几类重要化学反应的微观机理及动力学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies on Mechanisms and Dynamics Property of Several Important Reactions
  • 作者:王颖
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2007
  • 导师:唐敖庆 ; 李泽生 ; 刘靖尧
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-05-01
摘要
本文利用从头算或密度泛函理论,采用直接动力学方法研究了以下几类重要的氢迁移化学反应的微观机理和速率常数,这些反应如下: CHnCl3-nCHO + Cl→products CHClFCHO + Cl→products CHF2CHO + Cl→products CClF2CHO + Cl→products CHnF3-nCH2OH+ Cl→products CF3CH2OH + OH→products C2F5CH2OH + OH→products
     主要结果如下:
     (1)采用精确的量子化学和分子反应动力学的计算方法,研究了大气化学和光化学中一些重要反应体系的微观过程,获得了上述反应的势能面信息,并且对实验上不能准确测定或不能测定的化学反应的反应机理、反应速率常数、多通道反应分支比及反应物或生成物的标准生成焓等做出可靠的理论预测。理论计算的速率常数与已有的实验值符合得非常好,证明了理论计算的可靠性,为实验进一步测定较大温度范围的速率常数提供了可靠的理论线索,进而为治理大气污染提供了理论依据。
     (2)探讨了近几年发展的能量组合算法和密度泛函方法对研究较大的气相反应体系的可行性,为进一步研究较大体系的动力学性质提供借鉴和参考。
The estimation of rate constants for a specific chemical reaction is one of the most active subjects in theoretical chemistry. In this thesis, ab initio or density functional theory direct dynamics methods have been used to investigate the reaction mechanism and calculate the rate constants. The following hydrogen abstracted reactions are studied: CHnCl3-nCHO + Cl→products CHClFCHO + Cl→products CHF2CHO + Cl→products CClF2CHO + Cl→products CHnF3-nCH2OH+ Cl→products CF3CH2OH + OH→products C2F5CH2OH + OH→products
     Owing to the adverse effects of chlorofluorocarbons (CFCs) on stratospheric ozone depletion and global warming, an international effort has been made to replace them with environmentally acceptable alternatives. Hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs) have been found widespread industrial use over the past decade. Recently fluorinated alcohols (FAs) are proposed as a new generation of CFCs alternatives in applications such as cleaning of electronic components, refrigeration and carrier compounds for lubricants, since they contain no chlorine or bromine atoms and they don’t contribute to the ozone depletion, but may potentially cause the global warming effect. Due to containing the abstracted hydrogen atom, these molecules can be expected to react with atmospheric radical species. Considering the hydroxyl radicals are important reactive intermediate species in the oxidation of organic compounds and combustion chemistry, and the number of them is very abundance in the stratosphere, the studies of the reactions of fluoroalcohols with OH radicals are indispensable for the evaluation of atmospheric lifetime and the environmental impact of these molecules.
     Although in the troposphere, the fluorinated alcohols will degrade primarily via reaction with OH radicals, the Cl atom is more reactive than OH and it will have a little contribution to the degradation of these species. Also, the reactions of Cl atoms with these species are important in the stratosphere and coastal atmospheric environments. In addition, the reactions of Cl with these species have been exploited to form selected hydroxyalkyl radicals in laboratory kinetic studies due to the similar energies of C-H and Cl-H bonds. Therefore, it is necessary to investigate the site selectivity of the Cl reacted with them and accurate data for the rate constants as well as their temperature dependencies.
     Some experimental studies have been done on the reactions, 2,2,3,3,3-pentafluoropropyl alcohol (CF3CF2CH2OH), CF3CH2OH, and CF3CHOHCF3 with OH radicals and CH3-nFnCH2OH with Cl atoms, but no reports were made on branching ratios and the rate constants at wide temperature ranges for these reactions. Thus, the reactions of these fluorinated alcohols with OH radicals and Cl atoms are of interest for modeling purpose.
     Because halogenated aldehydes can be produced as the main oxidation product of several HFCs, HCFCs, and fluorinated alcohols, they are regarded as important reaction intermediates in the atmosphere. Furthermore, these degradation products containing halogens may still transport halogen to the stratosphere and destruct the ozone layer. It is thus necessary to perform the kinetic investigation for these halogenated aldehydes in order to determine their atmospheric lifetime. Here, the focus is on the degradation of the halogenated aldehydes CH3-nClnCHO (n=1-3), CHClFCHO, CHF2CHO, and CClF2CHO initiated by Cl atoms, which is a convenient substitute in laboratory experiments for the attack by OH radials since halogens are more easily generated than OH radials. The experimental rate constants for the reactions Cl atoms with CH3-nClnCHO (n=1-3), CHClFCHO, CHF2CHO, and CClF2CHO have been determined at room temperature, while it is found that there are lack of the other kinetic data, such as the temperature dependence of the rate constants over a wide temperature range, the activation energies and the reaction enthalpies. So it is necessary to perform the theoretical investigations for the above reactions in order to provide further useful information.
     The main aim of this thesis is to provide accurate results for the reaction path, the relation between temperature and rate constants, and the branching ratios. Firstly, the geometries and frequencies of the stationary points (reactants, complexes, products, and transition states) are calculated at the lower levels, such as, MP2, B3LYP and MPW1K; then, the minimum energy path(MEP) is calculated at the same level by intrinsic reaction coordinate (IRC) theory to confirm that the transition state really connects the minimums along the reaction path. The first and second energy derivatives at geometries along the MEP are obtained to calculate the curvature of the reaction path and the generalized vibrational frequencies. The potential energy profile is refined at the higher levels, such as, CCSD(T), G3(MP2), G2M, and MC-QCISD. All of these calculations are performed by Gaussian 03 program. By means of Polyrate 8.4.1 program, the rate constants are calculated by conventional transition state theory (TST), canonical variational transition state theory with small-curvature tunneling correction (CVT/SCT), and improved canonical variational transition state theory with small-curvature tunneling correction (ICVT/SCT). The main results are summarized as follows,
     1. The theoretical investigation on the reactions Cl with CH3-nClnCHO (n=1-3) (3.1-3.3) indicates that: A complex exists at the exit of the reactions 3.1a, 3.2a, and 3.3 with the energy lower than the products, respectively. So reactions 3.1a, 3.2a, and 3.3 are the indirect reaction mechanism, while reactions 3.1b and 3.2b proceed a direct H-abstraction reaction without intermediate complex. The variational effect is found for H-abstraction reactions 3.1a and 3.2a, while for reactions 3.1b, 3.2b, and 3.3, the variational effect is very small and almost negligible in the whole temperature range. On the other hand, for reactions 3.1a and 3.2a over the whole temperature range, the small-curvature tunneling correction shoud be negligible, but for reactions 3.1b, 3.2b, and 3.3, in the lower temperature range, the SCT plays an important role in the rate constant calculations. The calculated ICVT/SCT rate constants at the CCSD(T)/6-311+G(d, p)//MP2/cc-pvdz level agree well with the experimental values. The calculated results show that the reactivity decreases from CH2ClCHO through CHCl2CHO to CCl3CHO, which indicates that the chlorine substitutions have a noticeable effect on the reactivity, the more chlorine substitution, the lower reactivity is. And for the title reactions, H-abstraction from the formyl position is the major reaction channel, while H-abstraction from halogenated-methyl position may play a role with the temperature increasing. Furthermore, In order to further reveal the thermodynamics properties, the enthalpies of formation of CH2ClCHO, CHCl2CHO, CCl3CHO, and CH2ClCO, CHClCHO, CHCl2CO, CCl2CHO, CCl3CO are evaluated using the isodesmic reactions. The three-parameter expressions for three reactions within 220-2000 K are k1=9.82×10-16T 1.42exp (484.7/T), k2=5.20×10-18T 2.04 exp (669.0/T), and k3=8.82×10-19T 2.20exp (732.9/T) cm3molecule-1s-1, respectively.
     2 The PESs of the reaction CHClFCHO + Cl→products (4.1), CHF2CHO + Cl→products (4.2), and CClF2CHO + Cl→products (4.3) have been investigated at the MC-QCISD//MP2/cc-pVDZ level. The H-abstraction channels and the Cl-addition processes are discussed. This theoretical study shows that the H-abstraction reaction is the major reaction pathway, which proceeds via an indirect mechanism. While addition reactions possess higher energy barriers and they can not compete with the H-abstraction reaction channel. The rate constants of five hydrogen abstraction reaction channels (4.1a, 4.1b, 4.2a, 4.2b, and 4.3) have been calculated by canonical variational transition-state theory (CVT) with small-curvature tunneling (SCT) correction over a wide temperature range of 220-2000 K. The theoretical results are in good agreement with the available experimental data and decrease in the order of k1 > k2 > k3, which illustrates that the halogen substitution (F or Cl) in the -CHXY group will decrease the reactivity of the species. The branching ratios show that for the reaction CHClFCHO + Cl→products (4.1), the H-abstraction from -CHO group is the major pathway in the lower temperature, while the H-abstraction from -CHXY group becomes probable with the temperature increasing. While, for the reaction CHF2CHO + Cl→products (4.2) the H-abstraction leading to the products CHF2CO + HCl will prevail over the whole temperature range. In order to further reveal the thermodynamics properties, we have estimated the enthalpies of formation for CHClFCHO, CHF2CHO, CClF2CHO and product radicals CHClFCO, CClFCHO, CHF2CO, CF2CHO, CClF2CO with the values of -86.7, -130.5, -136.8, and -46.8, -50.5, -90.8, -78.5, -97.1 kcal/mol, respectively, via the isodesmic reaction method at the MC-QCISD//MP2/cc-pVDZ level. The CVT/SCT rate constants are fitted and the following three–parameter expressions within 220–2000 K are obtained: k1=5.08×10-16 T1.60 exp (244.6/T), k2=4.80×10-17 T1.86 exp (274.9/T), k3=2.34×10-16 T1.67 exp (37.1/T) cm3molecule-1s-1, respectively.
     3. The theoretical study on the hydrogen abstraction reaction CF3CF2CH2OH + OH (5.1) identifies two classes of H-abstraction reaction channels. The potential energy surface information is obtained at the B3LYP/6-311G (d, p) and MPW1K/6-311G (d, p) levels and the higher-level energies of the stationary points and a few extra points along the MEP are calculated by MC-QCISD theory. The theoretical rate constants for each reaction channel are calculated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) at the MC-QCISD//B3LYP level. The calculated CVT/SCT rate constants are found to be in good agreement with the available experimental values in the corresponding measured temperature regions. It is shown that hydrogen-abstraction from -CH2- position is the major channel, while H-abstraction from -OH position may be neglected with the temperature increasing. For 5.1a, 5.1b, and 5.2, the variational effect has a minor contribution in the whole temperature range, while the SCT correction plays an important role in the lower temperature region. The dissociation energies of bond are calculated by MC-QCISD and G3(MP2) based on B3LYP/6-311G(d, p) and MPW1K/6-311G (d, p) geometries to further confirm that for the title reaction, H-abstraction from the methylene position is the major reaction channel. While H-abstraction from hydroxyl position may play a less role with the temperature increasing. The three-parameter expression for this reaction within 200-2000 K is k = 6.45×10-21 T 2.91exp (74.9/T) cm3molecule-1s-1, respectively.
     4. For reaction CF3CH2OH + OH (6.1), the potential energy surface information is obtained at the B3LYP/6-311G (d, p) level of theory, and the higher level energies for the stationary points as well as the extra points along the minimum energy path (MEP) are calculated at the MC-QCISD//B3LYP level. Complexes, with the energies being less than corresponding reactants and products, are found at the entrance and exit channels for methylene-H-abstraction channel, while for the hydroxyl-H-abstraction channel only entrance complex is located. The rate constants are calculated by canonical variational transition state theory with the small-curvature tunneling correction (CVT/SCT) in the temperature range 200-2000 K. The total rate constants are in good agreement with the experimental values. It is shown that for the title reaction, the reaction occurs mainly via the hydroxyl-H-abstraction channel at the lower temperature, while the methylene-H-abstraction channel is preferred when the temperature is higher than 289 K. Furthermore, In order to further reveal the thermodynamics properties, the enthalpies of formation of CF3CH2OH, CF3CHOH, and CF3CH2O are studied using isodesmic reactions. The three-parameter expressions for these reactions within 200-2000 K are ka = 1.40×10-21 T 3.29 exp (-374.1/T), kb = 1.71×10-23 T 3.42 exp (659.0/T), k = 6.06×10-24 T 3.98 exp (284.2/T) k1 =1.05×10-16 T1.46 exp(-468.8/T) and k2 =2.80×10-16 T1.41 exp(1075.7/T) cm3molecule-1s-1, respectively.
     5. The investigation results of the hydrogen abstraction reactions CH3-nFnCH2OH (n=1-3) + Cl (7.1-7.3) are show as follows: For reations 7.1 and 7.2, three H-abstraction reaction channels are identified, while for 7.3, two reaction pathways are found. The potential energy surface information is obtained at the MP2/6-311G(d, p) level, and the higher level G2M is used to refine the energies of the stationary points and the points selected along the MEP. The theoretical rate constants for each reaction channel are calculated in the temperature range from 200 to 2000 K by canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) at the G2M//MP2 level. The results are consistent with the experimental values for 7.2 and 7.3, but we find the negative temperature dependence for the reaction 7.1. The dissociation energies of bonds are calculated to confirm which is the dominant reaction pathway by G2M and G3(MP2) methods based on MP2/6-311G(d, p) geometries. The calculated results show that for the title reactions, H-abstraction from the methylene positions are the major reaction channels, and the channels of H-abstraction from fluorinated-methyl positions should be taken into account at higher temperatures, while H-abstraction from hydroxyl positions should be neglected. The fluorine substitutions have a noticeable effect on the reactivity, the more fluorine substitution, the lower reactivity is. The three-parameter expressions for these reactions within 200-2000 K are k1=4.35×10-17T 1.78exp (912.9/T), k2=8.87×10-18T 1.95exp (460.0/T), k3=2.25×10-18T 2.03exp (264.9/T) cm3molecule-1s-1, respectively.
引文
[1] J. Warnatz, Combustion Chemistry, Springer-Verlag, New York, 1984.
    [2] 黄仲涛,基本有机化工理论基础,北京,化学工业出版社,1980.
    [3] 吉林大学等,物理化学(下册),人民教育出版社,1979.
    [4] D. J. Hucknall, Chemistry of Hydrocarbons, Chapman and Hall, London, 1985.
    [5] 唐有祺,化学动力学和化学反应器原理,北京,科学出版社,1974.
    [6] 罗孝良,药学通报,1982,17,8.
    [7] F. S. Rowland, M. J. Molina, Reviews of Geophysics and Space Physics, 1975, 13, 1.
    [8] W. M. Smith, Kinetics and Dynamics of Elementary Gas Reactions; Butterworths: Boston, 1980.
    [9] D. H. Zhang, J. Z. H. Zhang, J. Chem. Phys., 1994, 101, 1146.
    [10] J. Echave, D. C. Clary, J. Chem. Phys., 1994, 100, 402.
    [11] D. Neuhauser, J. Chem. Phys., 1994, 100, 9272.
    [12] U. Manthe, T. Seideman, W. H. Miller, J. Chem. Phys., 1993, 99, 10078.
    [13] H. Szichman, I. Last, A. Baram, M. Baer, J. Phys. Chem., 1993, 97, 6436.
    [14] W. L. Hase, J. Chem. Phys., 1976, 64, 2442.
    [15] M. Quack, J. Troe Ber. Bunsenges. Phys. Chem., 1977, 81, 329.
    [16] D. G. Truhlar, M. S. Gordon, Science, 1990, 249, 491.
    [17] D.G. Truhlar, A.D. Isaacson, B.C. Garrett, Theory of Chemical Reaction Dynamics, M. Baer, ed., Boca Raton, CRC Press, 1985, p.65.
    [18] D. G. Truhlar, M. S. Gordon, R. Steckler, Chem. Rev., 1987, 87, 217.
    [19] J. C. Corchado, J. Espinosa-Garcia, W. P. Hu, I. Rossi, D.G. Thuhlar, J. Phys. Chem., 1995, 99, 687.
    [20] T. N. Truong, J. Chem. Phys., 1994, 100, 8014.
    [21] T. N. Truong, W. Duncan, J. Phys. Chem., 1994, 101, 7408.
    [22] D.G. Truhlar, Direct dynamics method for the calculation of reaction rates: the reaction path, in: D. Heidrich (Ed.), The Reaction Path in Chemistry, Current Approaches and Perspectives, Kluwer Academic, The Netherlands, 1995.
    [23] I. S. Wang, M. Karplus, J. Am. Chem. Soc., 1973, 95, 8160.
    [24] C. Leforestier, J. Chem. Phys., 1978, 68, 4406.
    [25] S. C. Tucker, D. G. Truhlar, in New Theoretical Concepts for Understanding Organic Reactions, J. Bertran, I.G. Csizmadia, (Eds.), Advanced Study Institute, Kluwer: Dordrecht, Netherlands, 1989, pp. 291-346.
    [26] D. H. Lu, T. N. Truong, V. S. Melissas, G. C. Lynch, Y. P. Liu, B. C. Gerrett, R. Steckler, A. D. Isaacson, S. N. Rai, G. C. Hancock, J. G. Lauderdale, T. Joseph, D. G. Truhlar, Computer Phys. Comm., 1992, 71, 235.
    [27] B. C. Garrett, D. G. Truhlar, J. Phys. Chem., 1991, 95, 374.
    [28] S. M. Senkan, Environ. Sci. Technol., 1988, 22, 368.
    [29] P. J. Thomas, Current Topic in Mass Spectrometry and Chemical Kinetics; Heydon and Sons: London, U.K., 1982, p. 115.
    [30] R. Tuck, A. Plumb, E. Condon, Geophys. Res. Lett., 1990, 17, 313.
    [31] T. Rosswall, Environ. Sci. Technol., 1991, 25, 567.
    [32] R. Atkinson, Chem. Rev., 1986, 86, 69.
    [33] A. Talhaoui, F. Louis, P. Devolder, B. Meriaux, J. P. Sawerysyn, J. Phys. Chem., 1996, 100, 13531.
    [34] R. Liu, R. E. Huie, M. J. Kurylo, J. Phys. Chem., 1990,94, 3247.
    [35] K. J. Hsu, W. B. DeMore, J. Phys. Chem., 1995, 99, 1235.
    [36] J. D. Farman, B. G. Gardiner, J. D. Shanklin, Nature., 1985, 315, 207.
    [37] S. Soloman, Nature., 1990, 347, 6291.
    [38] Word Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 20, Scientific Assessment ofAtratospheric Ozone, 1989, vol.1.
    [39] L. Nelson, I. Shanahan, H. W. Sidebottom, J. Tracy, O. J. Nielsen, Int. J. Chem. Kinet., 1990, 22, 577.
    [40] T. E. Mogelberg, M. Sehested, J. Bilde, J. T. Wallington, O. J. Nielsen, J. Phys. Chem., 1996, 100, 18399.
    [41] C. A. Taatjes, L. K. Christensen, M. D. Hurley, T. J. Wallington, J. Phys. Chem. A, 1999, 103, 9805.
    [42] J. Starcke, F. Zabel, L. Elsen, W. Nelson, I. Barnes, K. H. Becker Physico-Chemical Behavior of Atmospheric Pollutants; Restelli, G., Angeletti, G., Eds.; Kluwer Acadenic Publishers: Dordrecht, The Netherlands, 1989, p172.
    [43] D. J. Scollard, J. J. Treacy, H. W. Sidebottom, J. Phys. Chem., 1993, 97, 4683.
    [44] J. Platz, O. J. Nielsen, J. Sehsted, T. J. Wallington, J. Phys. Chem. 1995, 99, 6570.
    [45] R. K. Talukdar, A. Mellouki, J. B. Burkholder, J. Phys. Chem., 2001, 105, 5188.
    [46] IUPAC, http://www.iupac.org/reports/1999/7110minkin/i.html
    [47] A. Sekiya, S.Misaki, Proceedings of the International Conference on Ozone Protection Technologies, Baltimore, Maryland, 12-13 November, 1997, p 26.
    [48] K. G. Kambanis, Y. G. Lazarou, P. Papagiannakopoulos, Air Pollution research report 66, “Polar Stratospheric Ozone 1997”; European Commission: Belgium, 1998, p 557.
    [49] R. Atkinson, Gas-phase Tropospheric Chemistry of Organic Compounds; Monogr. 2; Journal of Physical and Chemical Reference Data; American Chemical Society: Washington, DC, 1994, p 1-216.
    [50] L. Chen, K. Fukuda, N. Takenaka, H. Bandow, Y. Maeda, Int J. Chem. Kinet. 2000, 32, 73.
    [51] K. Tokuhashi, H. Nagai, A. Takahashi, M. Kaise, S. Kondo, A.Sekiya, M. Takahashi, Y. Gotoh, A. Suga, J. Phys. Chem. A 1999, 103, 2664.
    [52] E. S. C. Kwok, R.Atkinson, Atmos Environ 1995, 29, 1685.
    [53] R. Atkinson, Int. J. Chem. Kinet. 1986, 18, 555; R. Atkinson, Int. J. Chem. Kinet. 1987, 19, 799.
    [54] T. J. Wallington, P. Dagaut, M. J. Kurylo, J. Phys. Chem. 1988, 92, 5024.
    [55] G. Inoue, K. Izumi, V. A. Lozovsky, Third International Conference on Chemical Kinetics, Gaithersburg, MD, 1993; p 182-183.
    [56] T. Kelly, H. A. Sidebottom, Kinetic and mechanistic study of the atmospheric oxidation of 3, 3, 3-trifluoropropanol. PosterCMD-2; Presented at the Eurotrac 2 Symposium, Garmisch-Partenkirchen, March 2002 (http://imk-aida.fzk.de/CMD/AR2001/GPP18_4pdf).
    [57] M. D. Hurley, T. J. Wallington, J. Phys. Chem. 2004, 108, 1973.
    [58] V. C. Papadimitriou, A. V. Prosmitis, Y. G. Lararou, P. Papagiannakopoulos, J. Phys. Chem. A 2003, 107, 3733.
    [59] M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    [60] 唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982。
    [61] 徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1985。
    [62] 赵学庄,罗渝然,臧雅茹,万学适,《化学反应动力学原理》下册,高等教育出版社,1990。
    [63] R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press: Oxford, 1989.
    [64] J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87, 5968.
    [65] A. Szabo, N. S. Ostlund, Modern Quantum Chemistry, Introductionto Advanced Electronic Structure Theory. Dover, New York. 1996.
    [66] C. M?ller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
    [67] J. A. Pople, J. S. Binkley, R. Seeger, Int. J. Quant. Chem. Symp. 1976, 10, 1.
    [68] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys. Lett. 1988, 153, 503.
    [69] J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp. 1977, 11, 149.
    [70] J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, J. Phys. Chem. 1992, 96, 135.
    [71] R. Krishnan, H. B. Schlegel and J. A. Pople, J. Chem. Phys. 1980, 72, 4654.
    [72] B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer, J. Chem. Phys. 1980, 72, 4652.
    [73] E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys. 1989, 90, 1752.
    [74] K. Raghavachari and J. A. Pople, Int. J. Quant. Chem. 1981, 20, 167.
    [75] Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. XIV, 1978, 545-560.
    [76] R. J. Bartlett, G. D. Purvis, Int. J. Quant. Chem., 1978, 14, 516.
    [77] G. D. Purvis, R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
    [78] G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys., 1988, 89, 7382.
    [79] G. E. Scuseria, Schaefer, H. F. III, J. Chem. Phys., 1989, 90, 3700.
    [80] J. K. Labanowski, J. W. Andzelm, eds, Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    [81] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
    [82] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
    [83] D. R. Salahub, M. C. Zerner, eds, The Challenge of d and f Electrons,ACS: Washington, D.C., 1989.
    [84] B. J. Lynch, P. L. Fast, M. Harris, D. G. Truhlar, J. Phys. Chem. A, 2000, 104, 4811.
    [85] B. J. Lynch, D. G. Truhlar, J. Phys. Chem. A, 2001, 105, 2936.
    [86] D. E. Woon, T. H. Dunning Jr., J. Chem. Phys. 1993, 98, 1358..
    [87] R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
    [88] T. H. Dunning Jr., J. Chem. Phys. 1989, 190, 1007.
    [89] K. A. Peterson, D. E. Woon, R. J. Harrison, J. Chem. Phys. 1994, 100, 7410.
    [90] A. Wilson, T. van Mourik, and T. H. Dunning Jr., J. Mol. Struct. (Theochem) 1997, 388, 339.
    [91] E. R. Davidson, Chem. Phys. Lett. 1996, 220, 514.
    [92] K. Fukui, Int. J. Quantum. Chem. 1981, 15, 633.
    [93] K. Fukui, A. Tachibana, K. Yamashita, Int. J. Quantum. Chem. 1981, 15, 621.
    [94] L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople, J. Chem. Phys. 1991, 94, 7221.
    [95] A. M. Mebel, K. Morokuma, M. C. Lin, J. Chem. Phys. 1995, 103, 7414.
    [96] L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolv, J. A. Pople, J. Chem. Phys. 1998, 109, 7764.
    [97] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolv, J. A. Pople, J. Chem. Phys. 1999, 110, 4703.
    [98] P. L. Fast, D. G. Truhlar, J. Phys. Chem. A, 2000, 104, 6111.
    [99] B. J. Lynch, Y. Zhao, D. G. Truhlar, J. Phys. Chem A 2005,109, 1643.
    [100] J. S. Winn, Physical Chemistry, Harper Collins College Publishers, 1995.
    [101] P. W. Atkins, Physical Chemistry, W.H. Freeman and Company, NewYork, 1990.
    [102] G. D. Billing, K.V. Mikkelsen, Introduction to Molecular Dynamics and Chemical Kinetics, John Wiley & Sons, Inc., New York, 1996.
    [103] H. S. Johnston, Gas Phase Reaction Rate Theory, Ronald Press Company, New York, 1966.
    [104] S. Glasstone, K. Laidler, H. Erying, Theory of Rate Processes, McGraw- Hill, New York, 1941.
    [105] 王琪, 化学动力学导论, 吉林人民出版社, 1982 年.
    [106] B. C. Garrett, D. G. Truhlar, J. Phys. Chem. 1979, 83, 1052
    [107] B. C. Garrett, D.G. Truhlar, J. Chem. Phys. 1979, 70, 1593.
    [108] T. I. Hill, An Instruction to Statistical Thermodynamics, Addison-Wesley, Reading Mass. 1960, Chap 6.
    [109] J. E. Mayer, M. G. Mayer, Statistical Mechanics, 2nd Ed, John Wiley & Sons. N. Y. 1977, Chap 7.
    [110] W. H. Miller, N. C. Handy, J. E. Adams, J. Chem. Phys. 1980, 72, 2008.
    [111] D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771.
    [112] W.P. Hu, D.G. Truhlar, J. Am. Chem. Soc. 1996, 118, 860.
    [113] Y.Y. Chuang, J.C. Corchado, P.L. Fast, J. Villa, W.P. Hu, Y.P. Liu, G.C.Lynch, C.F. Jackels, K.A. Nguyen, M.Z. Gu, I. Rossi, E.L. Coitino, S. Clayton, V.S. Melissas, B.J. Lynch, R. Steckler, B.C. Garrett, A.D. Isaacson, D.G. Truhlar, POLYRATE, Version 8.4.1, University of Minnesota, Minneapolis, 2000.
    [114] D.G. Truhlar, B.C. Garrett, Acc. Chem. Res. 1980, 13, 440.
    [115] D.G. Truhlar, B.C. Garrett, Annu. Rev. Phys. Chem. 1984, 35, 159.
    [116] M.J. Frisch, G.W. Truck, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E.Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Boboul, B.B. Stefnov, G. Liu, A. Liaschenko, P. Piskorz, L. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 03, Revision A.1, Guassian, Inc., Pittsburgh, PA, 2003.
    [117] B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar, J. Phys. Chem. A 2000,104, 21.
    [118] B.J. Lynch, P.L. Fast, M. Harris, D.G. Truhlar, J. Phys. Chem. A 2000, 104, 21.
    [119] W. Hehre, L. Radom, P.R. Schleter, J.A. Pople, Ab Intio Molecular Orbital Theory, Wiley, New York, 1996.
    [120] R. Steckler, W.P. Hu, Y.P. Liu, G.C. Lynch, B.C. Garrett, A.D. Isaacson, V.S. Melissas, D.P. Lu, T.N. Troung, S.N. Rai, G.C. Hancock, J.G. Lauderdale, T. Joseph, D.G. Truhlar, Comput. Phys. Commun. 1995, 88, 341.
    [121] D.H. Rank, D.P. Eastman, B.S. Rao, T.A. Wiggins, J. Opt. Soc. Am. 1962, 52, 1.
    [122] P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry Webbook, The National Institute of Standards and Technology (NIST), Available from: http://webbook.Nist.Gov/chemistry/.
    [123] C. Melius, Unpublished data. Available from: http://z.ca.sandia. gov/~melius/.
    [124] J.D. Cox, G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970.
    [125] P.D. Pacey, J. Chem. Educ. 1981, 58, 612.
    [126] B.C. Garrett, D.G. Truhlar, J. Am. Chem. Soc. 1979, 101, 4534.
    [127] B.C. Garrett, D.G. Truhlar, S.R. Grev, A.W. Magnuson, J. Phys. Chem. 1980, 84, 1730.; 1983, 87, 4534 (erratum).
    [128] D.G. Truhlar, A.D. Issacson, R.T. Skodje, B.C. Garrett, J. Phys. Chem. 1983, 87, 4554.
    [129] Y.-P. Liu, G.C. Lynch, T.N. Truong, D.-h. Lu, D.G. Truhlar, B.C. Garrett, J. Am. Chem. Soc. 1993, 115, 2408.
    [130] D.G. Truhlar, J. Comput. Chem. 1991, 12, 266.
    [131] Y.Y. Chuang, J.C. Corchado, D.G. Trulhlar, J. Chem. Phys. 2000, 112, 1221.
    [132] K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. Constants of Diatomic Molecules, Van Nostrand, Reinhold, New York, 1979.
    [133] JANAF, vol. 14, Suppl. 1, 1995.
    [134] M. J. Molina, F. S. Rowland, Nature (London) 1974, 249, 810.
    [135] J. K. Hammitt, F. Camm, P. S. Connell, W. E. Mooz, K. A. Wolf, D. J. Wuebbles, A. Bamezoi, Nature (London) 1987, 330, 711.
    [136] R. E. Rebbert, P. J. Ausloos, J. Photochem. 1975, 4, 419; 1976/1977, 6, 265.
    [137] R. A. Hanel, J. Geophys. Res. 1972, 77, 2629.
    [138] J. T. Houghton, L. G. Meira Filho, B. A. Callender, N. Harris, A. Kattenberg, K. Maskell, Eds. WMO/UNEP, Climate Change 1995, The IPCC Scientific Assessment; Cambridge University Press: Cambridge, 1996.
    [139] D. A. Fisher, C. H. Hales, W. C. Wang, M. K. W. Ko, N. D. Sze, Nature (London) 1990, 344, 513.
    [140] WMO/UNEP, Atmospheric Ozone: 1985; World Meterological Organization Global Ozone Research and Monitoring Project, Report No. 16; World Meteorological Organization: Geneva, Switzerland, 1986.
    [141] Scientific Assessment of Stratospheric Ozone: 1989; World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 20; World Meterological Organization: Geneva, Switzerland, 1990; Vol. 2 Appendix AFEAS Report.
    [142] Fluorocarbon Manufacturers Association, Eds.; Tokutei Furon Siyousakugen Manyuaru (in Japanese); Tokyo, 1990.
    [143] E. Kissa, M. J. Schick, F. M. Fowkes, Eds. Fluorinated Surfactants, Synthesis, Properties, and Applications; Marcel Dekker: New York, 1994.
    [144] Scientific Assessment of Ozone Depletion: 1994; UNEP/WMO Global Ozone Research and Monitoring Project, Report No. 37; World Meterological Organization: Geneva, 1995.
    [145] A. D. Becker, J. Chem. Phys. 1993, 98, 1372.
    [146] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
    [147] Y. Y. Chuang, J. C. Corchado, D. G. Truhlar, J. Phys. Chem. 1999, 103, 1140.
    [148] D. R. Lide, CRC Handbook of Chemistry and Physics, 80th ed.; CRC Press: New York, 1999.
    [149] T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated; National Bureau of Standards; U. S. Government Printing Office: Washinton, DC, 1972; Vol. 1.
    [150] E. Kraka, T. H. Dunning Jr. In Advances in Molecular Electronic Structure Theory; T. H. Dunning Jr., Ed.; JAI Press: Greenwich, 1990; Vol. 1.
    [151] (a) M. W. Chase, Jr. J Phys Chem Ref Data 1998; Monograph 9; pp. 1–1951. NIST-JANAF Thermochemical Tables, 4th ed; (b) E. Wu, A. S. Rodgers, J. Phys. Chem. 1974, 78, 2315; (c) J. Hine, K. Arata, Bull Chem Soc Jpn 1976, 49, 3089; (d) W. Tsang, Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals; Martinho J. A. Simoes, A. Greenberg, J. F. Liebman, Eds. Blackie Academic and Professional: London, 1996; pp. 22–58.
    [152] K. W. Oum, M. J. Lakin, D. O. DeHaan, T. Brauers, B. J. Finlayson Pitts, Science, 1998, 279, 74.
    [153] B. J. Finlayson-Pitts, Res. Chem. Intermed. 1993, 19, 235.
    [154] B. J. Finlayson-Pitts, J. N. Pitts, Jr. Science, 1997, 276, 1045.
    [155] G. S. Hammond, J. Am. Chem. Soc. 1955, 77, 334.
    [156] A. Galano, J. R. Alvarez-Idaboy, M. E. Ruiz-Santoyo, A. Vivier-Bunge, Chem. Phys. Chem. 2004, 5, 1379.
    [157] J. R. Alvarez-Idaboy, N. Mora-Diez, R. J. Boyd, A. Vivier-Bunge, J. Am. Chem. Soc. 2001, 123, 2018.
    [158] A. Galano, J. R. Alvarez-Idaboy, G. Bravo-Perez, M. E. Ruiz-Santoyo, Phys. Chem. Chem. Phys. 2002, 4, 4648.
    [159] A. Galano, J. R. Alvarez-Idaboy, M. E. Ruiz-Santoyo, A. Vivier-Bunge, J. Phys. Chem. A 2002, 106, 9520.
    [160] J. R. Alvarez-Idaboy, A. Cruz-Torres, A. Galano, M. E. Ruiz-Santoyo, J. Phys. Chem. A 2004, 108, 2740.
    [161] V. H. Uc, J. R.Alvarez-Idaboy, A. Galano, I. Garcia-Cruz, A. Vivier-Bunge, J. Phys. Chem. A 2006, 110, 10155.
    [162] H. He, J. Liu, Z. Li, C. Sun, J. Comput. Chem. 2005, 26, 642.
    [163] L. Wang, J. Liu, Z. Li, C. Sun, J. Comput. Chem. 2004, 25, 558.
    [164] J. Wu, J. Liu, Z. Li, X. Huang, C. Sun, J. Comput. Chem. 2003, 24, 593.
    [165] L. Sheng, Z. Li, J. Liu, J. Xiao, C. Sun, J. Comput. Chem. 2004, 25, 72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700