催化湿式氧化处理焦化废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对焦化废水中的主要污染物苯酚、喹啉为研究对象,并以焦化废水中苯酚和喹啉的质量比配制了模拟焦化废水;以过渡金属元素铁(Fe)为活性组分,分别以活性炭(AC)和蒙脱土(MMT)为载体,采用不同的方法制备了Fe/AC和Fe-Al-MMT催化剂。并对所制备的催化剂进行了表征,根据表征和实验结果提出了在不同制备方法下催化剂制备适宜的工艺条件。
     用所制备的催化剂对模拟的焦化废水进行催化湿式过氧化氢氧化(CWPO)法处理,以TOC或COD去除率为评价指标,考察了不同工艺条件下处理焦化废水的效果;同时探讨了不同工艺条件下,催化剂的稳定性;得出采用CWPO处理废水时,工艺条件对TOC或COD去除率影响的一般规律。
     采用浸渍法制备Fe/AC催化剂,并对所制备的催化剂进行了比表面积(BET)、热重(TG)等方法的表征,考察了Fe/AC催化剂的制备条件和CWPO处理工艺条件对Fe/AC催化剂的稳定性和催化活性的影响。结果表明:铁负载量、焙烧温度、初始pH值、氧化剂(H202)用量对催化剂的催化活性和稳定性有较大影响。铁负载量2%,300℃下焙烧4h制备的Fe/AC催化剂,在初始pH=5,反应温度为60℃,100ml模拟水样,H202加入量2100mg/L,2%Fe/AC催化剂300℃下焙烧4h的催化剂10g/L。在此条件下反应3h,Fe离子溶出量为:5.79mg/L。
     通过采用柱撑改性蒙脱土的方法所制备的Fe-Al-MMT催化剂,并通过TG、DTG、BET比表面积等表征手段确定了Fe-Al-MMT催化剂的制备工艺,通过实验确定焦化废水CWPO处理工艺对Fe-Al-MMT催化剂的稳定性和催化活性的影响。通过实验结果确定:催化剂的Fe/Al比为2:8,焙烧温度为350℃,在初始pH=3,反应温度为60℃,100ml模拟水样,H202加入量2100mg/L,催化剂投加量为5g/L。在此条件下反应3h,Fe离子溶出量为:1.52mg/L, TOC去除率可达63.04%。
     探讨了两种不同的催化剂催化H202分解的动力学,经过计算可得:采用Fe/AC催化剂时,在适宜的工艺条件下催化分解H202的反应级数为1.14,活化能Ea为67.46kJ/mol;当采用Fe-Al-MMT催化剂,在适宜的工艺条件下催化分解H202的反应级数为1.39,活化能Ea=80.57kJ/mol。
     本实验对Fe/AC催化剂与Fe-Al-MMT催化剂在制备方法、制备周期、离子溶出、催化剂寿命方面进行了比较。Fe/AC催化剂具有制备方法简单,制备周期短的优点,但其离子溶出严重,稳定性差不利于长期使用,加之其投加量与Fe-Al-MMT相比过大。整体上,Fe-Al-MMT催化剂在性能上优于Fe/AC催化剂。
Phenol and quinoline are the main pollutants in coking waster. According to the mass ratio of the two pollutants, the simulated coke-plant wastewater was prepared. Iron (Fe), the transition metal, as the active component of the catalyst; the activated carbon (AC) and montmorillonite (MMT) as the supporter. In other words the Fe/AC and Fe-Al-MMT catalyst were prepared respectively. According to the characterized and experimental results the preparing process of the catalysts have been taken.
     The catalysts were used for simulated coke-plant wastewater by the CWPO treatment, under the different process, the stability of the catalyst. When under different process of the coke-plant waster the TOC or COD removal as the evaluation. The coke-plant waster was treated by CWPO process the conditions on COD and TOC removal.
     Activated carbon-supported Fe catalysts (Fe/AC) have been prepared by incipient impregnation and was characterized by means of BET and TG analysis. Phenol, quinoline, the main pollutants in coking waster, have been treated by CWPO. The preparation of Fe/AC catalyst and the process of CWPO has been studied. The results showed:the loading of Fe, the calcination temperature, the initial pH and the dose of the oxidant(H2O2) have greatly influenced the catalyst's stability and the catalytic activity. The Fe loading of the catalyst is 2%, the catalyst was calcinated at 300℃for 4h, when the initial pH is 5, the reaction temperature is 60℃; the dose of the hydrogen peroxide is 2100mg/L, the dose of catalyst used 10g/L meanwhile Fe leaching is 5.79mg/L.
     Clay pillared with Fe-Al was made as a catalyst for CWPO (catalytic wet peroxide oxidation) of simulated coke-plant wastewater (phenol, quinoline). The Fe-Al pillared (Fe-Al-MMT) clays was characterized by BET surface, X-ray diffraction (XRD), thermal gravimetric (TG) and differential scanning calorimetry (DSC), the results shows:the thermal stability of the pillared clays is stronger than the shopping sodium montmorillonite due to the interaction between the iron species and the catalyst support. Then, the catalyst's performance in CWPO was analyzed under different operating conditions such as the reaction temperature, initial pH and H2O2 dose.Fe-Al-MMT catalyst was reused under considerable operating conditions (reaction temperature is 60℃, pH initial=3, [H2O2]0=2100mg/L, Wcat= 5g/L), the solids shows high stability in the reaction due to strong interaction between the iron species and the catalyst support. The pillared clays were also stable against the leaching out of Fe.
     H2O2 decomposition kinetics of two different catalysts were studied. Fe/AC catalyst was used at the best processing conditions the reaction order of H2O2 decomposition is 1.14, the activation energy Ea=67.46kJ/mol, however, when the Fe-Al-MMT catalyst was used under the best processing conditions the reaction order of H2O2 decomposition is 1.39, meanwhile the activated energy Ea=80.57kJ/mol.
     This study also compare the Fe/AC catalyst and Fe-Al-MMT catalyst on preparation method, preparation cycle, Fe leaching, the lives of the catalyst and so on. The Fe/AC catalyst preparation method is easy and simple, also the preparation period is short. However, the iron on the catalysts leaching is large, the catalyst's stability is not stable enough, the dosage is more large than the Fe-Al-MMT catalyst. Generally speaking, Fe-Al-MMT catalyst is better the Fe/AC catalyst on CWPO as the catalyst.
引文
[1].王建兵,杨少霞,祝万鹏等.催化湿式氧化法处理废水的研究进展[J].化工环保.2007,27(4):95-300
    [2].何苗,张晓健,瞿福平等.焦化废水中芳香族有机物及杂环化合物[J].中国给水排水.1997,13(1):14-17
    [3].毛悌和.化工废水处理技术[M].北京:化学工业出版社.2000.169-179
    [4].杨元林,周云巍.高浓度焦化废水处理工艺探讨[J].机械管理开发.2001,64(4):41-42.
    [5]. Carriazo J., Guelou E., Barrault J. et al. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe[J]. Water Research.2005,39(16):3891-3899
    [6]. Imamura Setal. Wet Oxidation Poly Lethylene Glycol Catalyzed by Manganese-Cerium Composite Oxide [J]. Ind. Eng. Chem. Prod. Res,1986,25(1):34-37
    [7].方振炜,李光明,赵建夫.催化湿式氧化法处理焦化废水的分析[J].工业水处理.2003,23(1):12-15
    [8]. Quintanilla A., Fraile A.F., Casas J.A. et al. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst[J]. Journal of Hazardous Materials.2007, 146(3):582-588
    [9]. Foglar, H.S., Elements of chemical reaction engineering[M]北京:化学工业出版社,2006:646-647
    [10].谭亚军,蒋展鹏,祝万鹏等.有机污染物催化湿式氧化降解中Cu系列催化剂的稳定性[J].环境科学,2000,21(4):82-85
    [11]. Laat Joseph De, Le Truong Giang. Kinetics and Modeling of the Fe(III)/H2O2 System in the Presence of Sulfate in acidic Aqueous Solutions [J]. Environmental Science & Technology,2005,39(6):1811-1818
    [12].单明军,吕艳丽,丛蕾.焦化废水处理技术[M].北京:化学工业出版社,2007
    [13]. Eisenberg G.M.. Colorimetric determination of hydrogen peroxide[J]. Analytical Chemistry.1943,15(5):327-328
    [14]. Pirault-Roy L., Kappenstein C., Guerin M. et al. Hydrogen peroxide decomposition on various supported catalysts effect of stabilizers[J]. Journal of Propulsion & Power. 2002,18(6):1235-1241
    [15]. Zazo J.A., Fraile A.F., Rey A.et al.Optimizing calcination temperature of Fe/activated carbon catalysts for CWPO[J]. Catalysis Today,2009,143(3-4):341-346
    [16]. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A et al. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37(9):1379-1389
    [17]. Buxton Geroge V., Greenstock Clive L., Helman W. Phillips et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-531
    [18]. Quintanilla A., Fraile A.F., Casas J.A. et al. Phenol oxidation by a sequential CWPO—CWAO treatment with a Fe/AC catalyst[J]. Journal of Hazardous Materials, 2007,146(3):582-588
    [19]. Laat Joseph De, Le Truong Giang. Kinetics and Modeling of the Fe(III)/H2O2 System in the Presence of Sulfate in acidic Aqueous Solutions[J]. Environmental Science & Technology,2005,39(6):1811-1818
    [20]. Ramirez J.H., Maldonado-Hodar F.J., Perez-Cadenas. A.F.. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts [J]. Applied Catalysis B:Environmental,2007,75(3-4):312-323
    [21]. Quintanilla A., Casas J.A., Rodriguez J.J. Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B:Environmental,2010,93(3-4): 339-345
    [22]. Valange S., Gabelica Z., Abdellaoui M. et al. Synthesis of copper bearing MFI zeolites and their activity in wet peroxide oxidation of phenol [M], Microporous and Mesoporous Materials,1999,30(1):177-185
    [23]. Tabet Djamel, Saidi Mohamed, Houari Mohamed et al. Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation[J], Journal of Environmental Management,2006,80(4):342-346
    [24]. Cheng Jun, Yu Shao Ming, Zuo Peng. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater[J], Water research.2006,40(2):283-290
    [25]. Sampieri A.,. Fetter G, Bosch P. et al. Cobalt Sorption in Silica-Pillared Clays[J], Langmuir,20006,22(1):385-388
    [26]. Galeano Luis Alejandro, Gil Antonio, Vicente Miguel Angel. Effect of the atomic active metal ratio in Al/Fe, Al/Cu and Al/(Fe-Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange[J], Applied Catalysis B:Environmental,2010,100(1-2):271-281
    [27]. Anirudhan T.S., Bringle C.D., Rijith S.. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay[J], Journal of Environmental Radioactivity,2010,101 (3):267-276
    [28]. Sanabria N.R., Centeno M.A., Molina R. et al. Pillared clays with Al-Fe and Al-Ce-Fe in concentrated medium:Synthesis and catalytic activity [J], Applied Catalysis A:General,2009,356 (2):243-249
    [29]. Kloprogge J.T.. Synthesis of Smectites and Porous Pillared Clay Catalysts:A Review[J]. Journal of Porous Materials,1998,5(1):5-41
    [30]. Varma Rajendcr S. Clay and clay-supported reagents in organic sythesis[J]. Tetrahedron,2002,58(7):1235-1255
    [31].马建中,鄂涛,鲍艳.蒙脱土负载引发剂的制备及活性研究[J].现代化工.2008,28(8):62-65
    [32]. Mishra T., Parida K. Transition metal oxide pillared clay:5. Synthesis, characterisation and catalytic activity of iron-chromium mixed oxide pillared montmorillonite[J]. Applied Catalysis A:General.1998,174(1):91-98
    [33].梁云,贾德民.蒙脱土的改性研究进展[J].化工矿物与加工.2004,2:1-5
    [34]. Baes C.F., Mesner R.E., The Hydrolysis of Cations, Wiley, New York,1976
    [35]. Burch R., Warburton C. I., Zr-containing pillared interlayer clays:Ⅳ Preparation and structural characterisation [J], Applied Catalysis.1986,97 (2) 503-510
    [36]. Pinnavaia T.J., Tzou M., Landau S.D. et al. On the pillaring and delamination of smectite clay catalysts by poliooxocations of Al[J], Journal of Molecular Catalysis.1984, 27(1-2) 195-212
    [37]. Bartley G.J.J., Burch R., Zr-containing pillared interlayer clays. Part Ⅲ. Influence of method of preparation on the thermal and hydrothermal stability [J], Applied Catalysis. 1985,19(2) 175-185
    [38]. Molina C.B., Casas J.A., Zazo J.A. et al. A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation[J]. Chemical Engineering Journal.2006,118(1): 29-35
    [39].吴平霄,张惠芬,肖文丁等.柱撑蒙脱石制备与表征[J].矿物学报.1997,17(2):200-207
    [40].周春晖,罗锡平,葛忠华等.酸化粘土负载ZnCl2催化剂的制备及其对苯苄基化反应的催化性能[J].催化学报.2003,24(8):579-584
    [41].关景杰,闵恩泽,虞至庆等.”层柱”粘土分子筛稳定性的研究[J].催化学报.1987,8(2):156-161
    [42]. Keller A.. Matusiak R.J. Metathesis polymerization of substituted acetylenes by Mo(NO)2(O2CR)2-Lewis acid catalysts. Journal of Molecular Catalysis A:Chemical[J], 1999,142(3):317-324
    [43]. Daneshfar Ali, Ghaziaskar Hassan S., Homayoun Nasrolah. Solubility of Gallic Acid in Methanol, Ethanol, Water, and Ethyl Acetate[J]. Journal of Chemical & Engineering Data.2008,53(3):776-778
    [44]. Rouquerol F., Rouquerol J.,Sing K.S.W., Handbook of Porous Solids[M], vol.1, Wiley-VCH, Winheim, Germany,2002
    [45]. Catrinescu Cezar, Teodosiu Carmen, Macoveanu Matei et al. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite[J]. Water Research.2003,37 (5) 1154-1160
    [46]. Zazo J.A., Casas J.A., Mohedano A.F. et al. Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst[J]. Applied Catalysis B:Environmental,2006, 65:(3-4) 261-268
    [47]. Imamura Sei-lchlro, Hlrano Aklhlro, Kawabata Narlyoohl. Wet Oxidation of Acetic Acid Catalyzed by Co-Bi Complex Oxides[J], Industrial & Engineering Chemistry Product Research and Development.1982,21(4) 570-575
    [48]. Ramirez J.H., Maldonado-Hodar F.J., Perez-Cadenas A.F., Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts[J]. Applied Catalysis B:Environmental.2007,75(3-4):312-323
    [49]. Maduna Valkaj K., Katovic A., Zrnccevic S., Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst, Journal of Hazardous Materials 2007,144 (3):663-667
    [50].周文俊.催化湿式氧化法处理焦化废水的研究[D].南京:南京工业大学,2003
    [51]. Li Lixiong, Chen Peishi, Gloyna Earnest F.. Generalized Kinetic Model for Wet Oxidation of Organic Compounds[J]. AIChE Journal.1991,37(11):1687-1697
    [52].唐受印,汪大晕,刘先德等.高浓度酚水的湿式氧化研究[J].环境科学研究.1995,8(6):37-41
    [53]. Vasundhara Singh, Varinder Sapehiyia, Goverdhan Lal Kad. Ultrasound and microwave activated preparation of ZrO2-pillared clay composite:catalytic activity for selective, solventless acylation of 1,n-diols[J]. Journal of Molecular Catalysis A: Chemical 2004:210 (1):119-124
    [54]. Alejandro Perez a, Miguel A. Centeno b, Jose A. Odriozola b, The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions[J]. Catalysis Today.2008:133-135:526-529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700