炭吸附材料负载掺杂纳米TiO_2的制备及其降解有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对纳米TiO_2进行掺杂改性,选用比表面积高的炭材料,研究活性炭、活性炭纤维负载TiO_2的制备条件与催化降解性能的影响,为纳米TiO_2光催化、光电催化降解有机污染物技术进一步实用化提供理论依据。
     在用Ti(SO_4)_2沉淀法制备的TiO_2前驱物中掺杂不同浓度的柠檬酸铁及同一浓度下不同阴离子的铁盐,并增加超声波(80℃水浴)干燥过程,经煅烧后获得高光催化活性的纳米TiO_2粉末。光催化实验结果表明,在紫外灯(主波长365nm)及太阳光下,当掺柠檬酸铁时,最佳Fe~(3+)掺杂量为0.05%摩尔比,光催化活性超过Degussa P25;当Fe~(3+)掺杂量超过1%时,显示低的光催化活性,虽然在350-500nm的波长范围有强烈的吸收和吸收边红移。当采用不同无机阴离子铁盐掺杂时,对纳米TiO_2的光催化性能影响程度与阴离子的极化力有关,带入的SO_4~(2-)使光催化性能提高最大。
     采用正交试验设计方法通过浸渍法并超声分散制备出炭材料负载纳米TiO_2(TiO_2/C)催化剂,探讨了TiO_2/C催化剂制备条件,研究了该种催化剂对甲基橙溶液光/光电催化降解效果的影响,发现负载物的比表面积对于催化剂的降解率起决定性作用。通过正交实验设计方法制备多元素离子掺杂的TiO_2/活性炭(TiO_2/AC)催化剂,实验结果表明,B~(3+)的加入量对TiO_2/GAC降解甲基橙的影响最大,H_2SO_4、Fe~(3+)的影响次之,所制备样品的光催化和光电催化降解速率符合Langmurir-Hinshelwoood的假一级动力学方程,吸附为控制步骤。
     通过溶胶—凝胶方法制备的颗粒活性炭(GAC)负载型的催化剂TiO_2/GAC,并以亚甲基蓝染料降解反应为模型反应,在室温和施加电压的条件下,研究了不同负载比例对活性炭原位吸附再生的关系;并且探讨了分别填充TiO_2/GAC及GAC在固定床实验装置中通入自来水进行TOC去除实验的差异。实验表明,负载TiO_2的活性炭提高了电催化再生吸附能力,负载量越高多次再生能力越强,从而降低经处理自来水中TOC的效果也越明显。
     采用浸渍法在不同活性炭纤维材料(AFC)及泡沫镍上负载TiO_2,并以正交实验采用TiO_2在不同负载材料、层数、煅烧温度、硫酸、Fe~(3+)的加入量下制备吸附型光催化剂,用动态测试法研究各因数对苯的光催化降解率的影响。结果表明,TiO_2催化剂负载在ACF上,在一定质量浓度的TiO_2前驱溶胶中浸涂两层,250℃下煅烧一小时,加入适量的硫酸条件下对苯具有良好的降解性能;本研究中,最佳的掺杂铁离子量是0.10%。所制备样品的光催化降解苯的速率也符合Langmurir-Hinshelwoood的假一级动力学方程,吸附为控制步骤。
In the current work, the influence on preparing condition using the different large surface area material as supports, such as granular actived carbons and actived carbon fibers to the photocatalytic degradation performance activity have been investigated. Some new progresses were expected in the practical applications of photocatalytic technology.
     Fe~(3+) doped nanometer TiO_2 photocatalysts was prepared with different content ferric citrate and different opposite anions of Fe using the Ti(SO_4)_2 precipitation method. the precursor of TiO_2 was dried over steam bath at 80℃with ultrasonic wave, then was calcined to form the high photocatalytic activities of nanometer Fe~(3+) doped TiO_2. The photocatalyst acitivity results indicated that the optimum doping amount of iron ion when doping ferric citrate was 0.05 mole% under UV and solar light and the photocatlytic activity even higher than that of Degussa P25 TiO_2,Over 1% Fe content doped TiO_2 powders showed a strong absorption in whole range 350-500 nm and a red shift in the band gap but showed the weaker photocatalytic activity. SO_4~(2-) ion doping can improve the photocatalytic degradation of TiO_2 and have better activity than that of doped with other different kind inorganic anions of Fe~(3+) salt.
     The photocatalyst acitivity of nanometer titanium dioxide/ carbon material (TiO_2/C) was prepared by dip-coating technique by means of orthogonal experimental method. The effects of the conditions of prepared TiO_2/C catalyst on the photoelectrocatalysis degradation of methyl orange solution was investigated. The result was obtained that the specific surface areas of supporter play a decisive role in the degradation efficiency of methyl orange. The nano-sized TiO_2 was supported on active carbon (AC) were prepared by means of orthogonal experimental method too. The result showed that main influencing factor of photocatalysis activity was the doping amount of B~(3+) and H_2SO_4, and the effect of Fe~(3+) was much less. The kinetics of this degradation reaction conform to the Langmiur-Hinshelwood pseudo-first order kinetics model very well, and the absorption of OM on the prepared catalyst surface was the controlling step in the whole degradation process.
     The adsorption and regeneration characteristics of TiO_2 supported on granular activated carbon were studied by using the electrical catalytic degradation, using methylene blue as a model organic pollutant. At the room temperature and electric voltage of 80V, the relation between removal efficiency and the loaded mass of TiO_2 was measured. The TOC removal in tap water was also used to test the efficiency packed both TiO_2/GAC and GAC into a packed-bed reactor as an adsorbent and catalyst in the electrochemical reaction. The experimental results show that loaded TiO_2 on GAC enhanced the electrical catalytic adsorption and regeneration capacity. That is, the more mass was loaded, the better regenerating performance was got, and the best TOC removal was obtained when ratio of TiO_2 to GAC was 0.8:1.
     The TiO_2 photocatalyst were prepared by using dip-coating technique adhered precursor of TiO_2 to active carbon fiber and porous nickel mesh. The effects of different prepared factors, such as different supported materials, the times of coating, the calcining temperature and the added amount of H_2SO_4 were studied in photocatalytic oxidation of Benzene. The result showed that the ACF loaded with precursor of TiO_2 should be coated two times, calcined for 1 hours at 250℃and added proper amount of H2SO4. In this study, the optimum Fe~(3+) doping amount was ontained at 0.10%. And the kinetics of this degradation reaction of Benzene also corform to the Langmiur-Hinshelwood pseudo-first order kinetics model very well.
引文
[1] 安太成,张茂林,朱锡海等.2003a.光电催化技术对有机污染物的降解作用冲国给水排,19(9):25-28
    [2] 安太成,张文兵,朱锡海等.2003b.一种新型光电催化反应器的研制及甲酸的光电催化深度氧化.催化学报,24(5):338-342
    [3] 北京大学数学力学系概率统计组.1976.正交设计法.石油化学工业出版社
    [4] 陈慧,魏东斌,安太成,等.1998.水溶性金属卟啉的合成及其光敏性质,西北师范大学学报(自然科学版),34(3):91-92
    [5] 程爱华,张治宏.2002.活性炭填充电极电解法处理含酚废水的试验研究.西安科技学院学报,22(4):426—430
    [6] 鄂学礼.2004.饮用水深度净化与水质处理器.化学工业出版社
    [7] 范崇政,肖建平,丁延伟.2001.纳米TiO_2的制备与光催化反应研究进展.科学通报,4(46):265-272
    [8] 付贤智,丁正新,苏文悦等.1999.二氧化钛基固体超强酸的结构及其光催化氧化性能.催化学报,20(20):321—324
    [9] 管秀荣,邵忠财,田彦文等.2006.高分子网络凝胶法制备SnO_2/TiO_2复合粉及其光催化性能.有色矿冶,22(5):40-44
    [10] 郭亚平,全燮,陈硕等.水中氯仿的活性炭电增强吸附特性.环境科学学报,2003,23(1):84-87
    [11] 贺福编著.碳纤维及其应用技术.化学工业出版社,2004
    [12] 郝晓刚,李一兵,樊彩梅等.2003.TiO_2光电催化水处理技术研究进展.化学通报,5:306-311
    [13] 胡将军,李英柳,彭卫华.2004.吸附.光催化氧化净化甲醛废气的试验研究.化学与生物工程,(1):39-40
    [14] 姜洪波,高濂,张青红.2002.铜离子掺杂对TiO_2纳米颗粒膜结构和性能的影响.无机材料学报.17(4):787—791
    [15] 景长勇,霍保全.2006.电催化氧化法降解苯酚废水的实验研究.环境污染治理技术与设备,7(12):108-101
    [16] 李旦振,郑宜,付贤智.2002.微波—光催化耦合效应及其机理研究.物理化学学报,18(4):332-335
    [17] 李国平,邱阳,夏明芳,等.2006.用活性炭粒子群电催化反应器处理氯苯和硝基苯生产废水.化工环保,26(4):299-302.
    [18] 李卫华,乔学斌,高恩勤等,2000.3d过渡金属掺杂TiO_2纳米晶膜电极的光电化学研究,高等学校化学学报,21(10):1534-1538
    [19] 李炜罡,霍冀川,刘树信等.2004.负载型TiO_2光催化剂研究进展.陶瓷学报,25:133-138
    [20] 林海,管小东,李天昕.2003.活性炭纤维电化学处理染料废水.北京科技大学学报,25(4):124-26
    [21] 刘宏远,张燕.饮用水强化处理技术及工程实例.化学工业出版社.2005,4
    [22] 刘守新,孙承林,张世润.2003.煤质活性炭的光催化再生.催化学报,24(5):355-358.
    [23] 刘占孟,桑义敏,杨润昌.2004.纳米二氧化钛电催化氧化工艺参数的研究.工业用水与废水,35(2):54—56
    [24] 陆银兰,杨建忠.2006.ACF负载纳米TiO_2空气净化材料的应用研究.天津纺织科技,(4):22-24
    [25] 陆银兰,杨建忠.2004.ACF负载纳米TiO_2净化室内甲醛的应用研究.广西纺织科技,33(4):35-37
    [26] 马琦,张保住,张志强等.2005.掺锡TiO_2复合颗粒的制备和日光催化的研究.山西大学学报(自然科学版),28(1):62-64
    [27] 彭少洪,黄运凤,钟理等.2006.SO_4~(2-)/TiO_2光催化氧化邻硝基苯酚.化学研究,17(2):68-70
    [28] 清山哲郎著.黄敏明译.金属氧化物及其催化作用.合肥:中国科学技术大学出版社., 1991
    [29] 尚静,杜尧国,徐自力.2000.TiO_2纳米粒子气-固复相光催化氧化VOC_s作用的研究进展.环境污染治理技术与设备,1(3):67-76
    [30] 苏文悦,付贤智,魏可镁.2001.SO_4~(2-)表面修饰对ZiO_2结构及其光催化性能的影响.物理化学学报,17(1):28-31
    [31] 苏文悦,陈亦琳,付贤智等.2001.SO_4~(2-)/TiO_2固体酸催化剂的酸强度及光催化性能.催化学报,(3):175~176
    [32] 沈杭燕,唐新硕.1998.TiO_2粉末催化剂光催化降解室内空气中有机污染物.杭州大学学报(自然科学版),25(4):55-58
    [33] 唐电,李永胜,王永康等.1995.纳米二氧化钛制备的初步研究.氯碱工业.(11):12—14
    [34] 唐玉朝,胡春,王怡中等.2002.TiO_2光催化剂反应机理及动学研究.化学进展,14(3):192-199
    [35] 王君婷,张高科,邓放.2006.室内光催化氧化净化设备研究进展.国外建材科技,27(6):41-45
    [36] 王玉萍,彭盘英,丁海燕.2005.活性炭负载TiO_2光催化降解1—萘胺.应用化学,22(4):417—421
    [37] 王艳芹,张莉,程虎民等.2000.掺杂过渡金属离子的TiO_2复合纳米粒子光催化剂—罗丹明B的光催化降解.高等学校化学学报,21(6):958-960
    [38] 吴启洲.1997.饮用水中有机污染物的危害及对策[J].水处理技术,(4):67-70.
    [39] 吴伟,吴春笃.2006.电催化氧化技术处理硝基苯废水的试验研究.环境科学与技术,29(11):82-85.
    [40] 吴溪军.2001.纳米材料的研究综述.黑龙江大学学报,56(8):333—335
    [41] 吴越著.催化化学.北京:科学出版社.1998,1291-1427
    [42] 吴越,董庆华,查全性.1987.光电化学反应的催化.Ⅱ、表覆盖针状铱层对n-TiO:电极上光电化学过程的催化作用.化学学报,4(3):6639-6650
    [43] 徐锐,张无敌,谢建等.2002.光催化TiO_2薄膜研究进展及其影响因素.云南师范大学学报(自然科学版),2(6):29-34
    [44] 叶李艺,傅志鸿,张会平等.电化学再生活性炭的工艺参数研究.化工科技,2000,8(1):1-4
    [45] 岳林海,水淼,徐铸德等,2000.稀土掺杂二氧化钛的相变和光催化活性,浙江大学学报(理学版),27(1):70~74
    [46] 张健,矫庆泽,张宗俭.2006.掺硼纳米TiO_2对农药毒死蜱的光催化降解作用.化学研究,7(3):32-35
    [47] 张俊卿,冯德荣.2006.掺杂锡的纳米二氧化钛光催化降解苯酚的研究,内蒙古石油化工,(10):4-6
    [48] 张西旺,王怡中.2005.微波强化光催化氧化技术研究现状及展望.化学进展,17(1):91-95
    [49] 张颖,李朝晖,杨凌霄.2000.过渡金属离子调变对光催化氧化反应的影响.环境科学研究.13(6):40-42
    [50] 邹启光,周恭明.2003.电催化氧化有机废水的应用现状和展望.福建环境,20(3):35-36
    [51] 朱惠刚.1987.水体有机化学污染物对人体影响评价.中国环境科学,7(4):571-576
    [52] Mukherjee R.著,丁革菲,孙万林,盛六四等译,1991.光化学基础.北京:科学出版社
    [53] Ada'n C, Bahamonde A, Fema'ndez A, etal. 2006.Structure and activity of nanosized iron-doped anatase TiO_2 catalysts for phenol photocatalytic degradation. Applied Catalysis B: Environmental, 72: 11-17
    [54] Aksoylu A E, Madalena M, Freitas M M A, et al. 200 I. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 39:175-185.
    [55] An T C, Zhu X.H, Xiong Y. 2002. Feasibility study of photoelectrochemical degradation of methylene blue aqueous solutions with three dimensional electrodes-photocatalytic reactor. Chemosphere, 46(6): 897-903
    [56] Ao CH, Lee S C. 2004. Combination effect of activated carbon with TiO_2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry 161:131-140
    [57] Arpac E, Say?kan F, Asilturk M, et al. 2007.Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights. Journal of Hazardous Materials 140:69-74
    [58] Bahnemann D W. 2000.Current challenges in photocatalysis: improved photocatalysts and appropriate photoreactor engineering. Res. Chem. Intermed, 26(2): 207-215
    [59] Baiju K, Sibu C P, Rajesh K, et al. 2005.An aqueous sol-gel route to synthesize nanosized lanthanadoped titania having an increased anatase phase stabilityfor photocatalytic application. Mater Chem Phys., 90:123-127
    [60] Bandara J, Tennakone K, Jayatilaka P P B. 2002.Composite Tin and Zinc oxide nanocrystaUine particles for enhanced charge separation in sensitized degradation of dyes. Chemosphere, 49 (4): 439-445
    [61] Bessekhouad Y, Robert D, Weber J V,et al. 2004.Effect of alkaline-doped TiO_2 on photocatalytic efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 167: 49-57
    [62] Bekkouche S, Bouhelassa M, Salah N H, et al, 2004.Study of adsorption of phenol on titanium oxide (TiO2). Desalination, 166: 355-362.
    [63] Blount M C, Buchholz JA, Falcone.r J L. 2001 Photocatalytic Decomposition of Aliphatic Alcohols, Acids, and Esters. Journal of Catalysis, 197(2):303-314
    [64] Brillas E, Calpe J C, Casado J, 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res., 34:2253-2262.
    [65] Brus L. 1986. Electronic wave functions in semiconductor clusters: Experiment and Theory. J. phys. Chem., 90(12): 2555-2560
    [66] Byrne J A, Eggins B R, Brown N M,et al. 1998.Immobilisation of TiO_2 powder for the treatment of polluted water. Appl Catal B: Environ, 17:25-36
    [67] Carpio E, Zuniga P, Ponce S, et al. 2005.Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon. Journal of Molecular Catalysis A: Chemical, 228:293-298
    [68] Carp O, Huisman C L, Reller A. 2004.Photoinduced reactivity of titanium dioxide.Progress in Solid State Chemistry, 32:33-177
    [69] Chen T K, Ni H, Chen J N, et al, 2003. High-strength nitrogen removal of opto-electronic industrial wastewater in membrane bioreactor—a pilot study. Water Sci. Technol, 48:191-198
    [70] Chen Z Y, Y u G, Z hang P Y, et al. 2002.Structural properties of TiO2 thin film modified by carbon black. Environmental Science, 23(2):55-59(in Chinese)
    [71] Ching W H, Leung M, Leung D Y C.2004. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO_2 thin film for enhancement of indoor air quality.Solar Energy,77: 129-135
    [72] Cho. Y, Choi W, Lee C H, et al. 2001.Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO_2. Environ. Sci. Technol., 35(5): 966-970.
    [73] Choi W, Termin A, Hoffmann M R. 1994. The Role of Metal Ion Dopants in Quantum-Sized TiO_2:Correlation between Photoreactivity and Change Carder Recombination Dynamics. J. Phys. Chem.,98(51): 13669-13679
    [74] Christopher F G; Pasquale S V, 2002.The Use of Ultraviolet Germicidal Irradiation (UVGI) in Disinfection of Airborne Bacteria. Environmental Engineering and Policy, 3:101~107
    [75] Colon G, Hidalgo M C, Maclas M, et al. 2004. Enhancement of TiO_2/C photocatalytic activity by sulfate promotion.Applied Catalysis A: General, 259:235-243
    [76] Denny F, Scott J, Chiang K, 2007.Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds Journal of Molecular Catalysis A: Chemical, 263 (1-2): 93-102
    [77] Dhananjeyan M R, Kandavelu V, Renganathan R. 2000.A study on the photocatalytic (Fe~(3+)) and calcinations. J. reactions of TiO_2 with certain pyrimidine bases: effects of dopants(Fe~(3+) and calcinations. J. Molecular. Catal. Chem., 151:217-223
    [78] Dhananjeyan. M R, Kandavelu V, Renganathan R. 2000.An investigation of the effects of CuO_2 and heat treatment on TiO_2 photooxidation of certain pyrirnidines. J Mol Catal A: Chem, 158(2): 577-582
    [79] Ding H M, Sun H, Shan Y K. 2005.Preparation and characterization ofmesoporous SBA-15 supported dye-sensitized TiO_2 photocatalyst. Journal Of Photochemistry and Photobiology A: Chemistry, 169 (1): 101-107
    [80] Ding X Z, Liu X H. 1998. Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J Mater Res, 13:2556-2559
    [81] Di P A, Garcia L E., Ikeda S,et al. 2002a.Photocatalytic Degradation of Organic Compounds in Aqueous Systems by Transition Metal Doped Polycrystalline TiO2. Catal. Today, 75: 87-93
    [82] Di P A., Marci G., Palmisano L., et al 2002b.Preparation ofPolycrystaUine TiO_2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol. J. Phys.Chem. B., 106(3): 637-645
    [83] Dvoranowa D, Brezova V, Mazur M, 2002. Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 37(2):91-105
    [84] Einaga H, Futamuras S, Ibusuki T. 2001.Complete Oxidation of Benzene in Gas Phase by Platinized Titania Photocatalysts. Environmental Science and Technology, 35(9): 1880-1884
    [85] Erkan A, Bakir U, Karakas G K. 2006. Photocatalytic microbial inactivation over Pd doped SnO_2 and TiO_2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 184(3): 313-321
    [86] Espinosa R, Zumeta I, Santana J L, et al.2005.Nanocrystalline TiO_2 photosensitized with natural polymers with enhanced efficiency from 400 to 600 nm. Solar Energy Materials and Solar Cells, 85 (3): 359-369
    [87] Fan F F, Liu H Y, Bard A J, 1985.Integrated chemical systems:photocatalysis at titanium dioxide incorporated into Nation and clay. J Phys Chem, 89:4418-4420
    [88] Frank S N, Bard A J. 1977.eterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem., 81:1484-148
    [89] Fresno F, Guillard C, Coronado J M.et al. 2005.Photocatalytic degradation ofa sulfonylurea herbicide over pureand tin-doped TiO_2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 173:13-20
    [90] Fujishima A, Rao T N, Tryk D A. 2000.Titanium dioxide photocatalysis Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1:1-21
    [91] Fujishima A, Honda K. 1972. Electroelectrochemical Photolysis of Water at a Semiconductor Electrode.Nature,238(5358):37-38
    [92] Fu P f, Luan Y, Dai X G.2004.Preparation of activated carbon fibers supported TiO_2 photocatalyst and evaluation of its photocatalytic reactivity. Journal of Molecular Catalysis A: Chemical, 221:81-88
    [93] Furube A, Asahi T, Masuhara H, et al. 2001. Direct Observation of a Picosecond Charge Separation Process in Photoexcited Platinum-Loaded TiO2 Particles by Femtosecond Diffuse Reflectance Spectroscopy. Chemical Physics Letters, 336(5,6):424-430
    [94] Gerischer H, Heller A. 1991.The role of oxygen in photooxidation of organic molecules on semiconductor particles. J phys. Chem., 95:5261-5267
    [95] Hagfeldt A, Gratzel M. 1995.Light-induced Redox Reactions in Nanocrystalline Systems.Chem. Rev., 95(1): 49-68
    [96] Hikmet S. 2007. Improved photocatalytic activity of Sn~(4+)-doped and undoped TiO_2 thin film coated stainless steel under UV-and VIS-irradiationApplied Catalysis A: General 319:230-236
    [97] Hilal H S, Majjad L, Zaatar Z N.2007. Dye-effect in TiO2 catalyzed contaminant photo-degradation: Sensitization vs. charge-transfer formalism. Solid State Sciences 9(1): 9-15
    [98] Hino M, KoSayashi S, Arata K. 1979. Reactions of butane and isobutcnc catalyzed by zirconium oxide treated with sulfate ion Solid superacid catalysts. J. Am. Chcm. Soc., 101(21): 6439-6441
    [99] Hitchman M L.Tian F.2002. Studies of TiO_2 thin films prepared by chemical vapourdeposition for photocatalytic and photoeiectrocatalytic degradation of 4-chlorophenol.J Electroanal Chem, 538:65-172
    [100] Hoffmann M R, Martin S T, Choi W. et al. 1995. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev 95:69-96
    [101] Horikoshi S,Hidaka H,Serpone N. 2003. Hydroxyl radicals in microwave photocatalysis, Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions. Chemical Physics Letters, 376(3-4):475-480
    [102] Horikoshi S, Serprone N, Hisamatsu Y et al. 1998.Photocatalyzed Degradation of Polymers in Aqueous Semiconductor Suspensions.3. Photooxidation of a Solid Polymer: TiO_2- Blended Poly(vinyl chloride) Film. Environ Sci.Technol. 32:4010-4016
    [103] Huang F Q, Somers R C, McFarland A D,et al. 2003.Syntheses, structures, optical properties, and theoretical calculations of Cs_2Bi_2ZnS_5, Cs_2Bi_2CdS_5, and Cs_2Bi_2MnS_5. J Solid State Chem, 174:334-341
    [104] Huang H H, Lu M C, Chen J N, et al. 2003.Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere 51:935-943
    [105] Hung W C, Fu S, Tseng J J, et al. 2007.Study on photocatalytic degradation of gaseous, dichloromethane using pure and iron ion-doped TiO_2 prepared by the sol-gel method. Chemosphere, 66: 2142-2151
    [106] Irie H S, Mori H, Hashimoto K. 2004.Interracial structure dependence of layered TiO_2/WO_3 thin films on the photoinduced hydrophilic property. Vacuum, 74(3-4): 625-629
    [107] Ishibai Y C, Sato J, Akita S,et al. 2007. Photocatalytic oxidation of NO_x by Pt-modified TiO_2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 188(1): 106-111
    [108] Jaege R C. 1979. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition water at TiO2 particulate system. J. Phys.Chem., 83: 3146—3151
    [109] Jia H M, Xu H, Hu Y, et al. 2007.TiO_2@CdS core—shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties. Electrochemistry Communications, 9(3): 354-360
    [110] Jianguo H, Jurgen M, Dieter F, et al. 2001, Detection of Volatile Organic Peroxides in Indoor Air Fresenius. Journal of Analytical Chemistry, 371:961~965
    [111] Jin S, Shiraishi F. 2004. Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chemical Engineering Journal, 97:203-211
    [112] Jokl M V. 1998.New Units for Indoor Air Quality: decicarbdiox and decitvoc,International. Journal of Biometeorology, 42:93~111
    [113] Jung K Y, Park S B, IhmS K. 2004. Local structure and photocatalytic activity of B_2O_3-SiO_2/TiO_2 ternary mixed oxides prepared by sol-gel method. Applied Catalysis B: Environmental, 51: 239-245
    [114] Kemp T J, Mclntyre R A. 2006.Influence of transition metal-doped titanium(IV) dioxide on the photodegradation of polystyrene. Polymer Degradation and Stability, 91 (12): 3010-3019
    [115] Kikuchi Y, Sunada K, Iyoda T, et al. 1997.Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem&Photobiol. A: chem., 106:51-56
    [116] Kiselev A, Andersson M, Mattson A, et al. 2005. Solar light decomposition of DFP on the surface of anatase and rutile TiO_2 prepared by hydrothermal treatment of microemulsions. Surface Science, 584:98-105
    [117] Kozlov D V, Paukshtis E A, Savinov E N. 2000. The comparative studies of titanium dioxide in gas ethanol photocatalytic oxidation by the FTIR in situ method. Appl. Catal., B: Environ., 24(1):7-12
    [118] Kryukova G N, Zenkovets G A, Shutilov A A, et al.2007. Structural peculiarities of TiO_2 and Pt/TiO_2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light. Applied Catalysis B: Environmental, 71(3-4): 169-176
    [119] Kumar S j, Fedorov A G, Gole J L. 2005. Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle lurries. Applied Catalysis B: Environmental, 57:93-107
    [120] Kumara G R, Suitanbawa F M,et al. 1999.Continuous flow photochemical reactor for solar decontamination of water using immobilized TiO_2 Solar Energy Materials. Solar Cells, 58:167-171
    [121] Kwon Y T, Song K Y, Lee W I, et al. 2000. Photocatalytic Behavior of WO_3-Loaded TiO_2 in an Oxidation Reaction, J. Catal.,, 191(1):192-199
    [122] Lam S W, Chiang K, Lim T M. et al, 2007.The effect of platinum and silver deposits in the photocatalytic oxidation ofresorcinol. Applied Catalysis B: Environmental, 72(3-4): 363-372
    [123] Lam V Q, Turrell S, Martucci A, et al. 2006,Synthesis and optical properties of MPTMS-capped CdS quantum dots embedded in TiO_2 thin films for photonic applications. Journal of Non-Crystalline Solids, 352(30-31):3315-3319
    [124] Leng W H, Zhang Z, Zhang J Q. 2003. hotoelectrocatalytic degradation of aniline over rutile TiO_2/Ti electrode thermally formed at 600℃. Journal of Molecular Catalysis A:Chemical, 206: 239-252
    [125] Li D, Ohashi N, Hishita S, et al.2005.Origin of visible-light-driven photocatalysis: A comparative study onN/F-doped and N - F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. Journal of Solid State Chemistry, 178:3293-3302
    [126] Li F B, Li X Z. 2002. Photocatalytic ProPerties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A: General, 228:15-27
    [127] Li H X, Li G S, Zhu J, et al. 2005. Preparation of an active SO_4~2/TIO_2 photocatalyst for phenol degradation under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 226:93-100
    [128] Lin L, Lin W, Zhu Y X, et al. 2005. Uniform carbon-covered titania and its photocatalytic property. Journal of Molecular Catalysis A: Chemical, 236:46-53
    [129] Li J L, Xu L G, Keogh R. 2000.Fischer-Tropsch synthesis. Effect of CO pretreatrnent on a ruthenium promoted Co&sol:TiO_2. Catal. Lett. 70(3/4): 127-130
    [130] Li J L, Liu L, Yu Y, et al. 2004. Preparation of highly photocatalytic active nano-size TiO_2-Cu_2O particle composites with a novel electrochemical method. Electrochemistry Communications, 6:940—943
    [131] Linsebigler A L, Lu G Q, Yates J T, 1995.Phot0catalysis on TiO_2 Surface: Principles, Mechanisms, and Selected Results. Chemical Review, 95:735-758
    [132] Lu M C, Chert J N, Chang K T. 1999. Effect of adsorbent coated with TiO2 on the photocatalytic degradation ofpropoxur. Chemosphere, 38(3):617-627
    [133] Mardare D, Rusu G I, Iacomi F, 2005. Chromium-doped titanium oxide thin films. Materials Science and Engineering B 118:187-191
    [134] Maria A, Zanoni B, Jeosadaque J. et al. 2003.Photoelectrocatalytic degradation of Reavol Brilliant Orange 3R on titanium dioxide thin-film electrodes. Joumal of Photochemistry and hotobiology A: Chemistry, 157:55-63
    [135] Marta I L. 1999. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl.Catal B:Environ., 23:89-114
    [136] Matsuo S, Sakaguchi N, Yamada K, et al. 2004. Role in photocatalysis and coordination structure of metal ions adsorbed on titanium dioxide particles: a comparison between lanthanide and iron ions. Applied Surface Science 228:233-244
    [137] Marugan J, Hufschmidt D, Munoz J L. 2006.Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO_2 photocatalysts. Applied Catalysis B: Environmental, 62:201-207
    [138] Mentus S V. 2005. Electrochemical response of a composite Pt/TiO2 layer formedpotentiodynamically on titanium surfaces Electrochimica Acta, 50:3609-3615
    [139] Mizukoshi Y, Makise Y J, Shuto T, et al. 2007. Immobilization of noble metal nanoparticles on the surface of TiO_2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics Sonochemistry, 14(3): 387-392
    [140] Moon S C, Mametsuka H, Tabata S, et al. 2000. Photocatalytic production of hydrogen from water using TiO_2 and B/TiO_2. Catalysis Today, 58 125-132
    [141] Mozia S, Tomaszewska M, Kosowska B, et al. 2005.Decomposition ofnonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental 55: 195-200
    [142] Muggli D S, Ding L. 2001. Photocatalytic performances of sulfated TiO_2 and Degussa P25 TiO_2 during oxidation of organic. Appl. Catal. B: Environ., 32(3):181-194
    [143] Nazeeruddin M K, Zakeeruddin S M, Lagref J J, et al. 2004. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell, Coord. Chem. Rev., 248: 1317-1328.
    [144] Nakajima A, Obata H, Kameshima Y, et al. 2005. Photocatalytic destruction of gaseous toluene by sulfated TiO_2 powder. Catal. Comm., 6: 716-720
    [145] Nosaka Y, Fox M A. 1988. Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen Dependence of the Quantum Yield on Incident Pulse Width. J. Phys. Chem..92(7): 1893-1897
    [146] Oliveira R T S, Salazar-Banda G R, Santos M C, et al. 2007. Electrochemical oxidation of benzene on boron-doped diamond electrodes.Chemosphere, 66:2152-2158
    [147] Ollis D F. 1985. Contamination Degradation in Water. Environ. Sci. Teclmol. 19:480-4843
    [148] Orlov A, Jefferson D A, Tikhov M, et al. 2007. Enhancement of MTBE photocatalytic degradation by modification of TiO_2 with gold nanoparticles. Catalysis Communications, 8(5): 821-824
    [149] Ozcan O, Yukruk F, Akkaya E U, et al. 2007. Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO_2 films under UV and visible light irradiation. Applied Catalysis B: Enviroumental,71(3-4): 291-297
    [150] Park H, Neppolian B, Jie H S, et al. 2007. Preparation of bimetal incorporated TiO_2 photocatalytic nano-powders by flame method and their photocatalytic reactivity for the degradation of diluted 2-propanol.Current Applied Physics 7:118-123
    [151] Pakula M, B iniak S, Swiatkowski A, et al. 2007.The influence of nonpolar organics adsorption on the electrochemical behaviour of powdered activated carbon electrodes in aqueous electrolytes. Applied Surface Science, 253: 5143-5148
    [152] Pecchi G. Reyes P, Sanhueza P, et al. 2001. Photocatalytic degradation of pentachlorophenol on TiO_2 sol-gel catalysts. J.Chemosphere,43(2): 141-146.
    [153] Piera e, Tejedor m, Zorn m,et al. 2003.Relationship concerning the nature and concentration of Fe(Ⅲ) species on the surface of TiO_2 particles and photocatalytic activity of the catalyst. Appl Catal B: Environ, 46:671-685
    [154] Provenzano P L, Jindal G R, Sweet J R, et al. 2001.Flame-excited luminescence in the oxides Ta_2O_5, Nb_2O_5, TiO_2, ZnO, and SnO_2. J. Luminescence, 92(4):297-305
    [155] Qi X H, Wang ZH H, Zhuang Y Y, et al. 2005. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide. Journal of Hazardous Materials, B118:219-225
    [156] Qourzal S, Assabbane A, Ait-Ichou Y. 2004.Synthesis of TiO2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol.Joumal of Photochemistry and Photobiology A: Chemistry, 163:317-321
    [157] Rajkumar D, Kim J G. Palanivelu K P, et al. 2005. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment, Chem. Eng. Technol, 28:98-105
    [158] Reddy M P, Venugopal A. Subrahmanyam M.. 2007.Hydroxyapatite-supported Ag-TiO_2 as Escherichia coli disinfection photocatalyst. Water Research, 41(2):379-386
    [159] Rodrigo M A, Michaud P A, Duo I, et al, 2001. Oxidation of 4-chlorophenol at boron— doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148,D60-D64.
    [160] Sabio E, Gonzalez E, Gonzalez J F, et al. 2004.Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon, 42:2285-2293
    [161] Saez V, Gonzalez G L. Iniesta J, et al. 2004. Electrodeposition of PbO_2 on glassy carbon electrodes influence of ultrasound frcqucncy.Elcctrochcm. Commun, 6(8):757-761
    [162] Saila M K. 2003.The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide. Ind. Eng. Chem. Res., 42:1035-1043
    [163] Sakthivel S, HidalgoM C, Bahnemann D W. 2006. A fine route to tune the photocatalytic activity of TiO_2. Applied Catalysis B: Environmental, 63: 31—40
    [164] Sankapal B R, Lux-Steiner M, Ennaoui A. 2005. Synthesis and characterization of anatase-TiO_2 thin films. Applied Surface Science, 239:165—170
    [165] Sarria V, Peringer P, Caceres J, et al, 2004.Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO_2 and iron(Ⅲ) catalyst with H_2O_2 and O~(2-)as electron acceptors. Energy,29:853-860.
    [166] Say?kan H. 2007. Improved photocatalytic activity of Sn~(4+)-doped and undoped TiO_2 thin film coated stainless steel under UV- and VIS-irradiation.Applied Catalysis A: General, 319:230—236
    [167] Selvam K, Muruganandham M, Muthuvel I, et al. 2007. The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chemical Engineering Journal, 128(1): 51-57
    [168] Shen M, Wu Z Y, Huang H, et al. 2006.Carbon-doped anatase TiO_2 obtained from TiC for photocatalysis under visible light irradiationMaterials Letters. 60:693-697
    [169] Shi L Y, Li C Z, Gu H C, et al. 2000.Morphology and properties of ultrafine SnO_2-TiO_2 coupled semiconductor particles. Materials Chemistry and Physics, 62(1): 62-67
    [170] Shen Z, Wang W, Jia J, et al, 2002, Catalytically assisted electrochemical oxidation of dye Acid Red B, Water Environ. Res., 74:117-121
    [171] Shen Z M, Wu D, Yang J, et al, 2006.Methods to improve electrochemical treatment effect of dye wastewater. Journal of Hazardous Materials, B131:90-97
    [172] Sonawane R S, Hegde H G; Dongare M K, 2004b.Preparation of titanium(Ⅳ) oxide thin film photocatalyst by sol-gel dip coating.Mater Chem Plays, 77:744-750
    [173] Sonawane R S, Kale B B, Dongare M K. 2004a. Preparation and photo-catalytic activity of Fe-TiO_2 thin films prepared by sol-gel dip coating. Mater chem phys, 85: 52-57.
    [174] Su C, Hong B Y, Tseng C M.. 2004. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 96: 119-126
    [175] Sumita T S, Yamaki TY, Yamamoto S Y, et al. 2002:Photo-induced surface charge separation of highly oriented TiO_2 anatase and rutile thin films. Applied Surface Science 200:21-26
    [176] Sundaram K., Julia P B, Michael A. 1998.Catalytic Oxidation of 1,2-Dichlorobenzene Over V_2O_5/TiO_2-Based Catalysts. Catal.Today, 40:39-46
    [177] Sun J H, Wang X L, Sun J Y, et al. 2006.Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(Ⅳ)/TiO_2/AC photocatalyst. Joumal of Molecular Catalysis A: Chemical 260:241-246
    [178] Tada H, Kubo M, Inubushi Y, et al. 2000. N=N Bond Cleavage of Azobenzene through Pt/TiO_2 Photocatalytic Reduction. Chemical Communications, 11:977-978
    [179] Takeda N, Ohtani M, Torimoto T, et al. 1997. Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate. J.Phys.Chem.B, 101:2644-2649
    [180] Tanabe K, Sumiyosh T, Shibata K, et al. 1974.New Hypothesis Regarding Surface Acidity of Binary Metal-Oxides. Bulletin of the Chemical Society of Japan, 47:1064-1066
    [181] Teoh W Y, Amal R, Madler, et al. 2007. Flame sprayed visible light-active Fe-TiO_2 for photomineralisation of oxalic acid. Catalysis Today, 120:203-213
    [182] Toyoda T, Tsuboya I, Shen Q. 2005.Effect ofrutile-type content on nanostructured anatase-type TiO_2 electrode sensitized with CdSe quantum dots characterized with photoacoustic and photoelectrochemical current spectroscopies. Materials Science and Engineering: C, 25 (5-8): 853-857
    [183] Tryba B, Tsumur T, Janus M. 2004. Carbon-coated anatase: adsorption and decomposition of phenol in water. Applied Catalysis B: Environmental, 50:177-183
    [184] Tsumur T, Hattori Y, Kaneko K, et al. 2004. Formation of the Ti407 phase through interaction between coated carbon and TiO_2.Desalination, 169:269-275
    [185] Uzunova M, Kostadinov M, Georgieva J, et al. 2007. Photoelectrochemical characterisation and photocatalytic activity of composite La_2O_3-TiO_2 coatings on stainless steel .Applied Catalysis B: Environmental, 73(1-2): 23-33
    [186] Verma S K, Walker P L, 1992.Carbon molecular sieves with stable hydrophobic surfaces.Carbon 30:837-844
    [187] Wang C, Zhao J C, Wang X M, et al. 2002.Preparation, characterization and photocatalytic activity of nano-ZnO2-SnO2 coupled photocatalyst. Appl Catal B: Environ, 39:843-848
    [188] Wang J, Uma S, Klabunde K J. 2004 .Visible light photocatalysis in transition metal incorporated titania-silica aerogels. Applied Catalysis B: Environmental, 48: 151-154
    [189] Waldner C, Pourmodjib M,Bauer R, et al. 2003.Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere, 50:989-998
    [190] Wang C, Xu B Q, Wang X M,et al. 2005. Preparation and photocatalytic activity of ZnO/TiO_2/SnO_2 mixture. Journal of Solid State Chemistry, 178:3500-3506
    [191] Wu C Y, Yue Y H, Deng X Y, et al. 2004.Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catalysis Today, 93-95:863-869.
    [192] Wang J, Yin S, Zhang Q,et al.2003.Mechanochemical synthesis of fluorine-doped SrTiO_3 and its photo-xidation properties. Chem. Lett.,32:540-541
    [193] Wang K H, Hsieh Y H, Chao P W, et al. 2002.The photocatalytic degradation of trichloroethane by chemical vapor deposition method prepared titanium dioxide catalyst. J Hazard Mater B. 95:161—174
    [194] Wang K H, Tsai H H, Hsieh Y H. 1998.A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO_2 photocatalyst. J.Chemosphere, 36(13): 2763-2773
    [195] Wang X C, Yu J M, Liu P, et al. 2006.Probing of photocatalytic surface sites on SO_4~(2-)/TiO_2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption. Journal of Photochemistry and Photobiology A: Chemistry, 179:339-347
    [196] Wang Y, Doren D J. 2005.First-principles calculations on TiO_2 doped by N, Nd, and vacancy. Solid State Communications, 136:186-189
    [197] Wu X D, Wang D P,Yang S G. 2000. Preparation and characterization of stearate-capped titanium dioxide nanoparticles. J Colloid Interface Sci, 222:37-40
    [198] Wu X H, Ding X B, Qin W. 2006.Enhanced photo-catalytic activity of TiO_2 films with doped La prepared by micro-plasma oxidation method. Journal of Hazardous Materials, 137(1): 192-197
    [199] Xiao Q, Si z C, Yu Z M,et al. 2007. Sol-gel auto-combustion synthesis of samarium-doped TiO_2 nanoparticles and their photocatalytic activity under visible light irradiation. Materials Science and Engineering: B, 137(1-3): 189-194
    [200] Xin B F, Ren Z Y, Wang P, et al. 2007.Study on the mechanisms of photoinduced carriers separation and recombination for Fe~(3+)-TiO_2 photocatalysts. Applied Surface Science., 253(9): 4390-4395
    [201] Xu A W, Gao Y, Liu H Q. 2002.The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO_2 Nanoparticles. J. Catal., 207:151-157
    [202] Xu Y H, Wang L Y, Zhang Q,et al. 2005.Correlation between photoreactivity and photophysics of sulfated TiO_2 photocatalyst.Materials Chemistry and Physics, 92:470-474
    [203] Yamashita H M, Harada M S, Misaka I K, et al. 2003. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2. Catalysis Today, 84:191-196
    [204] Yang P, Lu C, Hua N,al, 2002.Titanium dioxide nanoparticles co-doped with Fe~(3+) and Eu3+ ions for photocatalysis Mater. Lett., 57:794-801
    [205] Yang P, Lu C., Hua N-P., Du Y K. 2002.Titanium Dioxide Nanoparticles Co-doped With Fe~(3+) and Eu~(3+) ions for Photocatalysis. Mater. Letters, 57:794-801
    [206] Yoneyama H, Torimoto T. 2000.Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catalysis Today 58:133-140
    [207] Yuan R S,Zheng J T, Guan R B et al. 2005.Immobilization of TiO_2 on m icroporous activated carbon fibers and the ir photodegradation performance for phenol new carbon materials,20(1):45-49
    [208] Zhang H P. 2002.Regeneration of exhausted activated carbon by electrochemical method. Chemical Engineering Journal 85:81-85
    [209] Zhang X W, Zhou M H, Lei L C. 2006.Co-deposition of photocatalytic Fe doped TiO_2 coatings by MOCVD. Catalysis Communications 7:427-431
    [210] Zhao D F, Zhou J, Liu N. 2007. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles. Materials Characterization, 58(3):249-255
    [211] Zhao X, Quan X, Zhao H M, et al.2004. Different effects of humic substances on photodegradation of p,p'-DDT on soil surfaces in the presence of TiO_2 under UV and visible light. Journal of Photochemistry and Photobiology A: Chemistry, 167 (2-3): 177-183
    [212] Zhou M,Lei L,2006a. The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor. Chemosphere. 65:1197-1203.
    [213] Zhou M H, Lei L C. 2006b. Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor. Electrochimica Acta,51:4489-4496
    [214] Zhou M H, Yu J G, Bei C B, et al. 2005. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Materials Chemistry and Physics, 93:159-163
    [215] Zhou M H, Yu J G. Cheng B. 2006.Effects of Fe-doping on the photocatalytic activity of mesoporous TiO_2 powders prepared by an ultrasonic method. Journal of Hazardous Materials B137:1838-1847
    [216] Zhu J F, Zheng W, He B, etal. 2004.Characterization of Fe-TiO_2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. Journal of Molecular Catalysis A: Chemical, 216:35-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700