臭氧活性炭—高级氧化组合技术处理水中有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用臭氧活性炭—高级氧化组合技术(AC/TiO_2/O_3/UV),对饮用水中环境激素类的代表性污染物—邻苯二甲酸二(2-乙基己)酯和消毒副产物类的有机氯化物—三氯乙醛进行了降解实验,详细研究了降解的效果、影响因素、降解动力学及机理,主要获得如下成果与认识:
     (1)臭氧活性炭—高级氧化组合技术对三氯乙醛与邻苯二甲酸二(2-乙基己)酯(DEHP)具有非常好的降解效果,其反应速率快,降解效率高,能达到完全矿化,氧化降解反应符合准一级动力学规律。
     (2)影响臭氧活性炭—高级氧化组合技术降解反应的动力学因素主要包括:降解物初始浓度、起始pH值、光催化剂负载量、外加氧化剂的浓度、光照方式及溶液中的HCO_3~(2-)、NO_3~-、Cl~-等阴离子。
     (3)TOC、pH值与目标化合物浓度分析检测表明,臭氧活性炭—光催化非均相高级氧化体系(AC/TiO_2/O_3/UV)降解有机污染物的过程中,有机物不是直接被矿化,而是通过形成一系列的中间产物后再被彻底矿化。
     (4)三氯乙醛降解过程中主要的中间产物是二氯乙酸、甲酸、二氯甲烷、甲醛、二氯氧;邻苯二甲酸二(2-乙基己)酯降解过程中主要的中间产物是邻苯二甲酸单(2-乙基己)酯、邻苯二甲酸二丁酯、苯甲酸甲酯、邻苯二甲酸、苯甲酸、邻羟基苯甲酸以及甲酸、乙酸、乙二酸、2-丁烯二酸等开环产物。
     本研究将传统的臭氧活性炭与光催化技术结合起来形成臭氧活性炭-光催化高级氧化组合技术体系,不仅丰富了高级氧化技术理论,而且为该组合技术在饮用水深度处理中的应用提供了理论基础。
In this study, di(2-ethylhexy)phthalate, a representational environmental hormone pollutant, and chloral, a typical disinfection by-products of drinking water, were degraded using a combination technique of ozone-activated carbon and advanced oxidation ( AC/O_3/TiO_2/UV ) . Their degradation effects, influencing factors, degradation kinetics and degradation mechanisms were investigated. The following main results have been achieved.
     (1) It was found that the combination technique of ozone- activated carbon and advanced oxidation can efficiently degrade the two organic pollutants, with high reaction rate constants and complete mineralization. The oxidation degradation reactions follow the pseudo first order kinetics.
     (2) It was found that a few of factors, such as the initial concentration of degraded pollutants, the pH value of the solution, the quantity of T1O2 loaded in the activated carbon, the concentration of added oxidant, the duration of illumination and some anion ions of HCO_3~-, NO_3~- and Cl~- in the solution had a significant effect on the degradation.
     (3) The measurements of TOC, pH values and targeted pollutants show that the degradation of TOC was obviously slower than that of their parent compounds, and that the variation of pH value in the system indicated the formation of some organic acids during degradation. This implicates that the organic pollutants were not mineralized to CO_2 and H_2O directly, but were converted to some intermediates firstly, and then mineralized completely.
     (4) The identified intermediates formed during chloral degradation mainly include acetic acid dichloride, formic acid, dichloromethane, dichloride oxide and formaldehyde, and the intermediates of di(2-ethylhexyl)phthalate are 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl)ester, benzoic acid methyl ester, 2-hydroxy benzoic acid, 1,2-benzonodicarboxylicacid, di(butyl)phthalate, benzoic acid, formic acid, acetic acid, fumaric acid and oxalic acid.
     This result presents a new combination technique of ozone-activated carbon and advanced oxidation system. It has not only developed the theory of heterogeneous advanced oxidation process in some extent, but also will provide a foundation for the application of this combination technique to water deep treatment.
引文
[1] 放燕辉,徐晶晶,沈迅伟等.2006.负载型活性炭/YiO_2光催化降解苯酚的研究,环境科学学报,26(7):1111-1115
    [2] 毕彤,艾有平,蒋里强,等.1994.饮用水中有机污染物调查.中国环境监测,10(2):50-52
    [3] 蔡宏道.1995.现代环境卫生学.北京:人民卫生出版社,544-547
    [4] 蔡乃才,简翠英,董庆华.1982.TiO_2光催化剂表面截铂方法的研究.催化学报,2:138-141.
    [5] 岑继文,李新军,梁园园等.2005.TiO_2催化剂薄膜背光催化的研究.环境科学,26(1):135-140
    [6] 陈昌杰.1997.我国饮水卫生与标准.中国预防医学科学院环境卫生监测所,内部报告
    [7] 陈昌杰.1988.我国生活饮用水水质与水性疾病调查报告.中央爱国卫生运动委员会,内部报告
    [8] 陈昌杰,黄承武.1990.全国生活饮用水水质与卫生疾病调查.中国公共卫生学报,9(1):7-9
    [9] 陈济安,舒为群,李祥,等.2003.邻苯二甲酸二(2-乙基己)酯微生物降解性研究.应用与环境生物学报.9(3):285-287
    [10] 陈莉,范跃华.2002.微污染原水的处理技术发展与探讨.重庆环境科学,24(6):67-69,78
    [11] 陈士夫,程学丽.1999.空心玻璃微球负载TiO_2清除水面漂浮的油层.中国环境科学,1:47-50
    [12] 崔玉川,傅涛.1998.我国水污染及饮用水源中有机污染物的危害.城市环境与城市生态,11(3):23
    [13] 陈忠林,范洁,田会君等.1998.高锰酸钾与粉末活性炭联用去除和控制受污染饮用水源中的致突变物质.中国给水排水,14(4):1-3,6
    [14] 戴遐明,陈永华.1996.半导体氧水化物超细粉末对Cr(Ⅵ)的光催化还原作用研究,环境科学,17(6):34-36
    [15] 国家环保总局.2006.2005年中国环境状况公报
    [16] 国家环境保护总局水和废水监测分析方法编委会.2002.水和废水监测分析方法.第4版.北京:中国环境科学出版社,607-609
    [17] 黄国兰,张卫华,李红亮等.1999.水体表面微层中DBP和DEHP的色谱测定.中国环境监测,15(1):19-21
    [18] 黄永东,肖贤明,徐显干,吴兆红.2005.管道分质供水消毒副产物及其安全性评价.环境污染与防治,27(5):349-351
    [19] 黄征青.2000.反渗透膜的铁污染与清洗.水处理技术,26(5):303-306
    [20] 黄仲杰.1998.我国城市供水现状、问题和对策.给水排水,24(2):18-20
    [21] 季淑娟.2004.臭氧-活性炭技术在给水厂中的应用.给水排水,30(6):1-5
    [22] 金朝晖,李红亮,柴英涛.1997.酞酯酯对人体与环境的危害.上海环境科学,16(12):39-43.
    [23] 雷乐成等主编2001冰处理高级氧化技术.北京:化学工业出版社.
    [24] 冷文华,童少平,成少安等.2000.附载型二氧化钛光电催化降解苯胺机理.环境科学学报,20(6):781-784
    [25] 李金昌.韩志文主编.1995滏阳河流域邯郸市段水污染防治总体规划研究.北京:环境科学出版社
    [26] 栾勇,傅平丰,戴学刚,等,2004.金属离子掺杂对TiO_2光催化性能的影响.化学进展,16(5):738-746
    [27] 刘昌胜,邬行彦.1996.膜的污染及清洗.膜科学与技术,16(2):25-10
    [28] 刘惠永,于永生,徐旭常.2000有机污染物控制技术与研究进展.新能源,22(11):49-53
    [29] 刘崎,陈晓青,杨娟玉,等.2004.双元素掺杂对纳米二氧化钛光催化降解甲基橙的影响.河南化工,21(2):8-10
    [30] 刘勇弟,徐寿昌.1994.紫外-Fenton试剂的作用机理及在废水处理中的应用.环境科学,13(4):302-306
    [31] 刘占猛.2005.活性炭-纳米二氧化钛电催化氧化降解有机物的基础研究.盐城工学院学报,18(1):38-41
    [32] 刘兆昌,聂永丰,朱锟.1991.地下水系统的污染与控制.北京:环境出版社,582
    [33] 刘正保,姚清照.1997.光催化氧化技术及其发展.工业水处理,6:7-8,5
    [34] 龙小庆,卜占生.2001.活性炭-纳滤膜工艺去除水中总有机炭和Ames致突变物.环境科学,22(1):75-77.
    [35] 路凯,鄂学礼,陈亚妍.2000.美国现行饮用水标准.国外医学卫生学分册,27(2):106
    [36] 罗敏,侯方女.1998.纳滤膜污染的分析与机理研究.水处理技术,24(6):318-323
    [37] 吕监,阎光明,李桂枝.2001.纳滤膜在水处理中的应用.环境工程,19(2):23-24
    [38] 吕锡武,严煦世.1992.光化学氧化饮用水中有机优先污染物.中国环境科学,12(1):71-75
    [39] 马培忠,董典同.2003.饮用水深度处理技术探讨.青岛建筑工程学院学报,24(2):33-38.
    [40] 齐军,顾温国,李劲.2003.水中难降解有机物氧化处理技术落后的研究工作现状和发展趋势.环保保护,3:17-19
    [41] 乔铁军,刘晓飞,范洁等.2004.生物活性炭技术的安全评价.中国给水排水,20(2):31-33.
    [42] 裘著革.2004.环境卫生纳米应用技术.北京:化学工业出版社,95-107
    [43] 上水试验方法.1993.日本水道协会,375-377
    [44] 生活饮用水卫生规范.2001.中华人民共和国卫生部卫生法制与监督司,224-226
    [45] 孙德智,于秀娟,冯玉杰编.2003.环境工程中的高级氧化技术.北京:化学工业出版社,212
    [46] 万本太.1999.中国水资源的问题与对策.环境保护,7:30
    [47] 汪光焘.1993.城市供水行业2000年技术进步发展规划.北京:中国建筑工业出版社
    [48] 王莉莉,杨孙楷.1994.O_3-H_2O_2组合法处理染料中间体废水的研究.环境污染与防治,16(5):4-6
    [49] 王琳,王宝贞等.2002.饮用水深度处理技术.北京:化学工业出版社
    [50] 王占生,刘文君编著.1999.微污染水源饮用水处理.北京,中国建筑工业出版社,189-191
    [51] 魏宏斌,彭海清.2001.纳滤膜在优质饮用水生产中的应用.中国给水排水,17(5):71-73
    [52] 卫生部卫生法制与监督司,2001.生活饮用水卫生规范.
    [53] 魏子栋,殷非等.2001.TiO_2光催化剂氧化研究进展.化学通报,35(2):76-80
    [54] 吴慧芳,黄文宜,吴平等.2003.难降解有机废水的高级氧化技术.南京工业大学学报,25(3):83-88
    [55] 吴平谷.韩关根,王惠华等.1999.饮用水中邻苯二甲酸酯类的调查.环境与健康,16(6):338-339
    [56] 吴贤格,徐显干,肖贤明,等.2005.粒状活性炭在改善管道分质供水口感中的应用.给水排水.31(8):37-40
    [57] 奚旦立主编.1998.环境工程手册.环境监测卷.北京:高等教育出版社
    [58] 夏风毅,郑平,周琪,冯孝善.1999.9种邻苯二甲酸酯类化合物的模拟曝气降解研究.第二届环境模拟与污染控制学术研讨论文集
    [59] 肖羽堂,许建华,张东,等.1998.我国水资源与水工业的可持续发展.长江流域资源与环境,8(1):50-52
    [60] 肖羽堂,张晶晶,吴鸣,等.2001.我国水资源污染与饮用水安全性研究.长江流域资源与环境,10(1):51-59
    [61] 邢核,王宜中.2001.多相光催化水处理技术发展过程中反应器研究的现状及发展趋势.环境科学,22(4):123-127
    [62] 徐瑞松.2003.TiO_2薄膜结构特征初探.中山大学学报:自然科学版,42(6):1-4
    [63] 徐涛,肖贤明,刘红英,2004.UV/H_2O_2光氧化降解水中邻二氯苯的研究.环境化学,26(6):636-640
    [64] 薛向东.2001.紫外光助氧化法处理TNT废水研究.给水排水,17(10):53-56
    [65] 薛向东,金奇庭.2001,TiO_2光降解水中污染物的研究进展.中国给水排水,17(6):26-29
    [66] 杨志华,祝万鹏,王利.1994.O_3-H_2O_2组合法处理染料中间体H酸和1-氨基醌醌生产废液的研究.环境科学,15(6):4-6
    [67] 姚晓斌,马颍,姚建年.1992.贵金属对TiO_2悬浮液光照过程中H_2O_2形成的促进作用.感光科学与光化学,2:159-163
    [68] 犹学筠,顾祖维,译.1999.国际癌症研究中心(IARC)最新公布的对人类致癌性总评价表.劳动医学16(2):166-196
    [69] 张海灵,王喜全.2005.气相色谱法测定水中的三氯乙醛.贵州环保科技,11(3):25-26
    [70] 张晖,程江,杨卓如等.1996.O_3/UV法降解水中对硝基苯酚.环境化学,15(4):313-319
    [71] 张绍圆,姜兆春,王菊思.1998.饮用水消毒副产物控制技术研究现状与发展.水处理技术,24(1):7-13
    [72] 张文兵,傅家谟,肖贤明,盛国英.2005.均相和非均相高级氧化技术处理水中有机污染物的研究.中国科学院研究生院学报,22(1):122-127
    [73] 张文兵,肖贤明,傅家谟等.2002.过氧化氢高级氧化技术去除水中有机污染物.中国给水排水,18(3):89-92
    [74] 张亚增,韩琼,齐腾正树.2004.气相色谱法测定饮用水中的三氯乙醛.中国卫生检验,14(4):458
    [75] 张燕,王志奇,陈英旭.2001.微污染水源水的控制技术.环境污染与防治,23(2):69-71
    [76] 张锡辉编著.2001.高等环境化学与微生物学原理及应用.北京:化学工业出版社,47-149
    [77] 赵少婷,杨忠义,张永清.1997.三氯乙醛污水灌溉对小麦幼苗及土壤磷酸酶活性影响的研究.山西农业大 学学报17(1)16-20
    [78] 郑成.1997.膜的污染及其防治.膜科学与技术,12(2):5-14
    [79] 郑道敏,方善伦,王建华.2002.纳米二氧化钛光催化氧化法降解NaCN水溶液的研究.中国粉休技术,8(4):18-22
    [80] 郑旭煦,殷钟意,邱林,杨代贵等.2006.活性炭负载纳米TiO_2光催化降解性能研究.化学研究与应用,18(3):284-287
    [81] 钟理,陈建车.2002.高级氧化处理有机废水技术进展.工业水处理,22(1):1-5
    [82] 周文敏,佛得黔,孙宗光.1990.水中优先控制污染物黑名单.中国环境监测,6(4):1-3
    [83] 朱粹敏,严煦世.1991.紫外-过氧化氢法去除饮用水中三氯甲烷的研究.上海环境科学,10(4):3-5
    [84] 朱惠刚.1987.地面水中有机污染物研究进展.环境卫生学进展,77-92
    [85] 朱振岗.1987.饮用水有机污染物致癌危害性评价进展.环境卫生学进展.北京:人民卫生出版,67-76
    [86] Aetia E.M., Reagan K.M., Lang J.S. 1988. Advanced oxidation process for treating groundwater contaminated with TCE and PCE. Pilot scale evaluations. Journal AWWA, 80:64-74
    [87] Akira Fujishima, Tara N Rao. Donald A trky. 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1:1-21
    [88] Alatriste-Mondrgaon, R Iranpour, B K Ahring, Toxicity of di(2-ethylhexyl) Phthalate on the anaerobic digestion of wastewater sludge. Water Research, 2003, 37:1260-1269
    [89] Anderson M A et al., 1993. Proceedings of the First International Conference on TiO_2 Photocatalytic Purification and Treatment of Water and Air. Elsevier. Amsterkam. New York.
    [90] Anderson W. T., Taylor H. S. 1923.The inhibition of photochemical decomposition of hydrogen peroxide solutions. Ⅱ. J. Am. Chem.Soc., 45:1201-1217
    [91] Arafia J, Dofia_Rodriguez JM, Rend6n E I, et al. 2003. TiO_2 activation by using activated carbon as a support Part Ⅰ_ Surface characterization and decant ability study. Appl Catal B: Environ. 44:161-172
    [92] Arnold S. M., Hickey W. J., Harri R.F. 1995.Degradation of atrazine by Fenton's reagent: condition optimization and product quantification. Environ. Sci.Technol, 29:2083-2090.
    [93] Asim K. De, Sekhar B., Dutta B.K. 1997. Kinetics of phenol photodegradation by hydrogen peroxide and ultraviolet radiation, Ind.Eng. Chem.Res., 36:3607-3612
    [94] Asim K. DE., Basab Chaudhuri, Sekhar Bhattacharjee, Binay K.Dutta. 1999. Estimation of OH radical reaction rate constants for phenol and chlorinated phenol using UV/H_2O_2 photo-oxidation. J.Hazard. Mat.B, 64:91-104
    [95] Bader H. Hoigne J. 1981. Determination of ozone in water by the indigo method. Water Res., 115: 449-456
    [96] Bahneman D W. 1991. Mechanistic studies of water detoxification in huminated TiO_2 suspensions. Solar Energy Materials, 24: 564-583
    [97] Baucer. M.J. and Herrmann, 1997. R. Sci. Total Environ., 208: 49-57
    [98] Beltran F.J.. Encinar J.M., Gonzalez J.F. 1997. Industrial wastewater advanced oxidation. Part 2. Ozone combined with hydrogen peroxide or UV radiation. Wat.Res., 31(10): 2415-2428
    [99] Beltran F.J., Gonzalez M., Gonzalez J.F. 1997. Industrial wastewater advanced oxidation: Part Ⅰ. UV radiate-on in the presence and absence of hydrogen peroxide. Wat.Res., 31: 2405-2414
    [100] Beltran F.J., Rivas J.. Alonso M.A., Acedo B. 1998. A kinetic model for advanced oxidation process of aromatic hydrocarbons in water: application to phenanthreen and nitrobenzene. Ind. Eng. Chem Res., 38: 4189-4199
    [101] Bishop D.F. 1968. Hydrogen peroxide catalytic oxidation of refractory organics in municipal waste-waters IEC. Process Design and Development, 7(2): 110-117
    [102] Bossmann S.H., Oliveros E., Gob, S. 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reaction. J. Phys. Chem. A, 102(28): 5512-5520
    [103] Brown, D., Croudace, C. P., Williams, N.J., et al. 1998. Chemosphere, 6(6): 367-378
    [104] Characklis W.G, 1988. Bacterial regrowth in distribution system. In Proc. AWWA., Denver, Colo.
    [105] Chen D W, Ray A K, 1999. Photocatalytic Kinetics of Phenol and Its Derivatives Over UV Irradiated TiO_2. Applied Catalysis B: Environmental, 23(1): 143-157
    [106] Choi W, Termin A, Hoffmann M R, 1994. Effect of dopant on photoactivity in carbon-doped TiO_2. J. Phys. Chem., 98(51): 13669-13679
    [107] Christensen H., Sehested K., Corftzen H, 1982. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem., 86: 1588-1594
    [108] Clarke N., Knowles G, 1982. High purity water using H_2O_2 and UV radiation. Effluent and Water Treatment Journal, 22: 335-341
    [109] Clasus Hofl, Gerhard sigl, Oliver Specht, et al., 1997. Oxidation degradation of AOC COD by different advanced oxidation processes: A comparative study with two samples of a pharmaceutical waste-water. Wat. Sci. Technol, 35(4): 257-264
    [110] Colonna G.M., Caronna T., Marcandalli B, 1994. Oxidative degradation of dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes and pigments, 41: 211-220
    [111] Colon G, Hidalgo M C, Macias M, 2003. Influence of Residual Carbon on the photocatalytic Activity of TiO_2 C Samples for Phenol Oxidation. Applied Catalysis B: Environmental, 43(2): 163-173
    [112] CRC Handbook of Chemistry and Physics (CRC Handbook). 1985, Edited by R. C. Weast. M.J. Astle, W. H. Bayer. CRC Press, Inc. Boca Raton, Florida.
    [113] Crittenden J.C., Hu S., Hand D.W., Green S.A, 1999. A kinetic model for H_2O_2/UV process in a completely mixed batch reactor. WatRes., 33: 2315-2328
    [114] Drouiche M., Lounici H., Mameri N., Piron D.L., Kbarroune M, 2001. Utilization of factorial experiments for the UV/H_2O_2 process in a batch reactor. Water. S. A., 27(4): 551-557
    [115] Duguet J P, 1990. Application of combined ozone-hydrogen peroxide for the removal of aromatic compounds from a groundwater. Ozone Sci. & Eng., 12(3): 281
    [116] Duguet J.P., Brodard E., Dussert B, Mallevialle J, 1985. Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide. Ozone: Sci. Eng., 7: 241-258
    [117] EPA/540/AR-93/501, 1993. Perox-pure~(TM) Chemical oxidation technology peroxidation systems Inc.: Application analysis report. U.S. Environmental Protection Agency, Office of Reach and Development, Washington, DC.
    [118] Fernandez G, Lassaletta, Jimenez V M, et al., 1995. Preparation and characterization of TiO_2 photocatalysis support ed on various rigid supports (glass, quartz and stainless steel)-comparative studies of photocatalytic activity in water purification. Appl Carol B: Environmental, 7: 49-63
    [119] Fenton H.J.H, 1894. Oxidation of tartaric acid in the presence of iron. Chem. Sco., 65: 899-910
    [120] Flogstad, H.& Odegaard, et al., 1985. Treatment of Humic Waters by Ozone. Ozone Sci. Engrg,
    [121] Fu H X, Karpel N, Legube B, et al., 2000. Catalytic Ozonation of chlorinated carboxylic acids with Ru/CeO_2-TiO_2 catalyst in the aqueous system. New J. Chem., 26: 1662-1666
    [122] Fujishim A, Ran T N, Trky D A, 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2: 11-21
    [123] Glaze W.H., Beltran F., Tuhkaned T. and Kang J.W, 1992. Chemical models of advanced oxidation processes. Water Poll. Res. J. Canda, 27(1): 23-42
    [124] Glaze W H., Kang J W., Chapin D H, 1987. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. & Eng., 9(4): 335
    [125] Glaze W.H. and Kang J.W, 1988. Advanced oxidation process for treating groundwater contaminated with TCE and PCE: laboratory studies. AWWA, 27: 57-63
    [126] Glaze W.H., Kang J.W, 1989. Advanced oxidation process. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in the semibatch reactor. Ind. Eng. Chem. Res., 28: 1573-1580
    [127] Glaze W.H. and Kang J.W, 1989. Advanced oxidation process. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res., 28: 1581-1587
    [128] Gurol M.D., Ravikumar J, 1994. Chemical oxidation of chlorination organics by hydrogen peroxide in the presence of sand. Environ. Sci. Technol., 28: 394-400
    [129] Gurol M D., Vatistas R, 1987. Oxidation of phenolic compounds by ozone and ozone+UV radiation: a comparative study. War. Res., 21 (3): 895
    [130] Haag W.R., Yao C.C, 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol., 26: 1005-1013
    [131] Hardwick T J, 1957. The free radical mechanism in the reactions of hydrogen peroxide. Can. J. Chem., 35(3): 428
    [132] Harada H et al., 1989. Semiconductor Effect on the Selective Photocatalytic Reaction of α-hydroxycarboxykic Acid. J. Phys, Chem., 93: 1542-1548
    [133] Harris C A, Henttu P, Parker M G, et al., 1997. The estrogenic activity of phthalate esters in vitro. Environ health Perspective, 105: 802-811
    [134] Hermann J_M, Laine J, Matos J, 2001. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J Catal, 200: 10-20
    [135] Hermann J_M, Matos J, Disdier J, et al., 1999. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titanium and activated carbon in aqueous suspension. Catal Today, 54: 255-265
    [136] Hoffman M R, Martin S T, Choi W Y, 1995. Environment Application of Semiconductor Photoeatalysis. Chem. Rev, 95: 69-96
    [137] Hoigne J., Bader H, 1976. The role of hydroxyl radical reaction in ozonation processes in aqueous solutions. Water Res., 10: 377-383
    [138] Horikoshi, Ohta M., Hidaka H., Zhao J., Serone N, 1997. Photocatalyzed oxidation of water-soluble polyeth-yeneglycol at TiO_2/H_2O interfaces. Recent Res. Devel. In Polymer Science, 1: 149
    [139] Huang Y.H., Lee S.N, 1999. Treatment of high strength hexamine-containing wastewater by Electro-Fenton method. War. Res., 33: 751-759
    [140] Hunt J.P., Tauble H, 1952. The photochemical decomposition of hydrogen peroxide quantum yields, tracer and fractionation effects. J. Am. Chem. Soc., 74: 5999-6002
    [141] J.K.Edzwald. 1993. Coagulation in drinking water treatment: particles, organics and coagulations. Wat. Sci. Tech., 27(11)
    [142] Juan Matos, Jorge-Marie Herrmann, et al., 1998. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 18: 281-291
    [143] Jurg Hoigne, 1997. Inter-calibration of OH radical sources and water quality parameters. Wat. Sci. Technol., 35(1): 1-8
    [144] Kamat P V, 1993. Photochemistry on nonreactive and reactive (semiconductor) surface. Chem. Rev., (93): 267-300
    [145] Kim D.H., Anderson MA, 1994. Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ. Sci. Technol., 28(3): 479-483
    [146] K. Tanaka, T. Hisanage and K. Hards, J, 1989. Photochemistry and Photobiology, A: Chemistry, 48, 155-159
    [147] Kuhn H. J., Braslavsky S. E., Schmidt R. 1989. Chemical Actinometry. Pure & Appl. Chem., 61: 187-210.
    [148] Kuo W.G, 1992. Decolorizing wastewater with Fenton reagent. Wat. Res., 26: 881-887
    [149] Kuo C H., Zhong L., Zappi M E., et al., 1999. Kinetics and mechanism of the reaction between ozone and hydrogen peroxide in aqueous solution. The Canadian J. of Chem. Eng., 7: 473-480
    [150] Kusakabe K, 1990. Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with UV radiation. Water Res., 24(6): 781
    [151] K Venkata Subba Ran, A Rachel, M Subrahmanyam, et al., 2003. Immobilization of TiO_2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Applied Catalysis B: Environmental, 46: 77-85
    [152] Langlais B., Rechhow D. A., Brink D. R, 1991. Ozone in water treatment applications and engineering. Chelsea, MI: Lewis publishers, 16-19
    [153] Ledakowicz Stanislaw, Monika Gonera, 1999. Optimization of oxidants does for combined chemical and biological treatment of textile wastewater. War. Res., 33: 251-256
    [154] Lee B.N., Liaw W.D., Lou J.C, 1996. Photocatalytic decolorization of methylene blue in aqueous TiO_2 suspension. Enviom. Technol., 17(2): 1371-1381
    [155] Legrini O., Oliveros E., Braun A.M, 1993. Photochemical processes for water treatment. Chem. Rev., 93: 671-698
    [156] Leung S.W., Bell H., Burkett W.A, 1993. Decomposition of perchloroethylene and polychlorinated biphenyls with Fenton's reagent. ACS Symp Ser, 51(8): 343
    [157] Liao C.H., Gurol M.D, 1995. Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environ. Sci. Technol., 29: 3007-3014
    [158] Lin S.H., Chang C.C, 2000. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Res., 34: 4243-4249
    [159] Lin Shu-Sung., Gurol M.D, 1998. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism and implications. Environ. Sci. Technol., 32: 1417-1423
    [160] Lipczynska-kochany E, 1992. Degradation of nitrobenzene and nitrophenols in homogeneous aqueous solution. Wat. Pollut. Res. J. Can., 27: 97-122
    [161] Lipczynska-Kochany E, 1993. Hydrogen peroxide mediated photodegradation of phenol as studied by a flash photocatalysis HPLC technique. Environ Pollut, 61: 147-152
    [162] Lueching F., Koeser H., Jank M., Titter A, 1998. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorphenol with hydrogen peroxide in aqueous solution. Wat. Res., 32: 2607-2614
    [163] Lu M. C., Chen J. N., Chang C. P, 1999. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst. J. Hazard. Mat., 65: 277-288
    [164] Marta Mrowetz, Carlo Pirola, Elena Selli, 2003. Degradation of organic water pollutants through sonophoto-catalysis in the presence of TiO_2. Ultrasonics Sonochemistry, 10: 247-254
    [165] Masten S j., Bulter J N, 1986. Ozone as oxidant for phenol degradation in aqueous solution. Ozone Sci & Eng., 8(4): 339
    [166] Matos J. Laine J, Herrmann M J, 2001. Effect of the type of active-carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. Journal of Catalysis, 200(1): 10-20
    [167] Matthews R W, 1988. Kinetic of photocatalytic oxidation of organic solutes over titanium dioxide. J Catal., 111: 264-272
    [168] Mattews R. W, 1990. Photooxidation of organic material in aqueous suspension pf titanium dioxide. Water Res., 24: 653-659
    [169] Matthews R W, 1991. Photooxidation degradation of colored organics in water using supported catalysis TiO_2 on sand. Wat. Res., 25(10): 1169-1176
    [170] Matthews R W. Mcevoy S R, 1992. Destruction of phenol in water with sun, sand and photocatalysis. Solar Energy, 49(6): 507-513
    [171] Matthews R W, 1995, Kinetic of photocatalytic oxidation of organic solutes over titanium dioxide. Chem. Rev, 95: 69-96
    [172] Mehmet H., Resat A, 1996. Photooxidation of sore mono-, di, and trichlorophenol in aqueous solution by, hydrogen peroxide/UV combinations. Chem. Technol. Biotechnol., 67: 221-226
    [173] Meijers R. T, Oderwald-Muller E. J, Nuhn P. A.N. M, Kruithof J.C, 1995. Degradation of pesticides by ozonation and advanced oxidation. Ozone Sci. Engng., 17: 673-686
    [174] Meyerstein D., Treinin A, 1961. Absorption spectra of NO_3~- in solution. Grains. Faraday Soc., 57: 2104-2106
    [175] Nadtochenko V., Kiwi J, 1998. Primary photochemical reactions in the photo-Fenton system with ferric chloride. 1. A case study ofxylidine oxidation as a model compound. Enviorn. Sci. Technol., 32: 3273-3281
    [176] Nadtochenko V., Kiwi J, 1998. Primary photochemical reactions in the photo-Fcnton system with ferric chloride. 2. Implications of the precursors formed in the dark. Enviorn. Sci. Technol., 32: 3281-3289
    [177] Nair J, Nair P, Mizukami F, et al., 1999. Microstructure and phase transformation behavior of doped nanostructure titania. Mater. RES, Bull., 34(8): 1275-1290
    [178] Naomi Lstock, Julie peller, et al., 2003. Combinative sonolysis and photocatalysis for textile dye degradation. Environmental science & Technology, 34 (49): 1747-1750.
    [179] Nazir M, Takasaki J, Kumazawa H, 2003. Photocatalytic degradation of gaseous ammonia and trichloro-ethylene over TiO_2 ultra fine powders deposited on activated carbon particles. Chem. Eng Comm. 190: 322-333
    [180] Okabe W.H. 1987. Ozone Sci. Eng., 9(6): 335
    [181] Ollis D F, E Pelizzetti, N Serpone, 1991. Destruction of water contaminants. Environ. Sci. Technol., 25(9): 1523-1529
    [182] Peyton G.R., Glaze W.H, 1987. Mechanism of photolytic ozonation. Environmental Aquatic Systems. Acs Symposium.
    [183] Peyton G. R, 1990. Guidelines for the selection of a chemical model for advanced oxidation processes. A symposium on advanced oxidation processes for the treatment of contaminated water and air (proceedings), June 4 and 5, Toronto.
    [184] Preis Sergei, Marina Krichevskaya, Anna Kharchenko, 1997. Photocatalytic oxidation of aromatic amino compounds in abandoned military bases. War Sci Technol, 35(4): 265-272
    [185] Prengle H.W, 1983. Experimental rate constant and reactor consideration for the destruction of micro-pollutants and trichloromethane precursors by ozone with UV radiations. Enviorn. Sci. Technol., 17: 743-749
    [186] Pruden AL et al., 1983. Degradation of Chloroform by Photoassisted Heterogeneous Catalysis in Dilute Aqueous Suspension of Titanium Dioxide. E. S. T., 17: 628-631
    [187] Sedalk D.L., Warren A. W, 1991. Oxidation of chlorobenzene with Fenton's reagent. Environ. Sci. Technol., 25(4): 777-782
    [188] Shchukin D, Poznyak S, Kulak A, et al., 2004. TiO_2-In_2O_3 photocatalysts: preparation, character-izations and activity for 2-chlorophenol degradation in water. Photoch. Photobiolo. A, 162(2-3): 423-430
    [189] Sheng H. Lin, Chi, M. Lin and Hong G. Leu, 1999. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. War. Res., 33: 1735-1741
    [190] Silva C G, Faria J L, 2003. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. Photochem. Photobiol A: Chem, 155: 133-143
    [191] Staehelin J., Hoigne J, 1982. Decomposition of ozone in water: rate of initiation of hydroxide ions and hydrogen peroxide. Environ. Sci. Technol., 16: 676-684
    [192] Staples. C.A., Peterson D.R, Parkerton T.F.et al., 1997. T. Chemosphere, 35 (4): 667-749
    [193] Symons J.M., Worley K.L, 1995. An advanced oxidation process for DBP control. J.AWWA., 11: 66-75.
    [194] Tang w. Z.. Tassos S, 1997. Oxidation kinetics and mechanisms of trihalomethanes by Fenton reagent. Wat. Res., 31: 1117-1125
    [195] Tonmoto T, Ito S, Kuwabata S, et al., 1996. Effects of adsorbents used as supports for titanium dioxide loading on photo-catalytic degradation of propyzamide. Environ. Sci. Technol., 30: 1275
    [196] Topudurtri K.V., Lewis N.M., Hirsh S.R., 1993. The application of UV oxidation technologies to treat contaminated groundwater. Environ. Prog,, 8: 54-60
    [197] Torimoto T, Okawa Y, Takeda N, et al., 1997. Effect of activated carbon content in TiO_(2-) loaded activated carbon on photodrgradation behaviors of dichloromethane. J Photochem Photobiol A: Chem, 103(1-2): 153-157
    [198] Toyoda M, Nanbu Y, Kito T, et al., 2003. Preparation and performance of anatase-loaded porous carbons for water purification. Desalination, 159: 273-282
    [199] Trillas M, Peral J, Domenech X, 1996. Photocatalyzed Degradation of Phenol, 2,4-Dichlorophenol, Phenoxy-acetic Acid and 2,4-Dichlorphenoxyacetic Acid Over Supported TiO_2 in flow System. Chem. Technol. Biotechnol., 67(3): 237-242
    [200] Tunesi S, Anderson M A, 1991. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended membranes. Phy Chem., 95: 3399-3405
    [201] Vesely M, Ceppan M, Lapcik L, 1991. Photocatalytic degradation of hydroxyethylcelluose in aqueous Pt-TiO_2 suspension. Photochem Photobiol A: Chem, 61: 399-406
    [202] Vinodgopal K, Peller Tulie, Oksana Markogon, et al., 1998. Ultrasonic mineralization of a reactive textile azo dyes Remazol black B. Water Research, 32(12): 3646-3650
    [203] Von Sonntag C, 1993. Chemical principles behind the use of UV radiation and/or oxidation (ozone and hydrogen peroxide) in water pollution control. J. Wat. SRT-Aqua, 42, 201-213
    [204] Walling C, 1974. The ferric ion catalyzed decomposition of hydrogen peroxide in perchloric acid solution. Int. J. Chem. Kinet., 6(4): 507-516
    [205] Wang G.S., Liao C.H., Wu F.J, 2001. Photodegradation of humic acids in the presence of hydrogen peroxide. Chemosphere, 42: 379-387
    [206] Warneek P., Wurzinger C, 1988. Product quantum yields for the 305nm photodecomposition of NO_3~- in aqueous solution. J Phys. Chem., 92, 6278-6283
    [207] Weiss J, 1935. Investigation on the radical H_2O_2 in solution. Trans. Faraday Soc., 31 (3): 668-681
    [208] Wenfeng Shangguan. Akira Yoshida, Mingxia Chen, 2003. Physicochemical properties and photocatalytic hydrogen evolution of TiO_2 films prepared by sol-gel process. Solar Energy Materials & Solar Cells, 80: 433-441
    [209] Wenzel A., Gahr A., Niessner R, 1999. TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Wat. Res., 33: 937-946
    [210] WHO, 1992. Diethyhexyl phthalate, Geneva: World Health Organization (environmental Heath Criteria 131)
    [212] Xie Y, Reckhow D A, 1993. Identification of trihaloacetaldehydes in ozonated and chlorinated fulvic acid solutions. Analyst, 118(1): 71-72
    [213] Xu Y M, Langlord C H, 1995. Enhanced photoactivity of a titanium(Ⅳ) oxide supported on ZSMS and zeolite A at low coverage. Phys. Chem., 99: 11501
    [214] Ying Ma, Jian-bin Qiu, Ya -an Cao, et al., 2001. Photocatalytic activity of TiO_2 films grown on different substrates. Chemosphere, 44: 1087-1092
    [215] Young Ku, Chi-Ming Ma, Yung-Shuen Shen, 2001. Decomposition of gaseous trichloroethylene in a photoreactor with TiO_2-coated nonwoven fiber textile. Applied Catalysis B: Environmental, 34: 181-190
    [216] Yuan Z H, Jia J H, Zhang L D, 2001. Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO_2 for phenol degradation. Mater.Chem.Phys., 73(4): 323-326
    [217] Zeep R.G, 1992. Hydroxyl radical formation in aqueous reactions (pH=3-8) of iron(Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environ.Sci.Technol., 26: 313-319
    [218] Zeep R.G., Wolfe N. I, 1987. Abiotic transformation of organic chemicals at the particle-water interface. In: Stumm, W. (Ed.), Aquatic Surface Chemistry. Wiley, New York, 423-456
    [219] Zeff, et al., U.S. 1988. Patent 4.
    [220] Zeng F, Fu J M, Sheng G Y, 1999. Study progress on biodegradation of PAEs organic pollutants. Prog. Environ. Sci, 7(4): 1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700