微孔曝气最优气泡群理论及其在复氧工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理过程的大部分能耗都集中于好氧处理过程中,提高曝气充氧系统的效率成为污水厂运行管理的关键。现行的曝气法有:鼓风曝气、机械曝气和两者结合的鼓风—机械曝气。鼓风曝气系统中的微孔曝气系统因其曝气效率相对较高,适应性较强,应用更为广泛。但其氧的利用率和动力效率的绝对数值实际并不高,其根本原因在于目前微孔曝气的研究和应用存在着以下的问题:(1)经典的气液传质理论认为曝气传质扩散的速度主要受气液界面相际传质的影响,忽略了气泡的搅动扩散对传质效果的贡献和对DO均匀分布的重要作用。(2)经典理论认为在曝气传质过程中应尽可能地增大气液接触比表面积,因此主张在相同条件下气泡尺寸越小越好,但这与大部分的实测结果不符。(3)曝气传质模型多偏重于单一气泡尺寸的研究,而忽视了气泡大小分布对于曝气传质过程的重要影响,(4)经典传质模型偏于理论性而实用性不强、传统的评价指标计算较复杂且不便直接用于曝气系统运行和操作。
     针对目前研究中存在的这些问题,本研究提出了新的理论模型——微孔曝气最优气泡群理论模型。该理论体系架构主要由最优气泡群理论模型基本观点、最优气泡群数学模型、主要应用指标等组成。其基本观点如下:(1)曝气过程主要包括气液界面相际传质和气泡搅动扩散两个阶段,这两个阶段对水体曝气充氧都有贡献但方式不同,相际传质是将氧从空气泡中传入水体,而搅动扩散是使已传入水体中的溶解氧分布于整个水体中。(2)在相同曝气条件及相同气泡数目的条件下,气泡尺寸并非越大或越小曝气效果越好,而是存在着最优气泡平均直径。(3)在曝气量、曝气池的尺寸和曝气器淹没水深一定时,存在着使曝气效果最佳的最优初始气泡群分布。根据该基本理论,本研究建立了以下相关数学模型,其主要包括:(1)曝气传质有效能耗总利用率最高的最优气泡平均直径数学模型;(2)曝气能谱图与等有效能耗曲面;(3)使曝气过程中有效能耗总利用率最大的最优初始气泡群。基于该理论提出了直观简便的微孔曝气系统性能新指标——最优气水比参数。
     为验证微孔曝气最优气泡群理论模型体系的合理性,进行了两方面的试验:模型小试验证和复氧中试应用检验。本研究首次将雾化曝气管作为布气扩散装置应用于清水和复氧曝气中。试验结果表明:(1)在相同试验条件下,随着曝气气泡平均直径的增加,相际传质能量利用率逐渐减小而紊动扩散能量利用率逐渐增大,而曝气传质有效能耗总利用率是先上升后下降,其峰值即为最大的有效能耗总利用率;(2)根据试验结果所建立的曝气能谱图和等有效能耗曲面图表明曝气池内存在着有效能耗总利用率最高的高效曝气气泡分布段,不同曝气过程虽其初始气泡的输入能量不同,但其传质的有效能耗却有可能相同,通过控制曝气系统工况,可实现“低气量、高效能”的优化运行;(3)所建立的最优气水比模型与实测值符合得较好,最优气水比作为新的曝气系统性能评价指标,评价结果与常规指标一致,但其更直观,应用更简便;(4)在水槽复氧中试试验中,相同条件下雾化曝气管较其它的曝气设备复气效果更好,曝气后水体的DO下降较小,能在较更长的距离保持DO达标,因此,雾化曝气管作为一个新型的高效曝气扩散装置适用于河流复氧;(5)在水槽复氧中试试验中,雾化曝气管的最优气泡群模型较其它的气泡群复氧效果更好。另外在相同管长和水槽流量条件下,并非初始气泡尺寸越大或越小复氧效果越好,也存在着最优的曝气气泡平均尺寸,这为河流曝气复氧工程设计提供了重要的依据。
Most of energy loss in sewage treatments can owe to aeration, therefore how to improve the efficiency of aeration system is a key point of management and operation of sewage plants. Nowadays common aeration methods can be classified such three types: blow aeration, mechanical aeration, the aeration integrate these two types of aeration. Due to its oxygenation performances and adaptability to varying oxygen requirements, blow aeration, especially fine bubble diffused aeration systems has been widely developed in application. However in fact, the values of its oxygen utilization rate and power efficiency are not high and its energy loss is really high. In addition, the research and application of the aeration systems has such following problems: (1) models integrating mass transfer between liquid-gas phase with turbulent diffusion of dissolved oxygen are not available; (2) classic thoery thinks the better effect of aeration will be gained if the interface aera between water and air bubble increase i.e. the size of air bubble is lessened, but this option doesn’t match the measurement of much research. (3)the conventional aeration transfer models lay particular stress on the size of fine bubble, and ignore the effect of bubble distribution of the aeration. (4) classical mass transfer models focus more on theoretic and less on application, laying particular stress on microcosmic or sub-microcosmic but care little about macroscopic, conventional characteristic criteria of blow aeration are considerable complex and is not convenient for operation and manipulation of the aeration systems.
     According to the drawbacks of the fine, theory of Optimal Bubble Group for fine bubble aeration was raised. Its construction was composed of such component: basic viewpoints, basic model and main application index. Its basic viewpoints are: (1) mass transfer and turbulent diffusion are both important process in the aeration. Such two process both contributes the aeration, while mass transfer shift the oxygen in the gas bubble enter into the water and turbulent diffusion make the entering DO completely distributes the whole water body ;(2) In the given aeration condition and the number of gas bubbles, there existing optimal average gas bubble diameter; (3) when the gas volume (Qg), the size of the aeration tank and water depth is fix, there existing initial optimal bubble group. Based on these viewpoints, the follow corresponding was developed: (1) in the given aeration condition (the gas volume (Qg), the size of the aeration tank and water depth is fix), the model of optimal average gas bubble diameter; (2) equal effective energy curve space and aeration energy curve (3) the model of average gas bubble diameter (4) To solve the problem of application to engineering, based on the theory of Optimal Gas Bubble Group (OGBG) , the model of optimal gas-water ratio used as a characteristic criterion which is more convenient , easy and applicable for than other conventional index.
     To validate the model of optimal bubble group, such two part of experiments are done: model experiment and aeration. Fog aeration pipeline used as gas diffused equipment was firstly introduced into aeration of clean water and aeration engineering in this study. The experimental results in this study shows: (1) In the same experimental condition (same air flow rate and same pipeline length), with the average diameter of gas bubble increment, the usage rates of mass transfer between liquid-gas phase gradually decrease in the same time the usage rates of turbulent diffusion gradually increase, but the total usage rate will rise first but then descend, its maximum value is the highest usage rate in aeration (ηT M) . When the air flow rate is same and water height is different,ηT M is not same too, and the maximum is the most optimal value and the corresponding water height is named as optimal water height on that air flow rate. Similarly, optimal air flow rate exist in the same water height.(2) Energy spectral curve surface (ESCS) indicates that although the energy input into the aeration system is different, but the really useful energy may be same. Comprehending ESCS can make total useful energy of different initial energy aeration system move smoothly on ESCS as much as possible, and this will be much helpful to high effective and low energy operation of the aeration system. (3) To verify the validity of air-water ratio, this paper compares the performance of three fine bubble diffused aeration systems evaluated by the ratio with those by SSOTE , N Tand K Lα20, and the process of the calculation of their design and operation based on air-water ratio with those based on the three criteria. The results show that their evaluations are consistent with each other and the process of the calculation based on air-water ratio is more convenient and direct than that based on the other three criteria. (4) According to reaeration experiments on the model flume in Foshan River, compared with other normal bubble group (NBG), the aeration effect of OGBG are much better , and its DO can be sustained for much longer and drop less along the stream distance. These will be propitious to make DO meet the standards in much longer distance. (5) Maximum optimal air flow rate or maximum OGBG in different flow rate have been determined for reaeration for model flume. This proves that the effect of reaeration will not be better when air flow rate is higher or the initial gas bubble size is smaller. This finding will be important reference to reaeration engineering.
引文
[1]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,1991.
    [2]张自杰.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [3]顾夏声.废水生物处理数学模式.北京:清华大学出版社,1993:28~41.
    [4] W.G.Whitman. The Two-Film Theory of Absorption [J]. Chem.Met.Eng, 1923, 29(2):147.
    [5] Mogens Henze. Trends in advanced wastewater treatment.Water Science And Technology [J].1997,(35),10:1-4.
    [6] P.V.Danckwerts. Singnificance of Liquid-Film Coefficients in Gas Absorption [J]. Ind.Eng.Chem,1951,43(1):1460
    [7] Mounir Bouaifi, Gilles Hebrard, Dominique Bastoul, Michel Roustan. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns, Chemical Engineering and Processing, 2 001, 40(4):97-111.
    [8] Hiromitsu Kojima, Jun Swai and Hideyuki Suzuki. Effect of pressure on volumetric mass transfer coefficient and gas hold up in bubble column, Chemical Engineering Science, 1997, 52(3) :4111-4116.
    [9] P.H.M.R.Cramers, A.A.C.M.Beenackers. Influence of the ejector configuration scale and the gas density on the mass transfer characteristics of gas -liquid ejectors [J]. Chemical Engineering Journal, 2001, 82(6):131-141.
    [10] R.M.Griffith. Mass transfer from drops and bubbles [J]. Chem Engng Sci, 1960, 12(2):198-205.
    [11] J.H.Lenonard and G Houghton. Mass transfer and velocity of rise phenomena for single bubbles [J]. Chem Engng Sci,19 63,18:133-142
    [12] P.H.Calderbank and A.C. Lochiel. Mass transfer coefficients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water[J].Chem EngngSci,1964,19(4):235-255
    [13] T.L.Merrill. Combined heat and mass transfer during bubble absorption in binary solutions [J]. International Journal of Heat and Mass Transfer, 1997, 40(3):589-603.
    [14] T.L.Merrill. Thermally controlled bubble collapse in binary solutions [J]. International Journal of Heat and Mass Transfer, 2000, 43(2):3287-3298.
    [15] M.D.Staicovici. A phenomenological theory of polycomponent interactions in non-ideal mixtures application to NH3/H2O and other working pairs [J].International Journal of Refrigeration, 2000, 23(3): 153-167.
    [16] F.B.Campos,P.L.C.Lage.Heat and mass transfer modeling during the formation and ascension of superheated bubbles[J].International Journal of Heat and Mass Transfer, 2000, 43(3):2883-2894
    [17] Andrej stergarsek, Robert Kocjancic and Marko gerbec. Experiment determination and modeling of the absorption of SO2 into a single drop based on PH measurement [J]. Chemical Engineering Science,1996, l51(23):5081-5089.
    [18] K.Shimizu,S.Takada,K.Minekawa,Y.Kawase. Phenomenological model for bubble column reactors: Prediction of gas h old-up sand volumetric mass transfer coefficients[J].Chemical Engineering Journal,2001,78:21-28
    [19] J.B.Joshi. Computational flow modeling and design of bubble column reactors [J]. Chemical Engineering Science, 2001,56 (5):3067-3075.
    [20]羊寿生.曝气理论与实践[M].北京:中国建筑工业出版社,1982。
    [21]盛义平,乔长锁.鼓泡曝光传质特性的研究[J].燕山大学学报,2000,24(3):189-195.
    [22]马友光,余国琮.运动气泡在多组分液相中传质的研究[J].天津大学学报,1996, 29(6):847-852.
    [23]王维德,涂国琼.传质系数与浓度的关系[J].化工学报,2002,53(5):517-521.
    [24]沈慧英,陈少平.两种气体同时化学吸收的传质反应动力学模型及求解[J].计算机与应用化学,2001,18(3):268-271.
    [25] Bird, R.B. Theory of Diffusion [J]. Advances in Chemical Engineering, 1956, l (3):155.
    [26] J.Dudley. Mass transfer in bubble columns: a comparison of correlations [J]. WaterResearch, 1995, 29(6):1129–1138.
    [27]余常昭.环境流体动力学导论[M].北京:清华大学出版社, 1992.
    [28]黄克中.环境水力学[M].中山:中山大学出版社,1997.
    [29] Kuipers J A M ,van Swaaij W P M. Application of computational fluid dynamics to chemical reaction engineering[J]. Review in Chemical Engineering, 1997, 13:1-118.
    [30] Joshi J B, Vitankar V S. Coherent flow structures in bubble column reactors [J]. Chemical Engineering Science, 2002, 57(3):3157-3183.
    [31] Webb C, Que F, Senior P R, Dynamic simulation of gas-liquid dispersion behavior in a 2-D bubble column using a graphics mini-supercomputer[J]. Chemical Engineering Science, 1992, 47(3):3305-3321.
    [32] PanY , Dudukovic M P,Chang M ,Numerical investigation of gas-driven flow in 2D bubble columns[J].A.I.Ch.E.Journal,2000,46(4):434-449
    [33] Ishii M. Thermo-fluid dynamic theory of two-phase flow [M]. Eyrolles Pub, Paris, 1975.
    [34] Lahey R T, The analysis of phase separation and phase distribution phenomena using two-fluid model [J]. Advances in Nuclear Engineering Design, 1990, 122(6): 17-40
    [35] Peter Spicka, Madalena M Dias. Gas-liquid flow in a 2D column: Comparison between experimental data and CFD modeling [J].Chemical Engineering Science, 2001, 56(5):6367-6383.
    [36] Ranade V V, Computational fluid dynamics for reactor engineering[J].Reviews in Chemical Engineering, 1995, 11(6):229-289
    [37] SokolichinA, Eigenberger G. Gas-liquid flow in bubble columns and loop reactor: part I. Detailed modeling and numerical simulation [J]. Chemical Engineering Science, 1994, 49(6):5735-5746.
    [38] Grevskott S, Sannas B H, Dudukovic M P, et al, Liquid circulation bubble size distributions and solids movement in two-and three-phase bubble columns[J]. Chemical Engineering Science, 1996, 51(3):1703-1713.
    [39] Mitra-Majumdar D , Farouk B ,Shah Y T ,Hydrodynamic modeling of three-phaseflows through a vertical column[J]. Chemical Engineering Science,1997,52(7):4485-4497.
    [40] Wen J P, Huang L, Modeling and simulation of gas-liquid-solid three-phase turbulent fl o w based on E/E/L model [J]. Journal of Chemical Industry and Engineering (China), 2001, 52(5):343-348.
    [41] Fan L S ,Yang G G .,Lee D J,et al. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions [J]. Chemical Engineering Science, 1999, 54(6):4681-4709.
    [42] Ludovic Raynal, Isabelle Harte. Studies of gas-liquid flow through reactors internals using VOF simulations [J].Chemical Engineering Science, 2001, 56(5):6385-6391.
    [43] Tomiyama A ,Sou A ,Sakaguchi T. Numerical analysis of a single bubble by VOF method [J]. JSME Int.J. Series B, 1993, 36(6):51-56
    [44] Lin T J, Reese J, Hong T, Fan L S, Quantitative analysis and computation of two–dimensional bubble columns [J]. A.I.Ch.E.Journal, 1996, 42(5):301-318.
    [45] Zhang J P, Discrete phase simulation of gas-liquid-solid fluidization systems: single bubble rising behavior [J]. Powder Technology, 2000, 113(3):310—326.
    [46] Jayanta Sanyal, Sergio Vasquez. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors [J]. Chemical Engineering Science, 1999, 54(4):5071-5083.
    [47] Chapman S ,Cowling T G ,The Mathematical Theory of Non-Uniform Cases,3rd edition, Cambridge, England, Cambridge UniversityPress,1990.
    [48] Torvik R, Svendsen H F, Modelling of slurry reactors[J].Chemical Engineering Science, 1990, 45(3):2325-2332
    [49] Grienberger J, Hofmann H, Investigations and modelling of bubble columns [J]. Chemical Engineering Science, 1992, 47(3):2215-2220
    [50] Svendsen H F , Jakobsen H A ,Torvik R. Local flow structures in internal loop and bubble column reactors[J]. Chemical Engineering Science,1992,47(4):3299-3300.
    [51] Hilimer G,Weismantel L, Hofmann H, Investigations and modelling of slurry bubble columns[J].Chemical Engineering Science,1994,49(2):837-843.
    [52] Reese J, Fan L-s, Transient flow structure in the entrance region of a bubble column using particle image velocimetry[J]. Chemical Engineering Science, 1994, 49(4):5623-5636.
    [53] Launder B E, Spalding D B, The numerical computation of turbulent flows [J]. Applied Mechanics and E ngineering, 1973, 42(4):269-289.
    [54] Ranade V V ,Modeling of turbulent flow in bubble column reactor[J]. Transactions of the Institution of Chemical Engineers, 1997, 75(1):14-23.
    [55] Gibson M M, Launder B E. Ground effects on pressure fluctuations in the atmospheric boundary layer [J]. J. Fluid Mech.,1978,86(3):491-511.
    [56] Fu S. L aunderB E, Leschziner M A. Modeling strongly swirling recirculating jet flow with Reynolds-stress transport closures. In: Sixth Symposium on Turbulent Shear Flows, Toulouse, France, 1987.
    [57] Launder B E, Second-moment closure and its use in modeling turbulent industrial flows [J]. International Journal for Numerical Methods in Fluids,1989,9(3) :96 3 9 85
    [58] Shi Xq.A survey of direct numerical simulation of turbulence[J]. Journal of Hydrodynamics, 1992, 33(3):103-109.
    [59] Laurien E.The numerical simulation of three-dimensional two-phase flows as a tool for light-water reactor design and safety analysis. Process of the Annual Meeting on Nuclear Technology, 2002:45-50.
    [60] Deen N q. Large eddy simulation of the Gas-Liquid flow in a square cross- sectioned bubble column [J]. Chemical Engineering Science, 2001, 56(5):6341-6349.
    [61] Isabelle Calmet, Jacques Magnaudet. High-Schmidt number mass transfer through turbulent gas-liquid interfaces [J]. International Journal of Heat and Fluid Flow ,1 99 8, 1 9:52 2532
    [62] Zang Y, Street R L, Kossef J R, A dynamic mixed subgrid scale model and its application to turbulent recirculation flows [J]. Phys. Fluids A, 1993, 34(5):3186-3196
    [63] Blazej M, Cartland Glover G M, Generalis S C Gas-liquid simulation of an air liftbubble column reactor[J].Chemical Engineering and Processing, 2004,43 (2):137- 144.
    [64]钱易.废水生物处理的发展和前景.北京:清华大学出版社,1998.
    [65] Yang M, Zhou L X, Large-eddy simulation of bubble-liquid confined jets [J]. Chinese J .Chem. Eng,2002, 10(4):381-384.
    [66] Stewart H B, Wendrof B, Two-phase flow: Models and methods [J]. Journal of Computational physics, 1984, 56(3):363-409.
    [67] Jakobsen H A, Sannaes B H. Modelling of vertical bubble-driven flows[J]. Industrial and Engineering Chemistry Research, 1997, 36(2):4052—4074.
    [68] Mudde R F.Role of coherent structures on Reynolds stresses in a 2-D bubble column . A.I.Ch.E.Journal, 1997, 43 (4):913-926.
    [69]郭瑾珑,程文,周孝德.小气泡扩散曝气氧传质速率研究.西安理工大学学报,1999,15(4):86-90
    [70] Chin-Tien Yang,Jehng-Jung Kao.An expert system for selecting and sequencing wastewater treatment processes [J].Water Science and Technology, 1996, 34(3):347-353.
    [71]李尔,范跃华.微孔曝气最优气泡群的确定方法研究.水处理技术.(已接受).
    [72]严煦世,范瑾初主编.给水工程(第四版)[M].北京:中国建筑工业出版社,2000
    [73]王高雄,周之铭.常微分方程(第二版)[M],北京:高等教育出版社,2000.
    [74] M.A.Senzia,A.W.Mayo etc.Modelling nitrogen transformation and removal in primary facultative ponds [J].Ecological Modelling,2002,154(3): 207-215
    [75]王绍文.惯性效应在混凝中的动力学作用,中国给水排水.1998,14(2):13-16.
    [76]李尔,范跃华.采用气水比评价微孔曝气系统性能.给水排水.2006,(S1):32~34..
    [77] Petr Grau.Low cost wastewater treatment [J].Water Science and Technology, 1996, 33(8):39-46.
    [78]王鹤立,王绍文,吕炳南.均匀受限曝气机理及清水充氧试验研究.中国给水排水,2001,17(1):15-18.
    [79] Beatriz Cancino. Design of high efficiency surface aerators Part 2.Development of new rotors for surface aerators [J]. Aquacultural Engineering 31(2004):99~115.
    [80] Dias S. G, Franca F. A., Rosa E. S. Statistical method to calculate local interfacial variables in two-phase bubbly flows using intrusive crossing probes[J].Int.J.Multiphase Flow,2000,26(1):1797-1830.
    [81] Yu P.YW Varty R. L., Laser-Dopler Measurement of the velocity and diameter of bubbles using the triple-peak technique [J]. Int. J. Multiphase Flow, 1998, 114(6):765-776.
    [82] Duchene, P., Cotteux, E., Capela, S. Applying fine bubble aeration to small tanks [J].Water Science and Technology. 2001, 44(3): 203–210.
    [83] Gillot, S., Capela, S., Héduit, A.. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants [J].Water Research. 2000, 34(5): 678–683.
    [84] Capela, S., Roustan, M., Héduit, A. Transfer number in fine bubble diffused aeration systems [J].Water Science and Technology. 2001, 43(5):145–152.
    [85] ASCE,1992.ASCE Standard Measurement of Oxygen Transfer in Clean Water. American Society of Civil Engineers, New York.
    [86] NFEN,2004. 12255-15 European Standard: wastewater treatment plants—Part 15: measurement of the oxygen transfer in clean water in activated sludge aeration tanks.
    [87] Kulkarni, A.,Shah, Y.T.,Kelkar, B.G.. Gas holdup in bubble column with surface-active agents: a theoretical model [J].A.I.ChE J. 1987, 33(3):690–693.
    [88] Mueller, J.A., Boyle, W.C., P?pel, H.J. Aeration: principles and practice [J].Water Quality Management Library, 2002, 32(5): 353-354.
    [89] O.Pamperin. Influence of buoyancy on bubble formation at submerged orifices, Chem.Eng.& Sci, 1995,50( 19):3009-3024.
    [90] N.K.K yriakides, E .G .Kastrinakis and S .G .Nychas. Bubbling from nozzles submerged in water: Transitions between bubbling Regimes [J]. Can. J. Chem.Eng. 1997, 75(3):684-691.
    [91]章毓晋.图像处理和分析[M].北京:清华大学出版社.1999.
    [92]潘晓辉,罗锐,杨献勇等.悬浮颗粒两相流图像处理方法[J].清华大学学报(自然科学版),2002,45(5):680~683.
    [93] Gonzalerz.R.C, Woods R..E数字图像处理[M].北京:电子工业出版社,2004.
    [94] ToimiYama. AA. Transverse migration of single bubbles in simple shear flows[ J].Chemical Engineering Science,2002,5(11):1849一1858.
    [95] Ford B .Ellipsoidal bubble diffusion in a turbulent shear layer[J].International Journal of Multiphase flow,2000,26(3):503-516.
    [96] Hassan Y A, Oritiz Villafuerte J,William D. Schmidt three-dimensional measurements of single bubble dynamics in a small pipe using stereoscopic particle image velocimetry [J].International Journal of multiphase flow,2001,27(5):817-842.
    [97] Fuji Wara. Danmoto Y.Bubble deformation and flow structure measured by shadow images and PIV/ LIF [ J]. Experiments in Fluids, 2004, 36(2):157-165.
    [98] Zun I .Phase discrimination vs multiscale characteristics in bubbly flow[ J].Experiments Thermal and Fluid Science, 2002,26(2) :361-374.
    [99] Y Pan, M.P. Dudukovic, M .Chang. Numerical investigation of g as-driven flow in 2D bubble columns [J]. A.I.ChEJ, 2000, 46(3), 434-449.
    [100] D. P. Patil, J. R. G. Andrews.An analytical solution to continuous population balance model describing floc coalescence and breakage-A special case [J]. Chem.Eng.Sci, 1998, 53(3):599-601.
    [101] V. Jairazbhoy, L. L. Tavlarides. A numerical technique for the solution of integrodifferential equations arising from balance flows [J].Com. & Chem. Eng,2000,23(3):1725-1735.
    [102] P.L.C.Lage, R.O.Esposito. Experimental determination of bubble size distributions in bubble columns: Prediction of mean bubble diameter and gas hold up[J]. Powder Tech, 1999, 101(3):142 -150.
    [103] Revankar S T., Ishii M. Theory and measurement of local interfacial area using a four sensor probe in two-phase flow [J]. Int. J. Heat and Mass Transfer, 1993,36(2):2997-3007.
    [104] Liu T.J., Bankoff S .G, Structure of air-water bubbly flow in a vertical pipe- I. Liquid mean velocity and turbulence measurements [J].In t.J .Heat Transf. 1993,36(3):1049-1060.
    [105] Iskandrani A .,Kojasoy G ,Local void fraction and velocity field description in horizontal bubbly flow[J].Nucl.Eng.Des, 2001, 204(2):117-128.
    [106] Beatie D.R.H. Flow characteristics of horizontal bubbly pipe flow [J].Nucl. Eng.Des, 1996, 163(2):207-212.
    [107] Khudenko, B.M., Shpirt, E. Hydrodynamic parameters of diffused air systems [J]. Water Research.1986, 20(6):905–915.
    [108] Michael B. Timmons., Brian J. Vinci, Matthew T. Davenport. A mathematical model of low-head oxygenators [J]. Aquacultural Engineering. 2001, 24(3):257–277.
    [109] Warren B.A., Klausner J.F., Developing Lengths in Horizontal Two-Phase Bubbly Flow [J].ASME Journal of Fluids Engineering.1995, 117(2):512-518.
    [110] LanceM .,L opezd eB ertodanoM .A .,Phase distribution phenomena and wall effects in bubbly t wo-phase flows[J].Multiphase Sci.Technol, 199 6,8(3) : 69 -123.
    [111] Becker S., De BieH. Sweeney J .Dynamic flow behavior in bubble columns [J]. Chemical Engineering Science, 1999, 54(3):4929-4935.
    [112] Hibiki T., Ishii M.Interfacial area concentration in steady fully-developed bubbly flow [J].Int.J. Heat Transf, 2001, 44(2):3443-3461.
    [113] Hibiki T., Ishii M., Xiao Zheng, Axial interfacial area transport of vertical bubbly flows [J].Int.J.Heat Transf, 2001, 44(3):1869-1888.
    [114] Hogset S, Ishii M., Local two-phase flow measurements using sensor techniques, Nucl.Eng.Des, 1997, 175(3):15-24.
    [115] Millies M. A first order relaxation model for the prediction of the local interfacial area density in two-phase flows [J].Int.J. Multiphase Flow, 1996,22(6):1073-1104.
    [116] Spelt P.D.M., Biesheuvel A.On the motion of gas bubbles in homogeneous isotropic turbulence[J].J.Fluid Mech.1997, 336(3):221-244
    [117] Duchène, P., Cotteux, E., Capela, S.. Applying fine bubble aeration to small tanks [J].Water Sci. Technol, 2001, 44(2): 203–210.
    [118] Robert Portielie .et al. The Effect of Reaeration and Benthic Algae on the Oxygen Balance of an Artificial Ditch [J]. Ecological Modelling, 1995(79):35~48.
    [119] S.gillot. Effect of Air Flow Rate On Oxygen Transfer In an Oxidation DitchEquipped With Fine Bubble Diffusers And Slow Speed Mixers On The Rates Of Reaeration And BOD Removal In A Shallow Open Channel [J].Water Sicience and Technology,1997,35(8):57~67.
    [120] Alexander, C.D., Stefan, H.G.. Model of Mississippi river pool dissolved oxygen [J]. Journal of Environment. Engineering. 1983,109 (5), 1020-1036.
    [121] A.P.Annachhatre.Anearobic treatment of industrial wastewaters[J].Resources, Conservation and Recycling, 1996,16(3):161-166.
    [122] Minemura K, Uchiyama T , Shoda S , et al. Prediction ofair2water two2phase flow performance of a centrifugal pump based on one2dimensional two2fluid model [J] . J Fluids Engineering ASME , 1998 , 120(2) : 327~334.
    [123] Kamiyama S , Ueno K, Yokota Y. Numerical analysis of unsteady gas-liquid two phase flow of magnetic fluid[J] . J Magnetism and Manetic Materials , 1999 , 20(1) : 271~275.
    [124] Li,W Z, Yan Y Y. A n alternat ing dependent variables (ADV) method for t reating slip-boundary conditions of free surface flow w ith heat and mass transfer [J]. Numerical Heat Transf er, Part B, 2002, 41 (2) : 1652189.
    [125] Kim J, Hussain F.. Propagation velocity of perturbations in turbulent channel flow [J].Phys. Fluids, 1993, 5(3):695-698.
    [126] Adrian D. D., Sanders T.G...Oxygen sagequation for second-order BOD decay [J]. Water Research, 1998, 32(3): 840-848.
    [127] Babita Tyagi, Sunita Gakkhar,D.S. Bhargava. Mathematical modelling of stream DO-BOD accounting for settleable BOD and periodically varying BOD source[J]. Environmental Modelling and Software, 1999,14(3):461-471.
    [128] Chapra, S.C., 1997. Surface Water-Quality Modeling. McGraw-Hill, New York
    [129] Chen, H.W., Chang, N.B. Water pollution control in the river basin by fuzzy genetic algorithm-based multi-objective programming modeling [J]. Water Science and Technology, 1998, 37(3):55–63.
    [130] Horng-Guang Leu, C.F. Ouyang, Tze-Yi Pai. Effects of flow velocity and depth on the rates of reaeration and bod removal in a shallow open channel [J].Water Science and Technology, 1997, 35(8):57-67.
    [131] H.Wang, M. Hondzo, C.Xu, V.Poole. A. Spacie. Dissolved oxygen dynamics of streams draining urbanized and agricultural catchments [J]. Ecology Modelling, 2003,160(3):145-161.
    [132] Jae Heon Cho, Ki Seok Sung, Sung Ryong Ha. A river water quality management model for optimising regional wastewater treatment using a genetic algorithm [J].Journal of Environmental Management, 2004, 73(2):229–242
    [133] Mark e. Borsuk, Craig a. Stow. Bayesian parameter estimation in a mixed-order model of BOD decay [J].Water Research, 2000,34(6):1830-1836.
    [134]华中科技大学环境学院.佛山水道及其支涌复氧工程试验研究[M].佛山环保局,2006.
    [135]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003.
    [136]傅国伟,程声通.水污染控制系统规划[M].北京:清华大学出版社,1985.
    [137]傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987.
    [138]高廷耀,顾国维.水污染控制工程(下册) [M].高等教育出版社,1999;
    [139] Er Li ,Yuehua Fan. Inverse calculation models based on both time and frequency domains applied for the calculation of longitudinal dispersion coefficient and BOD decay rate in the water quality model for the tidal Foshan River (China). Frensius Environmental bulletin 2007,16(1).
    [140] Er Li, Xiangying Zeng, Yuehua Fan.Application of inverse calculation models to the BOD model for the tidal Foshan River (China). Environmental Engineering Science. (Accepted)
    [141]佛山市环境保护研究所.佛山水道主河道和沿岸支涌水污染及其控制途径调查研究.佛山环保局,2006.
    [142] C .Fonade, N .Doubroving, C.Maranges, J.Morchain. Influence of A Transverse Flow rate on the Oxygen Transfer Perfomance in Heterogeneous Aeration: Case of Hydro-Ejection [J]. Wat.Res 2001,35 (14):3429--3435.
    [143] Martin R. Wagner and H. Johannes Popel. Oxygen Transfer and Aeration Eficiency- Influence of Difuser Submergence, Difuser Density and Blower Type[J].Rat. Sci. Tech, 1998, 38(3):1-6.
    [144] Martin R. Wagner and H. Johannes Popel. Pure Oxygen Desorption Method-a New and Cost-efective Method for the Determination of Oxygen Transfer Rates in Clean Water [J]. Rat. Sci Tech.1998,38 (3):103-10.
    [145] Daniel F. Mcginnis and John C .Little. Predicting difused-bubble oxygen transfer fate using the discrete-bubble model [J]. Water Research. 2002, 36(3):4627-4635
    [146]李尔范跃华陶涛等.佛山水道支涌曝气复氧介绍.给水排水. 2006, 32 (1):33~36.
    [147] G .Deronzier, P.Duchene., A.Heduit. Optimization of Oxygen Transfer in Clear Water by Fine pore Diffused Air System and Separate Mixing in Aeration D itches [J]. Wat. Sci.&Tech.,1998,38(3):5-42.
    [148] Daniel, F. Mcginnis.,John C.Little. Bubble dynamics and oxygen transfer in a speece cone [J]. Wat.Sci.&Tech.1998,37(2 ):285-292.
    [149] Jules Thibault, Katuleen Pouliot, et al. Reassessment of the estimation of dissolved oxygen concentration profile and KLa in solid-state fermentation [J].Process Biochemistry ,2000, 36 (2):9- 18.
    [150] Rao, R.A.. Prediction of reaeration rates in square stirred tanks [J]. J. Environ. Eng, 1999,125(3): 215–223.
    [151] Tariq Ahmed, Michael J. Semmens, Michael A . Voss. Energy loss characteristics of parallel flow bubble less hollow fiber membrane aerators [J]. Journal of Membrane Science.2000, 171(3):87-96.
    [152] Marcus W., A .Hofken, P eter Huber. Membrane Aerators and Stirring Systems for the Operation in Large and Small Wastewater Treatment Plants [J]. War. Sci. Tech., 1996,34(3-4):329-338.
    [153] By Kyung Soo Subhash C. lain. Oxygen transfer in bubbly turbulence [J]. J. Hyd. Eng. 1993,119(2):21 -36.
    [154] David E.Hibbs. Dissolution Rate Coefficients For Surface Slicks On Rivers [J]. Wat.Res,1999,33(8):1811~1861
    [155] R.A.Grau, K.Heiskanen.Visual technique for measuring bubble size inflotation machines [J].Mineral Engineering. 2002, 36(15):507-513.
    [156] M.Tarshish, R.Arviv, A.Aharoni. Mechanical Aerators Power and Aeration Control in Bioreactors [J]. Journal of Environmental Engineering, April, 2000, 33(3):23-36.
    [157] A.Abusam, K. J. Keesman, Oxygen Transfer Rate Estimation In Oxidation Ditches From Clean Water Measurements [J].Wat.Res, 2001,35(8):.2058-2064.
    [158] Burn, D.H. Water-quality management through combined simulation optimization approach [J]. Journal of Environmental Engineering,1989,115(5): 1011–1024.
    [159] P.E.Anagbo, J. K. Brimacombe, Formation of ellipsoidal bubbles at a free-standing nozzle [J]. Chem.Eng.Sci, 1991, 46 (3):781-788.
    [160] K. Shimizu, S. Takada, K. Minekawa,Y.Kawase. Phenomenological model for bubble column reactors :prediction of gas hold-ups and v lumetric mass transferc oefficients [J]. Chem .Eng.J., 2000,78(2):21-28.
    [161] H.Luo, H. F. Svendsen. Theoretical model for drops and bubbles breakup in turbulent dispersions [J].A.I.ChEJ, 1996,42(5),1225-1233.
    [162] O.G notke,H.Benk and R.Loth. Experimental study on the number density distribution function in turbulent bubbly flows with coalescence and break-up [J]. Exp.Therm.Fluid.Sci, 2003, 27(3):803 -816.
    [163] T.J.Lin, K.Tsuchiya, and L.S. Fan.Bubble flow characteristics in bubble columns at elevated pressure and temperature [J].A.I.ChE.J, 1998, 44(3):545-560.
    [164] R .P. Hesketh, T .W .Fraser Russell. Bubble size inhorizontalpi pelines [J].A.I.ChE.J, 1987, 33 (4): 663-667.
    [165] J. F. Walter and H.W Blanch. Bubble break-up in gas-liquid bioreactors: break-up in turbulent flows [J].Chem.Eng. J. 1986, 32(7):100-112.
    [166] A .Sokolichin,G. Eigenberger. Gas-liquid flow in bubble column sand loop reactors: Part I, Detailed modeling and numerical simulation [J]. Chem.Eng.Sci, 1994, 49(4):5735-5746.
    [167] Chapra, S.C., Di Toro, D.M. Delta method for estimating primary production, respiration and reaeration in streams [J]. Journal of Environment. Engineering. 1991,117 (6): 641-655.
    [168] Erlebacher G, Hussaini M Y,G Speziale C .To ward the large-eddy simulation of compressible turbulent flows [J]. Fluid Mech., 1992, 23(8):155-185.
    [169] Kulkarni A A , Joshi J B , Ravi Kumar V. Wavelet transform of velocity-time data for the analysis of turbulent structures in a bubble column[J].Chemical Engineering Science, 2001,56(2):5305-5315.
    [170] Muwaffaq M.Saqqar and M.B.Pescod.Performance evaluation of anoxic and facultative wastewater stabilization ponds [J]. Water Science and Technology, 1996, 33(7): 141-145.
    [171] Beatriz Cancino, Pedro Roth, et al. Design of high efficiency surface aerators Part 1.Development of new rotors for surface aerators [J].Aquacultural Engineering 31(2004):83~98.
    [172] Martin Wagner and H.Johannes. Surface active agents and their influence on oxygen transfer [J].Wat.Sci.Tech, 1996,34(3):249-256.
    [173] Vickie L .Burris, Daniel, F. Mcginnis and John C .Little. Predicting oxygen transfer and water flow rate in air lift aerators [J]. Water Research, 2002,36 (2):4605--4615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700