五箱一体化活性污泥工艺强化除磷脱氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五箱一体化活性污泥工艺是在UNITANK、三沟式氧化沟等工艺基础上研制开发的具有除磷脱氮功能的新型污水处理工艺,该工艺由五个矩形反应池组成,五池间水力连通,通过五个池子随时间和空间控制状态变化,实现厌氧、缺氧、好氧和沉淀过程交替,通过进出水位置转换实现污泥和混合液的循环流动和自动回流,不需要外加污泥和混合液回流措施,恒水位运行,达到高效除磷脱氮。
     该工艺中每个池子为一个完全混合反应器,五个池子共同构成一组阶式反应器,因而整体具有推流反应器的特征,反应效率高,能适应一定的冲击负荷。与UNITANK等工艺相比,该工艺在时间和空间转换中更容易实现理想的厌氧、缺氧和好氧交替,创造了更适宜于聚磷菌的生长环境,从而显著提高除磷脱氮效率。
     池体方形,五个池子间共用池壁和底板,布置紧凑,结构稳定性好,土建投资省,占地面积小。其中有两个边池交替出水,不需要单独设置沉淀池,省却了污泥和混合液回流设备,恒水位运行,水头损失小,装机负荷低,可以大大节省动力消耗。系统通过PLC可编程序控制器控制自动运转,运行方式和控制状态可以灵活调整,维护管理方便。
     通过该工艺小试试验装置在南京江宁开发区污水处理厂应用,研究工艺运行的适宜参数及对不同水质的适应性,通过跟踪试验对工艺除磷脱氮的过程和机理进行探讨,并在连续流运转状态下对ORP和pH变化的特征点与反硝化、释磷和硝化过程的关系及反馈控制除磷脱氮过程的可行性进行了分析。研究了该工艺中的反硝化除磷现象,对反应器污泥的反硝化除磷能力及聚磷菌组成进行了细致研究,并对反应器污泥的微生物相和除磷脱氮的相关性进行了分析。建立了交替运行工艺的污泥分布推流模型,对该工艺中污泥分布规律进行理论化推导,并与三池交替活性污泥工艺(UNITANK等工艺)进行对比。
     在五箱一体化活性污泥工艺中,厌氧、缺氧和好氧状态在同一池子的不同阶段以及同一阶段不同池子之间交替出现,厌氧释磷、吸磷、硝化、反硝化随之发生,利用多种微生物和电子受体完成除磷脱氮过程,整体除磷脱氮效率高。
     在水力停留时间为13h,周期设置按主体段、过渡段和沉淀段分别为90min、120min和30min,泥龄为12d~15d,边池污泥浓度为4000mg/L~6500mg/L的工艺条件下,进水COD浓度在421mg/L、TP浓度在4.82mg/L、TN浓度在49.6mg/L、NH4+-N浓度在45.2mg/L以下时出水能满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准要求。
     对该工艺运行中ORP、pH、DO变化进行研究表明:边池在进水搅拌过程中ORP、pH出现特征点,与反硝化结束和厌氧磷释放具有同步性,在曝气过程中ORP、pH、DO同时出现特征点,与硝化结束时间对应。ORP和pH监测信号可以用于控制脱氮和除磷过程。
     该工艺在运行过程中出现一定的反硝化除磷现象,利用有机物在脱氮的同时完成除磷过程。反应器中污泥能利用硝酸盐氮和亚硝酸盐氮作为电子受体反硝化除磷,具有较高的反硝化除磷能力。以往的研究一般根据厌氧释磷后在开始阶段缺氧吸磷速度和好氧吸磷速度的比值确定反硝化聚磷菌的比例,本研究发现在开始阶段缺氧吸磷速度大于好氧吸磷速度,提出根据厌氧释磷后缺氧吸磷量和好氧吸磷量的比值确定反硝化聚磷菌比例的新方法。该反应器污泥中反硝化聚磷菌比例为99.25%,能以氧气、硝酸盐氮和亚硝酸盐氮三种物质作为电子受体的聚磷菌占全部聚磷菌的97.75%。
Five-tank integrated activated sludge system, a new wastewater treatment process with the function of phosphorus and nitrogen removal was developed on the basis of such process as UNITANK and triple oxidation ditch. This process is composed of five hydraulicly connected rectangle tanks. The alternation of anaerobic, anoxic, aerobic and settling state was realized by timely and spatial control change to these five tanks. Mixed liquid and sludge are recirculated automatically by location transition of inlet and outlet without additional sludge or mixed liquid recirculation. This process runs with constant water level and high phosphorus and nitrogen removal rate.
     Every tank in this process is a CSTR(completely stirred tank reactor). All the five tanks constitute a group of CSTR cascade. On the whole, this process has the characteristic of puff flow reacter. So this process has high removal efficiency and can endure some shock load. Compared with UNITANK, the alternation of anaerobic, anoxic and aerobic state is more incident with timely and spatial change.Thereby, this process creates more suitable growth environment for polyphosphate accumulating organisms(PAOs) and enhances phosphorus and nitrogen removal.
     These five rectangular tanks have wall and motherboard in common with close collocation and stable structure. The construction investment and location space are spared. There are two side tanks for alternating outlet. Additional settling tank, sludge and mixed liquor recirculation equipment are omitted. This process runs at constant water level with small water head loss. Power consumption is greatly saved because of low power load. This system is automatically operated under the control of PLC (Programmable Logic Controller). Running mode and controlling state can be adjusted conveniently.
     A pilot scale test was applied in Nanjing Jiangning Development Zone Wastewater Treatment Plant. The preferable parameters of this system and its adaptability to different wastewater quality were studied. The process and mechanism of phosphorus and nitrogen removal were explored by tracking test. The relation of the characteristic points of ORP and pH with denitrification, phosphorus release and nitrification under continuous flow operation was analyzed. The feasilility to use these characteristic points as feedback for phosphorus and nitrogen removal was also discussed. The phenomenon of denitrifying phosphorus removal in this system was studied. The denitrifying phosphorus removal ability and polyphosphate accumulating organisms composition of the sludge in this reactor was detailedly investigated. The relativity of the biofacies to phosphorus and nitrogen removal in this reactor was also analyzed. The plug flow model of sludge in this system was founded to theoretically predict sludge distribution during operation, which was also contrasted to that in three-tank alternating activated sludge system such as UNITANK.
     Anaerobic, anoxic and aerobic state appeared alternately in one tank on different phases and on one phase in different tanks. Accordingly, phosphorus uptake, nitrification and denitrification arose. Diverse microorganism and electron acceptors were utilized for phosphorus and nitrogen removal resulting with
引文
[1] 国家环境保护总局.2004 年中国环境状况公报.
    [2] 马蕊,林英,牛翠娟.淡水水域富营养化及其治理[J].生物学通报,2003,38(11):5-9.
    [3] 谢礼国,郑怀礼.湖泊富营养化的防治对策研究[J].世界科技研究与发展专题:环境污染及治理,2004,4:7-11.
    [4] 郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策[J].地理科学进展,2002,21(5):500-506.
    [5] 盛 学 良 , 舒 金 华 , 彭 补 拙 等 . 江 苏 省 太 湖 流 域 总 氮 、 总 磷 排 放 标 准 研 究 [J]. 地 理 科学,2002,22(4):449-452.
    [6] 郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:37.
    [7] 李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002,9:343-344.
    [8] 杭世珺.小城镇污水处理工程设计的反思与建议[J].给水排水,2004,30(10):17-21.
    [9] 王凯军.城市污水污染控制技术和发展重点[J].中国环保产业 CEPI,2001,2:25-27.
    [10] 向仁军,张在峰,李和平.一体化生物除磷脱氮工艺装置[J].中国给水排水,2000,16(4):14-16.
    [11] Ng W J, Ong S L, Hu J Y. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor[J]. Water Sci. Tech.,2001,43(3):139-46.
    [12] Xiaodi Hao, Mark C. M.Van Loosdrecht, S. C. F. Meijer, et al. Model-based evaluation of two BNR processes—UCT and A2N[J]. Wat. Res.,2001,35(12):2851-2860.
    [13] Kuba T,Vanloosdrecht MCM, Brandse F A, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J]. Wat. Res.,1997, 31(4):777-786.
    [14] Zhiyong Zhang, Jiti Zhou, Jing Wang, et al. Integration of nitrification and denitrifying dephosphatation in airlift loop sequencing batch biofilm reactor[J]. Process Biochemistry,2006,41:599-608.
    [15] Pai Shwu-Ling, Chong Nyuk-Min and Chen Chei-Hsiang. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment[J]. Bioresource Technology,1999,68(2):179-185.
    [16] Robertson L A,van Neil E W J, Torremans R A M et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotroph[J]. Appl. Environ. Mcrobiol.,1988,54(11):2812-2818.
    [17] Mohan Sudesh B, Schmid Markus and Jetten Mike et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification[J]. FEMS Microbiology Ecology,2004,49(3):433-443.
    [18] Sliekers A Olav,Derwort N,Gomez J L Campos. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research,2002,36(10):2475-2482.
    [19] Mike S M Jetten, Michael Wagner, John Fuerst et al.Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process[J]. Environmental biotechnology, 2001,12:283-288..
    [20] Van de Graaf A A,Mulder A,De Bruijn P et al.Anaerobic oxidation of ammonium is a biologically mediated process[J].Appl. Envion. Microbiol.,1995,61(4):1246-1251.
    [21] 郑兴灿.城市污水生物除磷脱氮工艺方案的选择[J].给水排水,26(5):1-4.
    [22] 黄理辉,张波,毕学军等.倒置A2/O工艺生产性试验研究[J].中国给水排水,2004,20(6):12-15.
    [23] 张波.倒置A2/O工艺氮磷脱除功能[J].环境工程,1999,17(2):7-10.
    [24] Su J L and Ouyang C F. Nutrient removal using a combined process using activated sludge and fixed biofilm[J]. Wat. Sci. Tech.,1996,34(1-2):477-486.
    [25] 邹伟国,张善发等.新型双污泥脱氮除磷工艺处理生活污水[J].中国给水排水,2004,20(6):16-18.
    [26] 罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水,2002,18(9):4-7.
    [27] 赵丹 , 任南琪 , 陈坚等 . 生物除磷技术新工艺及其微生物学原理 [J]. 哈尔滨工业大学学报,2004,36(11):1460-1462.
    [28] Peng Y Z, Wang Y Y, Ozaki M, et al. Denitrifying phosphorus removal in a continuously-flow A2N two-sludge process[J]. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng., 2004,39(3):703-15.
    [29] 王 亚 宜 , 杜 红 , 彭 永 臻 等 . A 2 N 反 硝 化 除 磷 脱 氮 工 艺 及 其 影 响 因 素 [J]. 中 国 给 水 排水,2003,19(9):8-11.
    [30] 刘章富,熊杨,侯铁等.同步生物除磷脱氮的几种实用新工艺[J].中国给水排水,18(9):65-68.
    [31] 王凯军,宋英豪.SBR 工艺的发展类型及其应用特性[J].中国给水排水,2002,18(7):23-26.
    [32] 周雹,谭振江.中小型城市污水处理厂的优选工艺[J].中国给水排水,2000,16(10):21-24.
    [33] 熊红权,李文彬.CASS 工艺在国内的应用现状[J].中国给水排水,2003,19(2):34-35.
    [34] 沈耀良,王宝贞.循环活性污泥系统(CASS)处理城市废水[J].给水排水,1999,25(11):5-8.
    [35] 周雹.SBR 工艺的分类和特点[J].给水排水,2001,27(2):31-33.
    [36] 王秀朵,周雹.DAT-IAT 工艺处理城市污水[J].中国给水排水,1999,15(1):15-17.
    [37] 王 闯 , 杨 海 真 , 顾 国 维 . 改 进 型 序 批 式 反 应 器 ( MSBR ) 的 试 验 研 究 [J]. 中 国 给 水 排水,2003,19(5):41-43.
    [38] 李探微,彭永臻,高旭等.一种新的污水处理技术——MSBR 法[J].给水排水,1999,25(6):10-12.
    [39] 任洁,顾国维.MSBR 系统的特点及其除磷脱氮的机理分析[J].给水排水,2002,28(1):22-24.
    [40] 王雅昌,高嵩.三沟式氧化沟的活性污泥特性[J].中国给水排水,2000,16(4):52-54.
    [41] 吴昊.三沟式氧化沟污泥分布不均的改善[J].中国给水排水,2001,17(10):53-55.
    [42] 周律,钱易.浅议三沟式氧化沟的设计[J].给水排水,1998,24(1):6-9.
    [43] 冯凯,杭世珺.UNITANK 工艺处理城市污水工程实践[J].给水排水,2002,28(3):1-4.
    [44] 熊杨,刘章富,杨羽寒.一种新型除磷脱氮工艺——廊道交替池[J].给水排水,2001,27(11):27-29.
    [45] 韩润平 , 王志武 , 吴新平等 . 滴定法测定污水中的碳酸氢根和挥发性脂肪酸 [J]. 河南科学,2003,21(3):278-280.
    [46] 牛晓君,王萍.蒸馏法测定污水中脂肪酸方法的改进[J].环境技术,2000,2:33-35.
    [47] 国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.12.
    [48] Hans Carlsson, Henrik Aspegren and Anders Hilmer.Interactions between wastewater quality and phosphorus release in the anaerobic reactor of the EBPR progress[J].Wat. Res.,1996,30(6):1517-1527.
    [49] Lourdes Rodríguez Mayor, José Villase?or Camacho and Francisco J. Fernández Morales. Operational optimisation of pilot scale biological nutrient removal at the Ciudad Real (spain) domestic wastewater treatment Plant[J]. Water, Air, & Soil Pollution,2004,152(1-4) : 279- 296.
    [50] 周雹,周丹.多点进出水倒置A2/O工艺[J].给水排水,2002,28(1):39-42.
    [51] 李燕城.水处理实验技术[M].北京:中国建筑工业出版社,2000:4-21.
    [52] 杨德.试验设计与分析[M].北京:中国农业出版社,2002:174-177.
    [53] Biesterfeld S, Farmer G, Russell P, et al. Effect of Alkalinity Type and Concentration on Nitrifying Biofilm Activity[J]. Water Environ. Res.,2003,75(3):196-204.
    [54] 许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000:536-537.
    [55] Shao Y J,Wada F,Abkiam V et al. Effects of MCRT on enhanced biological phosphorus removal[J]. Wat. Sci. Tech.,1992,26(5/6):967-976.
    [56] 李海,孙瑞征,陈振选等.城市污水处理技术及工程实例[M].北京:化学工业出版社,2002:4-5.
    [57] 华光辉,张波.城市污水生物除磷脱氮工艺中矛盾关系及对策[J].给水排水,2000,26(12):1-4.
    [58] Zhao H W ,Donald S Mavinic, William K Oldham. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Wat. Res.,1999,33(4):971-978.
    [59] 彭永臻,曾薇,李探微等.污水处理系统的在线模糊控制[J].哈尔滨建筑大学学报,1999,32(4):57-60.
    [60] Ruey-Fang yu, Shu-Liang Liaw,Cheng-Nan Chang et al. Applaying real-time control to enhance the performangce of nitrogen removal in the continuous-flow SBR system[J]. Wat. Sci. Tech., 1998,38(3):271-280.
    [61] M Fuerhacker, H Bauer, R Ellinger, et al. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors[J]. Wat. Res.,2000,34(9):2499-2506.
    [62] Ju Hyun Kima, Meixue Chenb, Naohiro Kishida, et al. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors[J].Wat. Res.,2004,38:3340-3348.
    [63] 曾薇,彭永臻,王淑莹.以 DO、ORP、pH 作为两段 SBR 工艺的实时控制参数[J].环境科学学报,2003,23(2):252-256.
    [64] Wentzel M C, Ekama G A, Loewenthal R E, et al. Enhanced polyphosphate organisms cultures in activated sludge systems. Part II:experimental behaviour[J]. Water S. A.,1989, 15(2):71-81.
    [65] E W J Van Niel, K J Appeldoorn, A J B Zehnder, et al. Inhibition of anaerobic phosphate release by nitric oxide in activated sludge[J]. Applied and Environmental Microbiology, 1998,64(8):2925-2930.
    [66] Kerrn-Jesperson J P and Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J].Water Res.,1993,27(4):617-624.
    [67] Meinhold J, Pedersen H, Arnold E, et al. Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal[J]. Water Sci Tech 1998,38(1):97-105.
    [68] Jens P K, Mogens H. Biological phosphorus uptake under anoxic and aerobic conditions[J].Wat. Res.,1993,27(4):617-622.
    [69] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Res.,1996,30(7):1702-1710.
    [70] Murnleitner E, Kuba T, van Loosdrecht M C M, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal[J].Biotechnol. Bioeng.,1997,54(5):434-450.
    [71] Wachtmeister A, Kuba T, Van Loosdrecht M C M, et al. A sludge characterization for aerobic and denitrifying phosphorus removing sludge[J]. Wat. Res., 1997,31(3):471-478.
    [72] Meinhold J, Filipe C D M, Heijnen J J. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal process [J]. Wat. Sci. and Tech.,1999,39(1):31-42.
    [73] 李勇智,彭永臻,王淑莹.厌氧缺氧 SBR 反硝化除磷效能的研究[J].环境污染治理技术与设备,2003,4(6):9-12.
    [74] Smolders G J F, van der Mej J, van Loosdrecht et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus process[J]. Biotechnol. Bioeng.,1994,44(7):837-848.
    [75] Kuba T, Murnleitner E, Van Loosdrecht M C M et al. A metabolic model for the biological phosphorus removal by denitrifying organisms[J]. Biotechnol. Bioeng.,1996,52(6):685-695.
    [76] 周康群 , 杜林 , 黄小丹 . 缺氧条件下聚磷菌利用硝酸盐氮吸磷的研究 [J]. 上海环境科学,2001,20(11):556-557.
    [77] 郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:232.
    [78] Dae Sung Lee, Che Ok Jeon, Jong Moon Park. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system[J]. Wat. Res., 2001,35(16):3968-3976.
    [79] 李 勇 智 , 彭 永 臻 , 王 淑 滢 等 . 强 化 生 物 除 磷 体 系 中 的 反 硝 化 除 磷 [J]. 中 国 环 境 科学,2003,23(5):543-546.
    [80] Kerrn-Jespersen J P, Henze M, Strube R. Biological phosphorus release and uptake under alternatinganaerobic and anoxic conditions in a fixed-film reactor[J]. Water Res.,1994,28(5):1253-1255.
    [81] Kuba T, van Loosdrecht M C M and Heijnen J J. Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria[J]. Water Sci. Tech., 1996, 34(1/2):33-40.
    [82] Comeau Y, Oldham W K and Hall K J Dynamics of carbon reserves in biological dephosphatation of wastewater(C). Proceedings of an IAWPRC Specialized Conference in Rome on Biological Phosphate Removal in Wastewater,1987:39-55.
    [83] Meinhold J, Arnold E and Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Res.,1999,33(8):1871-1883.
    [84] Liu W T, Nielsen A T, Wu J H,et al. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process [J]. Environ. Microbiol., 2001,3(2): 110-122.
    [85] Bond P L, Erhart R, Wagner M, Keller J,et al. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems[J]. Appl. Environ. Microbiol.,1999,65(9): 4077-4084.
    [86] J Y Hu, S L Ong, W J Ng,et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J].Water Research,2003,37(14):3463-3471.
    [87] 李勇智,王淑滢,吴凡松等.强化生物除磷体系中反硝化聚磷菌的选择与富集[J]. 环境科学学报,2004,24(1):45-49.
    [88] Surmacz Gorska J, K Gernaey, C Demuynck, et al. Nitrification process control in activated sludge using oxygen uptake rate measurements[J]. Environ. Technol.,1995,16(6):569-577.
    [89] Andrews J F, S Rensen P E And Garrett Tm.Control of nitrification in the oxygen activated sludge process[J]. Prog. Wat. Technol.,1980,12 (5) 497-519.
    [90] Surmacz-Gorska J, K Gernaey, C Demuynck et al. Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements[J]. Water Res. 1996,30(5):1228-1236.
    [91] Bédard, C, and R Knowles. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers[J]. Microbiol. Rev.,1989, 53(1):68-84.
    [92] Nowak O, Svardal K. Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds[J]. Water Sci. Technol.,1993,28(2):115-123.
    [93] Kroiss H, Schweighofer P, Frey W, et al. Nitrification inhibition-a source identification method for combined municipal and/or industrial treatement plants[J]. Wat. Sci. Tech.,1992,26(5/6):1135-1146.
    [94] Philippe Ginestet, Jean-Marc Audic, Vincent Urbain, et al. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide[J]. Applied And Environmental Microbiology,1998,64(6):2266-2268.
    [95] In S Kim, Sungyoun Kim and Am Jang. Activity monitoring for nitrifying bacteria by fluorescence in situ hybridization and respirometry[J]. Environmental Monitoring and Assessment,2001,70(1/2): 223-231.
    [96] V?lsch A, Nader W F, Geiss G K, et al. Test zur Bestimmung der Aktivit?t von nitrifizierenden Bakterien in Belebtschlamm[J]. GWF Wasser-Abwasser, 1990,131:301-306.
    [97] 王建龙,吴立波,齐星等.用氧吸收速率 OUR 表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-229.
    [98] 廖婉君.利用摄氧率测 AO 活性污泥程序异养菌质量及动力参数之研究(D).朝阳科技大学硕士学位论文,2003.6.
    [99] 谢建春.水体污染与水生动物[J].生物学通报,2001,36(6):10-11.
    [100] 徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学工业出版社,2002.12.
    [101] 张自杰,张忠祥,龙腾锐等.废水处理理论与设计[M].北京:中国建筑工业出版社,2002:357-362.
    [102] 邱文芳,罗志腾,杜仰民等.环境微生物学技术手册[M].北京:学苑出版社,1990:232-235.
    [103] 李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002:273-277.
    [104] 陈声贵,许木启,曹宏等.活性污泥微型动物种群动态与水质净化效能的关系[J].动物学报,2003,49 (6):775-786.
    [105] 李探微,彭永臻,朱晓.活性污泥中原生动物的特征和作用[J]. 给水排水,2001,27(4):24-27.
    [106] 聂 英 进 , 罗 翠 华 . 污 水 厂 活 性 污 泥 生 物 的 指 示 作 用 [J]. 铁 道 劳 动 安 全 卫 生 与 环保.2004,31(5):247-249.
    [107] 陈绍军,迟若岩,张智颖等.氮硝化过程的指示生物与环境条件[J].给水排水,1995,1:18-20.
    [108] Wagner, M R Amann, H Lemmer, et al. Probing activated sludge with proteobacteria-specific oligonucleotides:inadequacy of culture-dependent methods for describing microbial community structure[J].Appl. Environ. Microbiol.,1993,59(5):1520-1525.
    [109] 梁威,邱东茹,熊丽,吴振斌.荧光原位杂交技术(FISH)及其在环境微生物学中的应用[J].生命科学,2002,14(3):186-187.
    [110] 邢德峰,任南琪,李建政.荧光原位杂交在环境微生物学中的应用及进展[J].环境科学研究,2003,16(3):55-58.
    [111] 谢冰,徐华,徐亚同.荧光原位杂交法在活性污泥硝化细菌检测中的应用[J].上海环境科学,2003,22(5):363-366.
    [112] Michael Wagner, Alexander Loy, Regina Nogueira, et al. Microbial community composition and function in wastewater treatment plants[J]. Antonie van Leeuwenhoek,2002,81(1-4):665-680.
    [113] 孙寓姣,王勇,黄霞.荧光原位杂交技术在环境微生物生态学解析中的应用研究[J]. 环境污染治理技术与设备, 2004, 5(11):14-20.
    [114] 刘 志 培 , 刘 双 江 . 硝 化 作 用 微 生 物 的 分 子 生 物 学 研 究 进 展 [J]. 应 用 与 环 境 生 物 学报,2004,10(4):521-525.
    [115] 刑德峰 , 任南琪 , 王爱杰 .FISH 技术在微生物生态学中德研究及进展 [J]. 微生物学通报,2003,30(6):114-119.
    [116] 朱琳,尹立红,浦跃朴等. 荧光原位杂交法检测环境硝化细菌实验条件优化及应用[J].东南大学学报(自然科学版),2005,35(2):266-270.
    [117] 卢圣栋.现代分子生物学实验技术[M].北京:中国协和医科大学出版社,1999:220-229.
    [118] Domingues M R, Araujo J C,Varesche M B,et al.Evaluation of thermophilic anaerobic microbial consortia using fluorescence in situ hybridization (FISH)[J].Water Sci. Technol.,2002,45(10):27-33.
    [119] Okabe S, Satoh H, Watanabe Y, et al. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes[J]. Appl. Environ. Microbial[J],1999,65(7):3182-3191.
    [120] Armin Gieseke, Ulrike Purkhold, Michael Wagner, et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm[J]. Applied And Environmental Microbiology, 2001,67(3):1351-1362.
    [121] Amann R, Krumholz L, Stahl D A, et al. Fluorescent oligonucleotide probing of whole cells for deteminative, phylogenetic, and environmental studies in microbiology[J]. J. Bacteriol.,1990,172(2): 762-770.
    [122] 郑天凌,王斐,徐美珠等. 台湾海峡海域细菌产量、生物量及其在微食物环中的作用[J].海洋与湖沼,2002,33(4):415-423.
    [123] Lorenzen J, Larsen L H,Kj?r T, et al. Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment[J]. Appl. Environ. Microbial,1998, 64(9):3264-3269.
    [124] Aoi Y, Miyoshi T, Okamoto T, et al. Microbial ecology of nitrifying bacteria in wastewater treatementprocess examinated by fluorescence in situ hybridization [J].Biosci. Bioengin.,2000,90(3):234-240.
    [125] 曲媛媛,周集体,王竞等.现代分子生物技术在废水菌群监测中的应用[J].环境科学与技术,27(8):176-178.
    [126] Timothy A. Hovanec and Edward F. Delong.Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria[J]. Appl. Environ. Microbial, 1996, 62(8):2888-2896.
    [127] Mobarry B K,Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J].Appl. Environ. Microbial,1996,62(6):2156-2162.
    [128] Satoshi Okabe, Hisashi Satoh and Yoshimasa Watanabe. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbial, 1999,65(7): 3182-3191.
    [129] Juretschko S, Timmermann G, Schmid M, et al.Combined molecular and conventional analyses of nitrifying bacterim and diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations [J].Appl. Environ. Microbial,1998,64(8):3042-3051.
    [130] Schramm A, Beer D D,Wagner M,et al.Identification and activities in situ of Nitrosospira and Nitrospiras pp. as dominant populations in a nitrifying fluidized bed reactor[J].Appl. Environ. Microbial,1998,64(9):3480-3485.
    [131] Fuhs G W and M Chen. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microb. Ecol. 1975,2:119-138.
    [132] Brodisch K E U. Interaction of different groups of microorganisms in biological phosphate removal[J]. Water Sci. Technol.,1985,17(12):89-97.
    [133] Wentzel M C, Loewenthal R E, Ekama G A,et al. Enhanced polyphosphate organism cultures in activated sludge systems.PartⅠ:Enhanced culture development[J]. Water S. A. (Pretoria),1988, 14(2):81-92.
    [134] Beacham A M, R J Seviour, and K C Lindrea. Polyphosphate accumulating abilities of Acinetobacter isolates from a biological nutrient removal pilot plant[J]. Water Res.,1992,26(1):121-122.
    [135] Wagner M, Erhart R, Manz W, et al. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge[J]. Appl. Environ. Microbiol.,1994,60(3):792-800.
    [136] Hiraishi, A, K Masamune, and H Kitamura. Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles[J]. Appl. Environ. Microbiol.,1989,55(4):897-901.
    [137] Hiraishi A and Y Morishima. Capacity for polyphosphate accumulation of predominant bacteria in activated sludge showing enhanced phosphate removal[J]. J. Ferment. Bioeng.,1990,69(6):368-371.
    [138] Philip L Bond, Philip Hugenholtz, Jürg Keller, et al.Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors[J].Applied and Environmental Microbiology, 1995,61(5):1910-1916.
    [139] 安丽华,尤瑞麟.一种用于 DAPI 染色的方法——Steedman’s wax 包埋切片法[J].西北植物学报,2004,24(8):1367-1372.
    [140] 马放,任南琪,杨基先.污染控制微生物学试验[M].哈尔滨工业大学出版社,2002:42-43.
    [141] 赵斌,何绍江.微生物学试验[M].北京:科学出版社,2002:283-284.
    [142] 刘东山,罗启芳.东湖氮循环细菌分布及其作用[J].环境科学,2002,23(3):29-35.
    [143] 王国祥,濮培民,黄宜凯等. 太湖反硝化、硝化、亚硝化及氨化细菌分布及其作用[J].应用与环境生物学报,1998,5(2):190-194.
    [144] 须藤隆一.水环境净化及废水处理微生物学.北京:中国建筑工业出版社,1986:107-110.
    [145] 邱宏端,郭养浩.活性污泥法处理印染废水中的主要微生物种群.福州大学学报(自然科学版),1996,24(5):111-115.
    [146] 许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000:51-52.
    [147] 周律,钱易,杨肇健等.三沟式氧化沟处理城市污水的效应[J].中国给水排水,1997,Vol.13(5):5-7.
    [148] 吴华明,印宏,李峰等.UNITANK 工艺提高氮、磷去除率的研究[J].环境污染治理技术与设备,2002,3(10):72-74.
    [149] 王凯军.曝气、沉淀一体化活性污泥工艺设计方法和问题讨论[J].给水排水,1999,25(3):12-15.
    [150] 胡大锵.对交替工作式氧化沟几个技术问题的探讨[J].给水排水,2001,27(4):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700