多环系统处理低碳源城市污水运行方式优化的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国城市污水氮磷污染严重,而许多城市污水厂采用的工艺流程复杂、构筑物多、回流系统多、运行条件要求高,导致污水处理设施存在建设投资和运行成本高、运行管理繁琐、管理技术水平要求高等一系列问题,这些问题无疑会制约我国污水处理事业的发展。据此,本试验研究课题组在前期研究中提出了具有高效、节能、管理方便等优势的合建式三环工艺,但该工艺在处理低碳源城市污水时,存在除磷脱氮效果不够理想的问题。
    本试验研究就是针对目前普遍存在的城市污水水质浓度偏低的问题,在分析综合多种连续流除磷脱氮工艺特征的基础上,综合倒置A2/O 工艺、分段进水除磷脱氮工艺、OCO 工艺、Orbal 氧化沟工艺和一体化氧化沟工艺等多种工艺运行方式的优势,对前期课题组提出的合建式三环模型进行改进,集成新的多环处理系统来强化低碳源条件下系统脱氮除磷的能力。
    本试验以污泥龄、好氧区水力停留时间、回流比以及溶解氧浓度为控制因素,各因素取三水平,用正交表来安排试验。试验结果表明,污泥龄(SRT)对系统脱氮除磷效果影响最为关键,接下来是水力停留时间(HRT)、回流比、溶解氧浓度(DO)。其中,较长的污泥龄、水力停留时间、较高的回流比以及较低的溶解氧浓度都有利于提高系统在低碳源条件下的脱氮除磷效果。在此基础上,进行了延长污泥龄为30d、好氧区水力停留时间为16hr 的补充试验,结果表明,较长污泥龄和水力停留时间确实有利于低碳源污水氮磷的去除,出水COD、氮、磷满足排放标准,其中TN 去除率为81.24%,TP 去除率71.09%。
    本试验研究还对外沟好氧区的同时硝化反硝化进行了试验证实,结果表明,外沟在SRT=20~25d,HRT=12hr,回流比=400%,DO=0.5~1mg/L 的条件下,同时硝化反硝化脱氮率可达34%左右。此外,本研究通过试验证实本系统在低碳源条件下得出的优化控制条件不仅适用于水质偏低的城市污水,对一般水质的污水有更好的去除效果。
    本试验研究提出的低碳源城市污水脱氮除磷的运行方式和控制参数可以为目前我国城市污水处理厂进水水质偏低、氮磷去除效果不佳的现实情况提出一套行之有效的解决方法,试验结果对污水处理厂的运行和设计具有一定的指导意义。
At present, the contamination of nitrogen and phosphorus is serious in our country, and many WWTPs use complex processes which have too many structures, complex feedback system and need strict working condition, all of those result in the sewage treatment establishments have high costs of construction and operation, fussy condition and high technique need for keepers and so on. Those problems will inevitably influence the development of environment protect project in our country. So highly efficient, energy-saving and simply running Combined Triple Circle Technology is invented in prophase study, but this process dosen’t have good nitrogen and phosphorus removal effect for insufficient carbon source sewage.
    Based on analysis of spacial relationship of several continuous removal phosphorus and denitrification process, integration of the advantage of many continuous flow nitrogen and phosphorus removal process, such as the inverse A2/O, subsection influent removal phosphorus and denitrification process, OCO process, Orbal oxidation ditch, and integrated oxidation process and so on, combination with new theory on removal phosphorus and denitrification, adoption of basic form of Combined Triple Circle process model, a kind of new simple wastewater treatment technique called multi-loop reactor to improve the treatment effect of actual low-concentration influent is brought forward in paper.
    Four parameters were selected in multi-loop reactor:SRT、HRT、feedback ratio and DO in aerobic zone, and each parameter has three levels. The results show that: SRT is the first important parameter, successively is HRT、feedback ratio and DO in aerobic zone, and long SRT、HRT, big feedback ratio and low DO in aerobic zone is advantaged for nitrogen and phosphorus removal under low-concentration influent. Based on this result, the complemental test of SRT=30d、HRT=16hr is carried through and confirm that long SRT、HRT are really advantaged for nitrogen and phosphorus removal, COD、TN、TP of effluent is up to waste discharge standard, and the removal ratios of TN and TP is 81.24%and 71.09%.
    The result of simultaneous nitrification and denitrification (SND) in outer loop shows that: the nitrogen removal rate of SND is about 34% at the condition of SRT=20~25d、HRT=12hr、feedback ratio=400% and DO=0.5~1mg/L. Besides, the result show that: those parameter levels are not only advantaged for low-concentration
    influent, but for common-concentration sewage. The running mode and parameter levels for nitrogen and phosphorus removal could effectively resolve problem of low removal effect under low-concentration influent, have practical meaning.
引文
[1] 我国城市污水与污水处理.给水排水.2004.9
    [2] 张自杰,顾夏声.排水工程(第三版),中国建筑工业出版社,1996
    [3] 黄儒钦,杨敏.活性污泥法的发展及其工程选择.四川环境,2001 年第20 卷第1 期
    [4] 邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺.中国给水排水,2003 Vol.19
    [5] 邓荣森,许俊仪,谭显春.城市污水处理与一体化氧化沟技术.给水排水, 2000 Vol.26
    [6] 刘丽玲等.脱氮除磷新途径——反硝化除磷.化工设计,2004,14(2)
    [7] 王亚宜等.反硝化除磷理论、工艺及影响因素.中国给水排水,2003 Vol.19
    [8] 马勇等.新型高效反硝化除磷工艺.环境污染与防治,2004.2 Vol.26 No.1
    [9] 吕锡武.同时硝化反硝化的理论和实践.环境化学,2002 Vol.21 No.6
    [10] 袁林江.短程硝化—反硝化生物脱氮.中国给水排水,2000 Vol.16 No.1
    [11] 顾夏声.废水生物处理数学模式.清华大学出版社,1993
    [12] 俞辉群.生物脱氮原理,水和废水技术研究.中国建筑工业出版社,1992
    [13] J.C.Akuuna et.al..Nitrate and Nitrite Reductions with Anaerobic Sludge Using VariousCarbon Sources: Glucose Glycerol, Acetic Acid, Lactic Acid and Methanol, Wat.Res.,Vol.27,No.8,1993
    [14] 高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展.上诲环境科学,1999,第18 卷,第一期
    [15] 徐亚同.废水中氮磷的处理.上海华东师范大学出版社,1996
    [16] Bremner J.M.et.al..Nitrous oxide:emission from soils during nitrification of fertilizer nitrogen.Science,1989,199-295
    [17] 郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社,北京,1998 年
    [18] 张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应.中国给水排水,1997.13(增)
    [19] Fuhs G W,and Chen M.Microbia basis of phosphate removal in the activated sludge process for the treatment of wastewater.Microbial Ecology, 1975,2:119-138.
    [20] 吕锡武等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000 Vol.26 No.4
    [21] 钱易,米祥友.现代废水处理新技术.中国科学技术出版社,1992.
    [22] 徐乐中.pH 值碱度对脱氮除磷效果的影响及其控制方法.给水排水,1996, Vol.22 No.1
    [23] 徐乐中.生物除磷效率的确定.给水排水,No.11,1995
    [24] 张在峰、赵庆祥等.生物除磷过程中厌氧特性的研究.中国环境科学,No.5,1997
    [25] T.R. Stall& Sheward, Effect of Wastewater Composition and Cell Residence Time on phosphorus Removal in Activated Sludge,J.WPCF,48(3),1976
    [26] 刘玉生等.A/O 和A2/O 法除磷脱氮工艺影响因素及除磷动力学研究.环境科学研究,No.5, 1992
    [27] 王毓仁.提高废水生物硝化效果的理论探讨及工艺对策.给水排水,1994.8
    [28] 王诚信.活性污泥硝化系统的泥龄.中国给水排水,No.5,1992
    [29] 张自杰等.活性污泥生物学与反应动力学.中国环境科学出版社,1989
    [30] 罗宁等.新型双泥生物反硝化除磷脱氮系统中微生物的组成.给水排水,Vol.29 No.8 2003
    [31] Eberhard Bock et.al..Growth of Nitrogen in Absence of Dissolved Oxygen.Wat.Res.Vol.22,No.2,pp245-250,1988
    [32] Keisuk Hanfki.Nitrification at Low Levels of DO with and without Organic Loading in a Suspended-Growth Reacter.Wat.Res, Vol.24, No.3, pp297-302,1990
    [33] 熊建英.城市污水生物脱氮除磷MSBR 法试验研究.同济大学硕士论文,1991
    [34] Halmo G.et.al.Low Temperature Removal of Nitrate by Bacterial Denitrification.Wat. Res. 1981, 15(4):989~998
    [35] 徐亚同.废水生物处理的运行和管理.华东师范大学出版社,1989
    [36] 朱还兰,史家梁,徐亚同.SBR 生物除磷工艺的研究.上海环境科学,1993,12(8):8~13
    [37] 章非娟.生物脱氮技术.中国环境科学出版社,1992
    [38] 宗宫功,张荪楠,吴之丽.污水除磷脱氮技术.中国环境科学出版社, 1982
    [39] Levin G Vetal.J..Water Pollution Control,Vol.37,1965
    [40] 汪慧贞,李颖.生物脱氮工艺的新发展——半硝化和厌氧氨氧化.水处理技术,2002 年10 月,第28 卷,第5 期。
    [41] 李晔等.生物脱氮工艺技术的研究进展.工业安全与环保,2003 年,第29 卷第1 期
    [42] 杨麒,李小明.高效生物脱氮新技术.环境与开发,2001 年,第16 卷第4 期
    [43] 贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术.上海环境科学,2003 年,第22卷,第五期
    [44] CARUCCIA, KUHNIM, BRUNR,et.al . Microbical Competition for the Organic Substratesandits Impact on Ebpr Systemunder Conditions of Changing Carbon Feed [J].Wat. Sci. Tch. 1997.36(12):19 27.
    [45] HENZEM,GUJERW,MINOT. “Activiated Sludge Model No.2”[J]. Wat. Sci.Tch. 1999,39(1):165 182.
    [46] Smolders GJF,van der Meij J,van Loosdrecht MCM,et al. Model of the aerobic metabolism of the biological phosphorus removal process,stoichiometric andd pH influence. Biotechnol Bioengng 1994.43:461—470。
    [47] Henze M Guier W,Mino T,et al.IAWQ task group on mathematical modeling for design and operation of biological wastewater treatment processes,Activated sludge model No 2,Scientfic and Technical Reports No 3 IAWQ,1995,London
    [48] Murnleitner E, Kuba T, van Loosdrecht MCM,et al.An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.J Environ Engng(ASCR), 1997,56:876-883.
    [49] Ternmink H, Petersen B, Isaacs S et al. Recovery of biological phosphorus removal after periods of low organic loading.Wat Set Tectinol,1996,34(l/2):1~8.
    [50] Brdjanovic D,Slamet A,van Loosdrecht MCM,et al.Impact of excessive aeration on biological phosphorus removal from wastewater. wat Res, 1998,32:200—208
    [51] 毕学军,张波,高廷耀.低负荷运行对城市污水生物除磷的影响.上海环境科学,2002年,第21 卷,第2 期。
    [52] 白晓慧.生物除磷机理新进展.环境科学动态,1997,(3):10~11
    [53] 王建芳等.生物脱氮除磷新工艺的研究进展.环境污染治理技术与设备,2003 年9 月第4 卷第9 期
    [54] Robertson L A , Van Neil E WJ et al..Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha.Applied Environmental Microbiology,1988,54 (1)2812 —2818
    [55] Van Neil E W J.Nitrification by Heterotrophic Denitrifiers and Its Relationship to Autotrophic Nitrification.Ph D Thesis,Delft University of Technology, Delft, 1991
    [56] 王建芳.围绕碳源问题进行的脱氮除磷工艺改进.徐州建筑职业技木学院学报,2003 年6 月第3 卷第2 期
    [57] 黄晟,吴慧英,陈建红.城市污水除磷中的有关问题.重庆环境科学,2001 年10 月,第23 卷第5 期
    [58] Dawson R.N,et al,Water Quality International,1995,(1):20~22
    [59] Wilson A.,et al,Water Quality International,1995,(1):24~26 [62]
    [60] 沈耀良.废水生物脱氮除磷工艺设计和运行中需考虑的几个问题.环境科学与技术,1996年第2 期
    [61] C. P. Leslie Grady. Jr.等,张锡辉等译.废水生物处理第二版,改编和扩充.北京:化学工业出版社,2003.1
    [62] 王涛.单池分区优化及能量模型的研究.博士学位论文. 重庆大学,2004.4
    [63] 张波,高廷耀.倒置A2/O工艺的原理与特点研究.中国给水排水2000 Vol.16
    [64] 白晓慧,王宝贞.一种新型的Carrousel 氧化沟给水排水.1999 Vol.25 No.3
    [65] 颜秀勤,王树成.奥贝尔氧化沟溶解氧分布与节能特性分析.中国给水排水2001 Vol.17 No.3
    [66] 邓荣森.等新型一体化氧化沟工艺及其运行方式的探讨.给水排水2002 Vol.28 No.8
    [67] 李尚月.合建式三环工艺的试验研究.重庆大学硕士论文.2004
    [68] 姬跃国.OCO 工艺的处理特点.工业用水与废水2001 Vol.32 No.3
    [69] 刘俊新,王宝贞.采用氧化沟从城市污水中去除氮和磷的研究.哈尔滨建筑大学学报, Vol.30.No.5,1997.10
    [70] 周少奇,方汉平.低COD/N-NH4 比废水的同时硝化反硝化生物处理策略.环境污染与防治,第22 卷.第1 期.2000.2
    [71] R So rm, G Bo rtone, R Saltarelli, et al. Pho sphate up take under anoxic conditions and fixed2film nitrification in nutrient removal activated sludge system. W at. Res. , 1996. 30 (7) : 1573~1584
    [72] 马勇,彭永臻等.新型高效反硝化除磷工艺.环境污染与防治,第26 卷,第1 期,2004.2
    [73] 米克尔G·曼特,布鲁斯A·贝尔. 污水处理的氧化沟技术.中国建筑工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700