al. Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. Journal of Experimental Botany.2005,56:685-684.
    24. Daniela AA, De Tullio MC. Contrasting effects of increased ascorbate content on growth and development of long-day and short-day grown Brassica rapa. Caryologia.2007,1-2(60):185-187.
    25. Davey MW, Van Montagu M, Inze D, et al. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture,2000,80:825-860.
    26. Davey MW., Mon TA., Gu MV, et al. Plant L-ascorbic acid:chemistry,function, metabolism, bioavailability and effects of processing. Sci. Food Agric.,2000,80: 825-860.
    27. De Gara L, Tommasi F. Ascortabe redox enzymes:a network of reactions involved in plant development. Recent.Dev. Phytochem..1999,3:1-15.
    28. De Pinto MC, Francis D, De Gara L, The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells, Protoplasma,1999,209:90-97.
    29. Del Carmen CP, Gonzalez-Reyes J, Delsagrario C, et al. Role of aopplastic and cell-wall peroxidase son the stimulation of root elongation by ascorbate. Plant Physiol.,1996,112:1119-1125.
    30. Delhaize E, Craig S, Beaton CD, et al. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol. 1993,103:685-693.
    31. Delisle G, Champoux M, Houde M. Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol.2001,42: 324-333.
    32. Dipierro N, Mondelli D, Diperro S. Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminum stress. Journal of Plant Physiology.2005,162:529-536.
    33. Dolatabadian A, Modarres, Sanavy AS AM, Sharif M. Alleviation of Water Deficit Stress Effects by Foliar Application of Ascorbic Acid on Zea mays L. J. Agronomy&Crop Science.2009,195:347-355.
    34. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol.2000,122:657-665.
    35. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol.2000,122:657-665.
    36. Foy CD. Physiological effects of hydrogen, Al and manganese toxicities in acid soil. Plant physiology,1984:57-97.
    37. Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants. Physiol. Plant,1994,92:696-717.
    38. Foyer CH, Lelandais M. A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid chloroplast and plasmalemma membranes of pea leaf mesophyll cells. Plant Physiol,1996,148:391-398.
    39. Franceschi VR, Tarlyn NM. L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissuesin plants. Plant Physiol,2002,130:649-656.
    40. Gatzek S, Wheeler GL, Smirnoff N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant Journal,2002, 30:541 553.
    41. Guo ZF, Tan HQ, Zhu ZH, Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiology and Biochemistry.2005,43:955-962.
    42. Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Physiol Biochem.2010,48:909-930.
    43. Hancock RD, Viola R. Biosynthesis and catabolism of L-ascorbic acid in plants. Critical Reviews in. Plant Sciences.2005,24:167-188.
    44. Hemavathi, Upadhyaya CP, Young KE, et al. Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sciences.2009,177:659-667.
    45. Horemans N, Asard H, Caubergs RJ. Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles show strans-stimulation. The FEBS Letters,1998,421:41-44.
    46. Horemans N, Asard H, Caubergs RJ. The ascorbate carrier of higher plant plasmamembranes preferentially Trans locates the fully oxidized (dehydroascorbate) molecule. Plant Physiol.1997,114:1247-1253.
    47. Horemans N, Asard H, Caubergs RJ. Transport of ascorbate into plasma membrane vesicles of Phaseolus vulgaris L. Protoplasma,1996,194:177-185.
    48. Horemans N, Foyer CH, Potters G,et al. Ascorbate function and associated transport systems in plants. Plant Physiol.Biochem.2000,38:531-540.
    49. Horemans N, Potters G, Ascrd H, et al. Transport of ascorbate into protoplasts of Nicotiana tabacum Bright Yellow 2 cell Line. Protoplasma.1998,205:114-121.
    50. Horst WJ. The role of the apoplast in aluminum toxicity and distance of higher plants:A review. Z Pflanzenemahr Bodenkd,1995,158:419-428.
    51. Imai T, Niwa M, Ban M, et al. Importance of the L-galactonolactone pool for enhancing the ascorbate content revealed by L-galactonolactone dehydrogenase-overexpressing tobacco plants. Plant Cell Tiss Organ Cult,2009,96:105 112.
    52. Isherwood FA, Chen YT, Mapson LW. Synthesis of L-ascorbic acid in plants and animals. Biochem J,1954,56:1-21.
    53. Ishikawa T, Dowdle J, Smiroff N. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant,2006,126(3):343-355.
    54. Ishikwa S, Wagastmua T. Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant species. Plant Cell Physioloy.1998,39:516-525.
    55. Kampfenkel K, Van Montagu Marc, Inze D. Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue. Analytical Biochemistry. 1995,225:165-167.
    56. Karpinski S, Escobar C, Karpinska B, Creissen G, Nullineaux PM. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell.1997,9:627-640.
    57. Kato N, Esaka M. Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells, Physiol Plant.1999, 105:321-329.
    58. Kellogg EW, Fridovich I. Suproxide, hydrogen peroxide, and single oxygen in lipid peroxidation by axanthine oxidase system. Biol. Chem.1975,250: 8812-8817.
    59. Kinraide TB, Parker DR. Apparent phytotoxicity of mononuclear hydro-aluminum to four dityledonous species. Physiol. Plant.1990,79:283-288.
    60. Kinraide TB, Parker DR. Assessing the phytotoxicity of mononuclear hydroxyl-aluminum. Plant Cell Environ.1989,12:478-487.
    61. Kinraide TB. Identity of the rhizotoxic aluminum species. Plant Soil 1991,134: 167-178.
    62. Kobayashi Y, Yamamoto Y, Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L.) using aluminum-tolerant cultivar 'Alaska' and aluminum-sensitive cultivar 'Hyogo', Soil Sci. Plant Nutr.2004,50: 197-204.
    63. Kochian LV, Hoekenga OA, Pineros MA. How do crop plants tolerate acid soil? Mechanisms of aluminum tolerance and phosphorus efficieny. Annu. Rev. Plant. Biol.2004,55:549-593.
    64. Kochian LV. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.1995,46:237-260.
    65. Koehina LV, Pineors MA, Hoeknega OA. The Physiology, geneties and molecular biology of plant aluminum resistance and toxicity. Plant and Soil.2005, 274:175-195.
    66. Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol.2000,122:945-956.
    67. Lane BG, Dunwell, JM, Ray JA, et al. Germin, a protein marker of early plant development, is a oxalate oxadise. J Biol Chem.1993,268:12239-12242.
    68. Lee SK, Kader AA. Preyharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology,2000,20: 207-220.
    69. Li Y, Hou XL. Response of antioxidant activity to excess copper in two cultivars of Brassica campestris ssp. chinensis Makino. Acta Physiol Plant.2009,31: 15-162.
    70. Liebler DC, Kling DS, Reed DJ. Antioxidants protection of phospholipid bilayer by a-tocopheol. Control of a-tocopheol status and lipid peroxidation by ascorbic acid and glutathione. J Biol Chem,1986,261:12114-12119.
    71. Liso R, Innocentia M, Bitontim B, et al. Ascorbic acid induced progression of quiescent center cells from G1 to S phase. New Phytol.1988,110:469-471.
    72. Loewus FA, Loewus MW. Biosynthesis and metabolism of L-ascorbic acid in plants. Crit Rev Plant Sci.,1987,5:101-119.
    73. Loewus FA. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry,1999,52:193-210.
    74. Loewus FA. Tracer studies on ascorbic acid formation in plants.Phytochemistry, 1963,2:109-128.
    75. Loewus MW, Bedgar DL, Saito K, Loewus FA. Conversion of L-sorbosone to L-ascorbic acid by a NADP-dependent dehydrogenase in bean and spinach leaf. Plant Physiol.,94:1492-1495.
    76. Lorence A, Chevone B I, Mendes P, et al. Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol.,2004,134: 1200-1205.
    77. Loscos J, Matamoros MA, Becana M. Ascorbate and Homogluathione Metabolism in Common Bean Nodules under Stress Condition and during Nation Senescence. Plant Physiol,2008,3(149):1282-1292.
    78. Lukaszewski KM, Blevins DG. Root growth inhibition in boron-deficient or aluminum-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol.1996,112:1135-1140.
    79. Lykkesfeldt J, Hagen TM, Vinarsky V, et al. Age-associated decline in ascorbic acid concentration, recycling, and biosynthesis in rat hepatocytes—reversal with (R)-a-lipoic acid supplementation. The FASEB Journal,1998,12(12):1183-1189.
    80. Maddison J, Loyns T, Plochl M, et al. Hydroponically cultivated radish fed L-galactono-1,4-lactone exhibit increased tolerance to ozone. Planta.2002,214: 383-391.
    81. Mahalingam N, Jambunathan N, Gunjan S, et al. Analysis of oxidative signaling induced by ozone in Arabidopsis thaliana.2006,29:1357-1371.
    82. Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants:a minireview. Journal of inorganic Biochemistry.2003,46-51.
    83. Mapson LW, Isherwood FA. Biological synthesis of ascorbic acid:the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem.J.,1956,64:13-22.
    84. Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology.2000,200:1-46.
    85. Mieda T, Yabuta Y, Rapolu M, et al. Feedback Inhibition of Spinach L-Galactose Dehydrogenase by L-Ascorbate. Plant Cell Physiol,2004,45(9):1271-1279.
    86. Meriga B, Reddy BK, Rao KR, et al. Aluminium-induced production of oxgen radicals, lipid peroxidation and DNA damage in seedlings of rice(Oryza sativa). Journal of Plant Physiology.2004,161:63-68.
    87. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends plant Sci. 2001,7(9):405-410.
    88. Mossor-Pietraszewska T. Effect of aluminium on plant growth and metabolism. Acta Biochem. Pol.,2001,48:673-686.
    89. Mutsuda M, Ishikawa T, Takeda T, Shigeoka S. Subcellular localization and properties of L-galactono-1,4-lactone dehydrogenase in spinach leaves. Biosci Biotechnol Biochem.1995,59:1983-1984.
    90. Noctor G, Foyer CH. Ascorbate and glutathione:keeping active oxygen under control. Plant Mol. Biol.1998,49:249-279.
    91. Noctor G, Foyer CH. Ascorbate and glutathione:Keeping Active Oxygen under Control. Annu. Rev. Plant Physiol. Plant Mol. Biol.1998,49:249-279.
    92. Onklin PL. Recent advance in t he role and biosynthesis of ascorbic acid in plants. Plant Cell and Environment.2001,24:383-394.
    93. Osawa H, Matsumot H. Possible involvement of protein phosphorylation in aluminum responsive malate efflux from wheat root apex.Plant Physiol.2001, 126:411-420.
    94. Padh H. Cellular functions of ascorbic acid. Biochem. Cell Biol.1990,68: 1166-1173.
    95. Pallanca JE, Smirnoff N. Ascorbic acid metabolism in pea seedlings A comparison of D·glucosone, L-sorbosone, and L-galactono-1,4-lactone as ascorbate precursors. Plant Physiol.,1999,120:453-461.
    96. Pan JW, Zhu MY, Peng HZ, et al. Developmental regulation and biological functions of root border cells in higher plants. Acta Botanica Sinica.2002b,44(1): 1-8.
    97. Panda S-K, Matsumoto H. Molecular physiology of aluminum toxicity and tolerance in plants. The Botanical Review,2007,73(4):326-347.
    98. Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall. Trends Plant Sci.2004,9:534-540.
    99. Pedreira J, Sanz N, Jesus M,et al. Role of Apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant&Cell Physiol, 2004,45(5):530-534.
    100.Pennel RI, Lamb C. Programmed cell death in plants. Plant Cell 1997,9: 1157-1168.
    101.Preger V, Scagliarini S, Pupillo P, et al. Identification of an ascorbate-dependent cytochrome b of the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family. Planta,2005,220:365-375.
    102.Rautenkranza AF, Li L, Machler F, et al. Transport of ascorbic and dehydroascorbic acid crossprotoplast and vacuole membranes isolated from Barley (Hordeum vulgare L.cv Gerbel) leaves. Plant Physiol,1994,106:187-193.
    103.Rout GR, Smantaray S, Das P. Aluminum toxicity in plants:a review. Agronimie 2001,21:3-21.
    104.Ruelland E, Miginiac-Maslow M. Regulation of chloroplast enzyme activities by thioredoxins:activation or relief from inhibition. Trends Plant Sci.,1999,4: 136-141.
    105.Ryan PR, Delhaize E, Randall PJ. Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat.Plant Physiol,1995,22:531-536.
    106.Ryan PR, Ditomaso JM, Kochian LV. Aluminum toxicity in roots:An investigation of spatial sensitivity and the role of the root apex. J. Exp. Bot.1993, 44:437-446.
    107.Ryerson DE, Heath MC. Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell 1996,8:393-402.
    108.Sanchez-Fernandez R, Fricker M, Corbenlb, et al. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc.Natl. Acad.Sci.USA,1997,94:2745-2750.
    109.Schnarrenberger C, Flechner A, Martin W. Enzymatic evidence for a complete oxidative pentose phosphatepathway in chloroplasts and incomplete pathway in the cytosol of spinach leaves. Plant Physil.1995,108:609-614.
    110.Shalata A, M.Neumann P. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany.2001,52:2207-22.11.
    111.Sharma P, Dubey RS. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports.2007,26:2027-2038.
    112.Shen CH, Krishnamurthy R, Yeh KW. Decreased L-Ascorbate Content Mediating Bolting is Mainly Regulated by the Galacturonate Pathway in Oncidium. Plant Cell Physiol.2009,50(5):935-946.
    113.Siendones E, Gonzalez R, Santos O,et al.Biosynthesis of ascorbic acid in kindney beans. L-Galactona-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol.1999,120:907-912.
    114.Sies H. Biochemistry of oxidative stress. Angew Chem. Int. Ed. Engl.1986,25: 1058-1071.
    115.Simonovicova M, Tamas L, Huttova J, Mistrik I. Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biolgia Plantarum. 2004,48 (2):261-266.
    116.Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant physiol.1999,119:1073-1082.
    117.Sivaguru M, Horst WJ. The distal part of the transition zone is the most aluminum sensitive apical root zone of maize. Plant Physiol.1998,116:155-163.
    118.Smimoff N. The function and metabolism of ascorbic acid in plants. Ann Bot., 1996,78:661-669.
    119.Smirnoff N, Pallanca JE. Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans,1996,24:472-478.
    120.Smirnoff N., Conklin PL., Loewus F. A. Biosynthesis of ascorbic acid in plants:a renaissance. Annu. Rev. Plant Physiol. Plant Mol. Biol.2001,52:437-445.
    121.Tabaldi LA, Cargnelutti D, Goncalves JF. Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets. Chemosphere.2009, 76:1402-1409.
    122.Tabata K, Takaoka T, Esaka M. Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry.2002,61:631-635.
    123.Takahama U, Oniki T. Regulation of peroxidase oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol.1992,33:379-387.
    124.Takahama U. Effects of fusicoccin and indole-3-acetic acid on the levels of ascorbic acid and dehydroascorbic acid in the apoplastDuring elongation of epicotyl segments of Vignaangularis. Physiol. Plant,1996,98:731-736.
    125.Takahama U. Regulation of peroxidase-deepndent oxidation of phenolics by ascorbic acid:Different effects of ascorbic acid on the oxidation of coniferyl alcohol by the aopplastic soluble and cell wall-bound peroixdases from epicotyls of Vigna angularis. Plant Cell Physiol.,1994,34:809-817.
    126.Tamas L, Huttova J, Mistrik I, et al. Aluminium-induced drought and oxidative stress in barley roots. Journal of Plant Physiology.2006,163:781-784.
    127.Tamas L, Simonovicova M, Huttova J, Mistrik I Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ. Exp. Bot.2004,51: 281-288.
    128.Tamaoki M, Mukai F, Asai N, et al. Light-controlled expression of a gene encoding L-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Science.2003,164:1111-1117.
    129.Taylor GJ. Current views of the aluminum stress response:The physiological basis of tolerance. Curt Topics Plant Bieehem. Physio.,1991,10:57-93.
    130.Vaidyanathan H, Sivakumar P, Chakrabarty R, et al. Scavenging of reactive oxygen species in NaCl stressed rice(Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Science,2003,165:1411-1418.
    131.Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants:new pathways for an old antioxidant. Trends Plant Science,2004,9:573-577.
    132.Wang CY, Bi SP, Luo MB. Advancement of Studies on the Formation of Polynuclear Hydroxyl Aluminum Species and Their Transformation Laws in Aqueous Systems and Soil Solutions. ACS Symposium Series. American Chemical Society,2002,822:246-258.
    133.Wang JW, Kao CH. Protective effect of ascorbic acid and glutathione on AlCl3-inhibited growth of rice roots. Biologia Plantarum.2007,51(3):493-500.
    134.Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta.2003, 218:1-14.
    135.Wheeler GL, Jones MA, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature,1998,393:365-369.
    136.Wolucka BA, Van Montagu M. GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J. Biol. Chem.,2003,278:47483-47490.
    137.Wu FB, Zhang GP. Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. Journal of Plant Nutrition.2002,25(12):2745-2761.
    138.Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol.2006,57:781-803.
    139.Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol.,2001,125:199-208.
    140.Yin L, Wang SW, Eltayeb AE. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta.2010,231:608-621.
    141.Yoshimura E, Nakagawa T, Takuya MS. Distribution and Chemical Forms of Aluminum in Roots of Aluminum-Tolerant Rice Cultivar Grown with or without Phosphate Pretreatment. Communications in Soil Science & Plant Analysis, 2003,34(11,12):1549-1556.
    142.Younis ME, Hasaneen MNA, Kazamel A M S. Plant growth, metabolism and adaptation in relation to stress conditions. XXVII. Can ascorbic acid modify the adverse effects of NaCl and mannitol on amino acids, nucleic acids and protein patterns in Vicia faba seedlings? Protoplasma.2009,235:37-47.
    143.Zabalza A, Galvez L, Marino D,et al. The application of ascorbate or its immediate precursor,galactono-1,4-lactone,does not affect the response of nitrogen-fixing pea nodules to water stress. Journal of Plant Physiology.2008, 165:805-812.
    144.Zheng SJ, Yang JL. Target sites of aluminium phytotoxicity. Biol. Plant,2005,49: 321-331.
    145.安华明,陈力耕,樊卫国,胡西琴.高等植物中维生素C的功能、合成及代谢研究进展.植物学通报.2004,21(5):608-617.
    146.陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2002.
    147.陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报.2004,24(2):329—336.
    148.陈少裕,膜脂过氧化对植物细胞的伤害.植物生理学通讯.1991,27(2):84-90.
    149.段咏新,李松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻.1997,12(6):23-25.
    150.高俊杰,秦爱国,于贤昌.低温胁迫对嫁接黄瓜叶片抗坏血酸—谷胱甘肽循环的影响.园艺学报.2009,36(2):215-220.
    151.何虎翼,何龙飞,黎晓峰,顾明华.铝胁迫对黑麦幼苗活性氧系统的影响.麦类作物学报.2005,25(6):91-95.
    152.江海东,濮梅娟,周琴,等.外源抗坏血酸对酸雨胁迫油菜幼苗的缓解效应.农业环境科学学报,2010,29(8):1437-1442.
    153.蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响闭.植物生理学报.1991,17(1):80-84.
    154.李培峰,方允中,陈吉中,等.过氧化氢对铜锌超氧化歧化酶结构损伤作用的进一步研究闭.生物化学杂志.1993,9(4):417-423.
    155.李晓玲,杨进,骆炳山.活性氧代谢与植物的抗逆性.荆门职业技术学院学报.1999,14(3):30-35.
    156.李朝苏,刘鹏,蔡妙珍,等.荞麦对酸铝胁迫生理响应的研究.水土保持学报,2005,19(3):105-109.
    157.李朝苏,刘鹏,徐根娣,.等.铝胁迫对芥菜(Brassica juncea Coss)幼苗根系形态和叶内抗氧化系统的影响.园艺学报,2006,33(3).
    158.林咸永,章永松,罗安程.小麦地上部和根系生长的相关性及其在耐Al性筛选中的作用.应用生态学报.2002,13(6):766-768.
    159.林咸永,王建林.植物营养生理生态和遗传学.北京:中国科学技术出版社.1993.
    160.林植芳,李双顺等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系明.植物生理学报.1988,14:16-22.
    161.陆定志.叶片的衰老及其调节控制.植物生理生化进展.1983,2:20-52.
    162.马玉华,马锋旺,马小卫,等.干旱胁迫对苹果叶片抗坏血酸含量及其代谢相关酶活性的影响.西北农林科技大学学报(自然科学版).2008,36(3):150-154.
    163.秦瑞君,陈福兴.低分子有机酸离子对降低土壤铝毒的作用.土壤通报.1998,29(3):111—112.
    164.汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响.植物营养与肥料学报.2008,14(1):36-42.
    165.王趁义.环境中可溶态铝对植物毒害作用的研究评述.湖州师范学院学报.2006,28(2):38-42.
    166.王洪政,沈振国.根系抗坏血酸在小麦幼苗铝耐性中的作用.西北植物学报.2006,26(4):0753-0758.
    167.王水良,王平,王趁义.铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化.生态与农村环境学报.2010,26(1):87-91.
    168.王玉秋,何锡文.铁介导的经自由基对生物大分子的损伤机理明.生理科学进展.1998,29(1):63-66.
    169.魏国平,朱月林,刘正鲁.硝酸钙胁迫对营养液栽培嫁接茄子叶片抗坏血酸-谷胱甘肽循环的影响.植物生态学报.2008,32(5):1023-1030.
    170.许长成,邹琦.大豆叶片旱促衰老及其与膜脂过氧化的关系阴.作物学报.1993,19(4):361-363.
    171.余淑文,汤章成.植物生理与分子生物学.北京:科学出版社,1998.336-389.
    172.詹洁,寇瑞杰,李创珍,何虎翼,何龙飞.铝胁迫对花生根尖线粒体膜生理特性的影响.作物学报.2009,35(6):1059-1067.
    173.张佩,周琴,孙小芳,等.抗坏血酸对镉胁迫下油菜幼苗生长的影响.农业环境科学学报.2008,27(6):2362-2366.
    174.朱为民,丁海东,齐乃敏,等.Cd2+胁迫对番茄幼苗抗坏血酸—谷胱甘肽循环代谢的影响.华北农学报.2005,20(3):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700