基于选择性鉴别培养基、酶免疫传感器和智舌对阪崎肠杆菌快速检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阪崎肠杆菌(Enterbacter sakazakii)是肠杆菌科的食源性致病菌,革兰氏阴性致病菌,可引起婴幼儿脑膜炎、菌血症和小肠结肠炎,婴儿和幼儿对该菌尤为更高的感染风险。在市场销售的婴幼儿配方奶粉中包括阪崎肠杆菌在内的各类肠杆菌也有检出。婴幼儿被感染后高达40-80%的死亡率非常值得关注。阪崎肠杆菌感染和传播50-80%的途径是通过婴幼儿配方奶粉(Powered Infant Formula, PIF)和其它配方奶粉。对阪崎肠杆菌快速、敏感、经济、简便的检测方法是对该菌及其所致疾病的监测、监管、预防、质控和及时诊断等多方面有效实施的保障,是多级检验检疫部门的迫切需求。
     本文以选择性鉴别培养基、酶免疫传感器和智舌为手段,构建了三种快速检测阪崎肠杆菌的方法。选择性鉴别培养基是在生化反应的基础上开发的技术,将传统的细菌分离与生化反应有机的结合起来,使得检测结果直观,易于观察辨别,且具有低成本、特异性强、灵敏度高和检测快速、操作方便等优点。选择性鉴别培养基是国内外.微生物检测研究和应用的一个主要发展方向。酶免疫传感器是基于抗原-抗体特异性反应的电化学免疫传感器,在食品分析、临床诊断、环境监测等领域开展了许多研究。智舌是以多频率脉冲作为激发扫描信号,辅以特定传感器阵列,检测待测物质的整体响应信号,结合多元统计方法构建的一类新型电子舌,具有检测速度快、样品前处理简单等优点,结合每种致病菌都有其特定的酶系统及其代谢途径,其培养物具有综合种的特征,基于此,智舌在致病菌快速检测方面具有很大的潜力。分别基于生化反应结合分离培养、酶免疫传感器和智舌检测的菌种整体代谢特征研究出的三种方法共同组成了一套阪崎肠杆菌快速检测体系,上述两种或三种方法结合,可以克服各自的不足,发挥各自的优点,达到准确、敏感、快速检测阪崎肠杆菌的目的。
     本论文主要围绕以下几个方面开展了一些研究工作:
     1阪崎肠杆菌选择性鉴别培养基的研制
     本试验以阪崎肠杆菌对某些特定抑菌成分的抵抗力为基础,设计研制了阪崎肠杆菌选择性鉴别培养基(Enterbacter sakazakii Differential Medium, EsDM)。试验中对EsDM的显色效果、平板效率、灵敏度和特异性进行评价。结果显示:EsDM对阪崎肠杆菌具有较好的选择性和特异性;用EsDM在30℃培养16 h-24 h,阪崎肠杆菌菌落为黄绿色;其它各种致病菌菌落呈其他色或未形成有效的可见菌落;EsDM对阪崎肠杆菌的出菌效率与胰大豆蛋白胨琼脂(TSA)相比为(92.42±3.43)%;检出限为101 cfu/mL;因此,EsDM对婴幼儿配方奶粉中阪崎肠杆菌分离鉴别与检测是准确、敏感的,可试验用于大批实际样品的检测,且具有操作简便、经济、结果易于观察等优点。
     2基于多壁碳纳米管/海藻酸钠复合物和4-SPCE的阪崎肠杆菌酶免疫传感器的研制
     为快速检测阪崎肠杆菌,将辣根过氧化物酶标记的阪崎肠杆菌抗体吸附在多壁碳纳米管/海藻酸钠复合物修饰的四通道丝网印刷碳电极表面,制得快速检测阪崎肠杆菌的酶免疫传感器。采用原子力显微镜表征不同修饰电极的表面形态,循环伏安法考察不同电极的电化学特性,采用一步免疫法检测阪崎肠杆菌和循环伏安法监测酶促反应,根据免疫反应前后还原峰峰电流的降低值来检测样品中的阪崎肠杆菌。在优化的实验条件下,酶免疫传感器与阪崎肠杆菌浓度的对数在103~108 cfu/mL范围内保持良好的线性关系,检出限为2.5×102 cfu/mL(S/N=3)。该酶免疫传感器具有较好的特异性、重现性、稳定性和准确性,可望初步用于阪崎肠杆菌的快速筛检。
     3智舌对阪崎肠杆菌示踪、区分与SIMCA判别模型的建立
     智舌结合主成分分析方法,对阪崎肠杆菌、鸡白痢沙门氏菌、志贺氏菌、大肠埃希氏、金黄色葡萄球菌和蜡样芽胞杆菌进行示踪和鉴别研究。结果显示,Ag电极10Hz示踪5h培养物开始出现较大离散度,这与国标的吸光度法结果类似。基于此,确定用Ag电极10Hz进行上述6种主要致病菌5h后培养物的鉴别研究,获得了6h的培养物即能达到理想的鉴别效果,6种致病菌在主成分得分图上的马氏距离均能达到2.0以上。因此,智舌Ag电极10Hz结合主成分分析法,能够对婴幼儿配方奶粉中国标规定的6种主要致病菌5h培养物进行示踪、6h培养物进行有效鉴别。用Ag电极10Hz构建阪崎肠杆菌智能识别模式单元,通过培训集样本回判和用未知样本进行检验,得到最佳的SIMCA判别模型。
Enterbacter sakazakii is an opportunistic Gram-negative, foodborne pathogen, which is a member of the family Enterbacter bacteriaceae. Enterbacter sakazakii is considered to causing meningitis, bacteremia or necrotizing enterocolitis. Specially for neonates and infants. The infant powdered milk sales in China also had a high detective rate. The 50~80% infection and transmission path of Enterbacter sakazakii was from powered infant milk and other milk. Enterbacter sakazakii on monitoring, controlling, prevention, diagnosis, and many other quality control and timely and effective implementation of protection is the urgent needs of multi-stage inspection and quarantine department.
     This research used Selective Differential media, Enzymatic immunosensor and Smart Tongue to detecting Enterbacter sakazakii in three different fast methods. Selective Differential media, which is based on biochemical reaction, is a detection technology. It has successfully combined the reaction of biochemistry and the traditional separation of biochemistry of bacterium, which is easy to observe the result of detection. In addition, there are some advantages-low cost, high sensitivity, specificity and rapidness. Selective Differential media is becoming the main trend of microbial detection. Enzymatic immunosensor based on the specificity of antigen-antibody interactions with electrochemical transduction, have become an attractive subject for food analysis, clinical diagnosis, environmental monitoring and other fields. The Smart tongue applicants a new electrochemical method-----the multifrequency large amplitude pulse voltammetry (MLAPV) which is very useful for discriminating samples in the voltammetric electronic tongue by applying three frequency segments. Multivariate data analysis (MVDA) such as Principal component analysis (PCA), and Soft Independent Modeling of Class Analogy (SIMCA) were often used to analyzing the data from the electronic tongue. With the advantages of rapid detection and simple sample preparation, it seems to be suitable for detecting the liquid cultures of the pathogens.
     The comments of this paper was described as follows:
     1 Study on Enterbacter sakazakii Differential Medium
     Based on the specific enzyme systems and the corresponding metabolisms of Enterbacter sakazakii, according to the resistibility to different antibacterial ingredients, EsDM was designed for the rapid separation, identification or detection of Enterbacter sakazakii. The tests of color effects, plating efficiency, sensitivity and specificity were conducted to evaluate the efficiency of EsDM. The results showed that: EsDM had good selectivity and specificity for Enterbacter sakazakii. After incubating for 16~24 h at 30℃, the Enterbacter sakazakii formed yellow colonies on EsDM. The other strains did not form colonies or form other color colonies. EsDM showed a mean plating efficiency of Enterbacter sakazakii cells of (91.23±2.24)% and its detection limit was 101 cfu/mL. Accordingly, EsDM is useful to detect Enterbacter sakazakii in powered infant milk for kinds of inspection agencies with the strengthens of easily-operated, lower cost, convenience for observation and so on.
     2 A disposable immunosensor for Enterbacter sakazakii based on MWCNT/Sodium Alginate composite and four-channel screen-printed carbon electrode
     A novel Enterbacter sakazakii immunosensor based on HRP-anti-Enterbacter sakazakii immobilized by physical adsorption on the MWCNT/sodium alginate (MWCNT/SA) composite modified four-channel screen-printed carbon electrode surface was successfully fabricated. In this strategy, MWCNT/SA biocomposite acted as the matrix to adsorb and immobilize HRP-anti-Enterbacter sakazakii. The preparation process of modified electrodes was characterized with AFM and CV. The analytical performance of proposed immunosensor toward Enterbacter sakazakii was investigated by CV. Under optimal conditions, the concentration of Enterbacter sakazakii from 103 to 108 cfu mL-1 could be detected, with a detection limit of 2.5×102 cfu/mL (S/N=3). The specificity, reproducibility, stability and accuracy of the proposed immunosensor were also evaluated. The proposed immunosensor showed simply fabricative, economical, efficient and potential application for early assessment of Enterbacter sakazakii.
     3 Used Smart Tongue to tracing, discriminate and set the SIMCA model of Enterbacter sakazakii
     Used Smart Tongue to tracing and discriminate Enterbacter sakazakii, Salmonella, Shigella spp, Escherichia coli, Staphylococcus aureus, Bacillus cereus. The result showed that:Ag electrode in 10Hz had the trend to discriminate the 5 hour cultures. Therefore we used Ag electrode combined with the frequency of 10 Hz to discriminate the six species of pathogens after 5 hours cultured. The 6 hour cultures can attend a excellent effect and every Mahalanobis distance exceed 2.0. Smart tongue combined with principal component analysis can tracing and discriminate the six species of pathogens, they must be detected in infant formula milk by the national standard. Complying with SIMCA, the Ag electrode in 100 Hz was studied for classifying and identifying the Enterbacter sakazakii. The best models based on the training set for classifying were detected. The discrimination accuracy of the best SIMCA model was 100% for both the training sets and the testing sets.
引文
[1]许牡丹,毛跟年.食品安全性与分析检测[M].北京:化学工业出版社,2003.
    [2]刘秀梅.试论国内外食品安全保障体系[C].中国食品工业与科技蓝皮书.北京:中国食品学报出版社,2003:4-8.
    [3]张志健,李里特.食品安全导论[M].北京:化学工业出版社,2009:50.
    [4]Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States[J]. Emerg Infect Dis,1999,5:607-625.
    [5]Nazarowec. White, M. Farber, J.M. Enterobactersakazakii:A review[J]. International Journal of Food Microbiology,1997,34:103-113.
    [6]Farmer J J, Asbary M A, Brenner D J, et al. Enterbacter sakazakii:a new species of "Enterbacter" isolated from clinical species[J]. Int J Syst Bacterial,1980,30: 569-584.
    [7]URMENYI A M, WHITE-FRANKLIN A. Neonatal death from pigmented coliform infection[J]. Lancet,1961,1:313-315.
    [8]Muytjen SH, Zanen HC, Sonderkamp J, et al. Analysis if eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii[J]. JC lin Microbial,1983, 18(1):115-120.
    [9]BIERING QKARLSSON S, CLARK N C, et al. Three cases of neonatal meningitis caused by Enterobacter sakazakiiin powdered milk[J]. JClin Microbial 1989,27(9):2054-2056.
    [10]Bowen A B, Braden C R. Invasive Enterobacter sakazakii disease in infants[J]. Emerge Infect Disease.2006,12(8):1185-1189.
    [11]BOWEN A B, BRADEN C R. Invasive Enterobacter sakazakii disease in infants[J]. Emerge Infect Disease,2006,12(8):1185-1189.
    [12]MONROE PW, TIFTW L. Bacteremia associated with Enterobacter sakazakii(Yellow-pigmented Enterobater doacae) [J]. JClin Microbial 1979,10(6): 850-851.
    [13]ACKER JV, SMET F D,MUYLDERMANS G, et a.l Outbreak of necrotizing enter colitis associated with Enterobacter sakazakiiin powdered milk formula[J]. JClin Microbial 2001,39(1):293-297.
    [14]Joint FAO/WHO Workshop on Enterobacter sakazakii and other microorganisms in powder infant formula, Geneva,2-5, February 2004[EB/OL]. http//www. who. int/foodsafety/micro/meetings/en/report.
    [15]潘蓓蕾.2005中国食品工业与科技蓝皮书[M].北京:中国食品学报出版社,2005.
    [16]U. S Food and Drug Administration Center for food safety applied nutrition and enumeration of Enterobacter sakazakii from dehydrated powdered infant formula. 2002[DB]. http/www. cfsam. fdg. gov/-comm/mmesakaz. html
    [17]GB/T 4789.40-2008食品卫生微生物学检验阪崎肠杆菌检验
    [18]Peter M, Mrozinski M. Enterobacter sakazakii:an emerging Pathogen of growing concern[J]. Food Quality,2004,56-60.
    [19]李志勇,王菊芳.乳粉中坂崎肠杆菌的检测[J].中国乳品工业,2004,32(1):51-54.
    [20]Oh S W, Kang D H. Fluorogenic selective and differential medium for isolation of Enterobacter sakazakii[J]. Applied and Environmental Microbiological,2004, 70(9):5692-5694.
    [21]Kandhai M C,Reij M W,Van Puyvelde K,et al.A new protocol for the detection of Enterobacter sakazakii applied to environmental samples[J].Journal of Food Protection,2004,67(6):1267-1270.
    [22]Versena C, Drugganb P, Forsythea S, et al. A selective differential medium for Enterobacter sakazakii, a preliminary study[J].International Journal of Food Microbiology,2004,96:133-139.
    [23]Manoj Kumar, Mohan Nair, Knmar S. Venkitanarayanan. Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobaeter sakazakii in infant formula[J]. Applied and Environmental Microbiology,2006,72(4):2539-2546.
    [24]高旗利,张霞,罗茂凰等.奶粉中阪崎场杆菌PCR检测方法研究[J].检验检疫科学,2005,15(4):4-8.
    [25]郑雪松,杨虹,李道棠等.基因间隔序列(ITS)在细菌分类鉴定和种群分析中的作用[J].应用与环境生物学报,2003,9(6):678-684.
    [26]Burkhard Malomy, Martin Wagener. Detection of Enterobacter sakazakfi strains by Real-Time PCR[J]. Journal of Food Protection,2005,68(8):1623-1627.
    [27]张淑红,吴清平,张菊梅,等.显色培养基在几种食源性致病菌快速检测中的应用[J].微生物学通报,2006,33(6):108-111.
    [28]Samra Z, Heifetz M, Talmor J, et al. Evaluation of use of a new chromogenic agar in detection of urinary tract pathogens[J]. J Clin. Microbiol,1998,36(4): 990-994.
    [29]Ventia MC, Miles RJ, Price RG, et al. A novel chromogenic ester agar medium for detection of Salmonellae[J]. Applied and Environmental Microbiology,1999, 65(2):807-812.
    [30]周德庆.微生物学教程[J].北京:高等教育出版社,2006.
    [31]余晓峰,徐慧群,吴忠仁,等.从APLAC水平测试浅谈食品微生物检测的技术运用[J].安徽卫生职业技术学院学报,2003,2(1):74-75.
    [32]卢汉兴,车光,王红,等.显色培养基在微生物检验初筛中的应用[J].广西预防医学,2001,7(1):44-46.
    [33]顾觉奋.抗生素的合理应用[M].上海:上海科学技术出版社,2005:82-83.
    [34]North J R. Immunosensors:antibody-based biosensors[J]. Trends in Biotechnology,1985,3(7):180-186.
    [35]Pemberton R M, Hart J P, Mottram T T. An electrochemical immunosensor for milk progesterone using a continuous flow system[J]. Biosensors and Bioelectronics,2001,16(9-12):715-723.
    [36]Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for Schistosoma japonium antibody assay [J]. Analytical Chemistry,2001, 73(14):3219-3226.
    [37]Lin J H, Yan F, Hu X Y, et al. Chemiluminescent immunosensor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane[J]. Journal of immunological methods,2004,291(1-2):165-174.
    [38]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社2006,第一版:137.
    [39]Schreiber A, Feldbrugge R, Key G, et al. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction[J]. Biosensors and Bioelectronics,1997, 12(11):1131-1137.
    [40]Xu Y F, Velasco-Garcia M, Mottram T T. Quantitative analysis of the response of an electrochemical biosensor for progesterone in milk[J]. Biosensors and Bioelectronics,2005,20(10):2061-2070.
    [41]Gilmartin M A T, Hart J P, Birch B. Voltametric and ampero metric behavior of uric acid at bare and surface-modified screen-printed electrodes:studies towards a disposable acid sensor[J]. Analyst,1992,117:1299-1303.
    [42]Kirgoz U A, Tural H, Timur S, et al. Laccase biosensors based on mercury thin film electrode[J]. Artificial Cells, Blood Substitutes and Biotechnology,2005, 33(4):447-456.
    [43]Solna R, Dock E, Christenson A, et al. Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases[J]. Analytica Chimica Acta,2005,528(1):9-19.
    [44]Yu H, Yan F, Dai Z, et al. A disposable amperometric immunosensor for α-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode[J]. Analytical Biochemistry,2004, 331(1):98-105.
    [45]Kirgoz U A, Tural H, Timur S, et al. Laccase biosensors based on mercury thin film electrode[J]. Artificial Cells, Blood Substitutes and Biotechnology,2005, 33(4):447-456.
    [46]李松林,崔建明.导电聚合物固定酶生物传感器研究进展[J].材料导报,2006,20(4):38-40.
    [47]Zheng H, Xue H G, Zhang Y F, et al. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst[J]. Biosensors and Bioelectronics,2002,17(6-7):541-545.
    [48]Zhou H H, Chen H, Luo S L, et al. Preparation and bioelectrochemical responses of the poly(m-phenylenediamine) glucose oxidase electrode[J]. Sensors and Actuators:B. Chemical,2004,101(1-2):224-230.
    [49]Hench L L, West J K. The sol-gel process[J]. Chemical Reviews,1990, 90(1):33-72.
    [50]Walcarius A. Electroanalysis with Pure, Chemically Modified and Sol-Gel-Derived Silica-Based Materials [J]. Electroanalysis,2001, 13(8-9):701-718.
    [51]董绍俊,程广金,李彬,等.凝胶包埋酶制备生物传感器的方法:中国,96123528.4[P].1999-11-17.
    [52]董绍俊,李彬,王炳全.溶胶-凝胶包埋酶制备生物传感器的方法:中国,97117266.8[P].2001-6-20.
    [53]Ulman, A. An introduction to ultrathin organic films from Langmuir-Blodgett to self assembly[M]. Academic Press:New York,1991.
    [54]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用[J].分析化学,1996,24(9):1093-1099.
    [55]秦玉华,张术勇,庞琳.自组装单分子膜在生物传感器中的应用[J].东北电力学院学报,2004,24(1):27-30.
    [56]姜雄平,许丹科,马立人.金自组膜固定生物分子技术在核酸及免疫传感器中的应用[J].解放军药学学报,2001,17(5):262-265.
    [57]李丹,王桦,吴朝阳,等.基于巯基自组装单层膜技术的补体C3压电免疫传感器的研究[J].分析科学学报,2005,21(3):241-244.
    [58]田师一.多频脉冲电子舌系统的构建及应用[D].浙江工商大学硕士学位论文,2007
    [59]Tian S Y, Deng S P, Chen Z.X. Multifrequency large amplitude pulse voltammetry:A novel electrochemical method for electronic tongue Sensors [J]. Sensors and Actuators B,2007,123:1049-1056.
    [60]赵广英,黄建锋.多频脉冲传感系统监测3种食源性致病菌的生长趋势[J]. 微生物学报,2008,48:1616-1622.
    [61]Legin A, Rudnitskaya A, Vlasov Yu, et al. Application of electronic tongue for qualitative and quantitative analysis of complex liquid media[J]. Sensors and Actuators B,2000 (65):232-234.
    [62]Larisa Lvova, Eugenio Martinelli, Emiliano Mazzone, et al.. Electronic tongue based on an array of metallic potentiometric sensors[J]. Talanta 2006,70: 833-839.
    [63]Montserrat Cortina, Manuel del Valle, Jean-Louis Marty. Electronic Tongue Using an Enzyme Inhibition Biosensor Array for the Resolution of Pesticide Mixtures[J]. Electroanalysis 20,2008(1):54-60.
    [64]Vlasov Y, Legin A, Rudnitskaya A M, et al.. 《Electronic tongue》——new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition. Sensors and Actuators,2000,65:235-236.
    [65]Dombrink K, Judy A B. Evaluation of several culture media for production of patulin by Penicillium expansum[J]. International Journal of food Microbiology, 2005,98:241-248.
    [66]Soderstrom C, Boren H, Krantz-Rulcker C. Use of an electronic tongue and HPLC with electrochemical detection to differentiate molds in culture media [J]. International Journal of Food Microbiology,2005,97(3):247-257.
    [67]Soderstrm C, Winquist F, Krantz-Rulcker C. Recognition of six microbial species with an electronic tongue [J]. Sensors and Actuaors,2003,89:248-255.
    [68]Turner C, Rudnitskaya A, Legin A, et al. Monitoring batch fermentations with an electronic tongue [J]. Journal of Biotechnology,2003,103:87-91.
    [69]Legin A, Kirsanov D, Rdnitskaya A, et al. Multicomponent analysis of fermentation growth media using the electronic tongue [J]. Talanta,2004,64: 766-722.
    [70]Soderstrom C, Boren H, Krantz-Rulcker C. Use of an electronic tongue and HPLC with electrochemical detection to differentiate molds in culture media [J]. International Journal of Food Microbiology,2005,97(3):247-257.
    [71]赵广英,黄建锋.多频脉冲传感系统监测3种食源性致病菌的生长趋势[J].微生物学报,2008,48:1616-1622.
    [72]Lise H(?)i, Inger Dalsgaard, Anders Dalsgaard. Improved Isolation of Vibrio vulnificus from Seawater and Sediment with Cellobiose-Colistin Agar[J]. Appl. Environ. Microbiol,1998,64(5):1721-1724.
    [73]王苏斌,郑海涛,邵谦谦,等SPSS统计分析[M].北京:机械工业出版社,2003,160-165.
    [74]Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for Schistosoma japonicium antibody assay[J]. Analytical Chemistry,2001, 73(14):3219-3226.
    [75]Dai Z, Yan F, Chen J, et al. Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125[J]. Analytical Chemistry,2003,75(20):5429-5434.
    [76]Li Q S,Ye B C, Liu B X, et al. Enhancement of the sensitivity and selectivity of oxidation of H2O2 on platinum wire at low working potential by platinization and covering of heteropolypyrrole film for amperometric micro-biosensor construction[J]. Fresenius' Journal of Analytical Chemistry,1999, 363(3):246-250.
    [77]孟辉,徐建军,梁汝萍,等.溶胶-凝胶非标记免疫传感器检测乙肝表面抗原[J].分析化学,2004,32(8):1011-1015.
    [78]李杜娟,王剑平,盖玲,等.快速检测大肠杆菌0157:H7的电化学阻抗免疫生物传感器[J].传感技术学报,2008,21(5):709-714.
    [79]Lin Y H, Chen S H, Chuang Y C, et al. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7[J]. Biosensors and Bioelectronics,2008,23(12):1832-1837.
    [80]赵广英,邢丰峰.基于琼脂糖和纳米金的电流型免疫传感器快速检测副溶血性弧菌[J].传感技术学报,2007,20(8):1697-1700.
    [81]Zhao Q, Gan Z H, Zhuang Q K. Electrochemical sensors based on carbon nanotubes[J]. Electroanalysis,2002,14(23):1609-1613.
    [82]Ajayan P M. Nanotubes from Carbon[J]. Chemical Reviews,1999, 99(7):1787-1800.
    [83]Ajayan P M, Ebbesen T W. Nanometre-size tubes of carbon[J]. Reports on Progress in Physics,1997,60:1025-1062.
    [84]Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science,1999, 283(5407):1513-1516.
    [85]孙文斌,吴芳辉.多壁碳纳米管修饰玻碳电极测定乳糖酸红霉素[J].理化检验-化学分册,2008,44(1):1-4.
    [86]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors[J]. Journal of the American chemical society,2003,125(9):2408-2409.
    [87]许淑霞,吴金生,张勇,等.纳米金固定辣根过氧化物酶的碳纳米管修饰第3代过氧化氢传感器的研究[J].分析测试学报,2008,27(10):1099-1102.
    [88]Zeng B Z, Huang F. Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified gold electrodes [J]. Talanta,2004,64(2):380-386.
    [89]Li N, Yuan R, Chai Y Q, et al. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube-chitosan matrix[J]. Bioprocess and Biosystems Engineering,2008,31(6):551-558.
    [90]Rehm B H A, Valla S. Bacterial alginates:biosynthesis and applications[J]. Applied Microbiology and Biotechnology,1997,48(3):281-288.
    [91]Liu C H, Guo X L, Cui H T, et al. An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase[J]. Journal of Molecular Catalysis. B, Enzymatic,2009,60(3-4):151-156.
    [92]Wang L, Shelton R M, Cooper P R, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering [J]. Biomaterials,2003,24:3475-3481.
    [93]李利军,喻来波,程昊,等.多壁碳纳米管修饰电极-不可逆双安培法测定双嘧达莫[J].分析化学,2008,36(8):1077-1082.
    [94]Du D, Xu X X, Wang S F, et al. Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase[J]. Talanta,2007,71(3):1257-1262.
    [95]Ju H X, Yan G F, Chen F, et al. Enzyme-linked immunoassay of a-1-Fetoprotein in serum by differential pulse voltammetry[J]. Electroanalysis,1999, 11(2):124-128.
    [96]闵丽根,袁若,柴雅琴,等.基于纳米金与碳纳米管-纳米铂-壳聚糖纳米复合物固定癌胚抗原免疫传感器的研究[J].化学学报,2008,66(14):1676-1680.
    [97]Ou C F, Yuan R, Chai Y Q, et al. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface[J]. Analytica chimica acta,2007,603(2):205-213.
    [98]GB/T 4789.40-2008,食品卫生微生物学检验,阪崎肠杆菌检验[S].
    [99]GB/T 4789.2-2008,食品卫生微生物学检验.菌落总数测定[S].
    [100]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999:28-30,92-95.
    [101]Balasubramanian S, Panigrahis, Kottapallib, et al. Evaluation of an artificial olfactory system for grain quality discrimination[J]. LWT-Food Science and Technology,2007,40(10):1815-1825.
    [102]Larisa L, Eugenio M, Emiliano M, et al. Electronic tongue based on an array of metallic potentiometric sensors[J]. Talanta,2006,70(12):833-839.
    [103]Yuri V, Andrey L, Alisa R, et al. Cross-sensitivity evaluation of chemical sensors for electronic tongue:determination of heavy metal ions[J]. Sensors and Actuators B,1997,44(1):532-537.
    [104]Winquist F, Soderstrom C, CKrantz-Rulcker. Recognition of six microbial psecies with an electronic tongue[J]. Sensors and Actuators,2003,89(2):248-255.
    [105]S. Notermans, C. J. Heuvelman, R. R. Beumer, et al. Immunological detection of moulds in food:relation between antigen production and growth[J]. International Journal of Food Microbiology,2000,13(5):253-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700