微弧氧化法制备钛基羟基磷灰石生物陶瓷膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用微弧氧化(MAO)技术,采用自制的微弧氧化简易装置于含磷酸二氢钠和乙酸钙的电解液中在商业纯钛表面制备含羟基磷灰石的氧化钛生物活性陶瓷膜层。对试验制得的膜层运用扫描电镜(SEM)、X射线能谱仪(EDX)和X射线衍射仪(XRD)等分析手段进行检测,检测结果表明:该膜层是一种多孔状、与基体结合牢固、具有陶瓷特性的复合膜层;膜层中含Ti、O、Ca、P四种元素;膜层中的物相除羟基磷灰石外还有金红石、锐钛矿。本试验通过微弧氧化技术在钛基表面直接生成了羟基磷灰石(HA),比目前较多采用的复合法在钛基表面制备羟基磷灰石工艺简单。
     本论文研究了各工艺参数如电解液浓度、氧化电压等对膜层结构特征的影响,在大量试验结果的基础上,本论文给出了在目前实验条件下的最佳工艺参数:电流密度为10~20A/dm~2、电压为450~500V,氧化时间为20~30min,电解液温度为20~70℃时可得到形貌、膜厚最佳以及膜层中的磷灰石结晶度较好的膜层。并根据试验结果,结合微弧氧化的特点对膜层的生成机理进行了初步的探讨,认为电泳理论可以解释电解液中含钙、磷粒子向阳极运动的原因,扩散是钙、磷元素进入膜层的主要机制。此外,本论文在前面试验的基础上,对向含羟基磷灰石的膜层中添加一些微量元素如硅、银等元素这一想法进行了尝试。
     生物相容性是生物医学材料的重要评价指标之一。本论文采用体外细胞毒性试验和细胞培养试验对微弧氧化膜层进行了生物相容性的初步评价。试验结果表明,该材料的细胞毒性为0或1级,初步检验合格,能满足临床应用材料的生物相容性要求;钛表面微弧氧化改性的氧化膜有利于细胞的附着,能增强BMSCs细胞的成骨能力
In the paper, the bioceramic composite coatings of hydroxyapatite (HA) andtitanium dioxide (TiO_2) on titanium substrates were formed by micro-arc oxidation(MAO) in electrolyte containing sodium phosphate monobasic dihydrate(NaH_2PO_4.2H_2O), calcium acetate monohydrate (CH_3COO)_2Ca.H_2O) with the facilityof microarc oxidation made by ourselves. Scanning electron microscopy (SEM) withEnergy dispersive X-ray spectrometer (EDX) and X-ray diffraction (XRD) wereemployed to characterize the microstructure, elemental composition and phasecomponents of the coatings. The surface of the ceramic layer was a porous structureand the adhesion of the coatings was favorable. The oxidized coatings contained Caand P as well as Ti and O. The porous coatings were made up of hydroxyapatite, rutileand anatase. The hydroxyapatite-containing coatings on titanium substrate directlywere prepared by MAO and the process was simpler than other treatments that wereapplied presently to the preparation of hydroxyapatite-containing titania coating ontitanium or titanium alloy.
     The processing parameters such as the concentration of electrolyte and thevoltage which affected the coating were studied. After lots of experiments, theoptimized parameters under optimal processing condition were worked out in thepaper: the current density was about 10~20A/dm~2, the voltage was 450~500V, theoxidation time was 20~30min and the temperature of electrolyte was 20~70℃.Based on the results of experiment and the characteristics of micro-arc oxidation, themechanism of coating forming was discussed. The electrophoresis can explain themovement of Ca and P particle in electrolyte towards the anode. The diffusion of Caand P particle urge the Ca and P element to enter the coating. Moreover, a novel thought that microelement such as silicon and silver were separately added to thecomposite coating of HA and TiO2 by MAO was practiced in this paper.
     Biocompatibility is one of important evaluation of biomaterial. In the paper,cytotoxicity experiment and cellular cultivation experiment were made to evaluate thebiocompatibility of the coatings. The results showed that the level of toxicity of thecoatings was 0 or 1 and the coatings was eligible in clinic application, and that thecoating modified by MAO was in favor of the attachment of BMSCs cell
引文
[1] 俞耀庭,张兴栋等,生物医用材料,天津:天津大学出版社,2000。10-32
    [2] M.Yodae al, Biomaterials, 2001, 22:1675-1681
    [3] 李德华,医用钛表面的微观改造,国外医学生物医学工程分册,1997,20(1):10-260
    [4] 姚秀敏,谭寿红,江东亮,多孔轻基磷灰石陶瓷的制备,材料科学与工程,2002,17(4):28-34
    [5] Arun Madan, Scot Moorision, Anodic oxide films containing Ca and P of titanium biomaterial, Biomatedal, 2001, 21:1461-1469
    [6] W Suchanek, M Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Materials Research, 1998, 13 (1): 94-117.
    [7] 李世普,生物医用材料导论,武汉:武汉工业大学出版社,2000。65-89
    [8] 崔福斋,冯庆玲,生物材料学,北京:科学出版社,1999。113-130
    [9] F.Barrere, MM Snel, et.al, Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants, Biomaterials, 2004, 25(14): 2901-2910
    [10] Lenz J, Schwarz S, Schwickerath H, Sperner F, Schafer A, Bond strength of metal ceramic systems in three-point exube bond test, J. Applied Biomaterials, 1995, (6): 55-64
    [11] 石建民,丁传贤,生物活性钛涂层,无机材料学报,2001,12(5):34-36
    [12] Shimizu A, Elects of Pd and Cr on titanium properties (in Japanese), J Jpn Dent Mater, 1986, 5:122-132
    [13] Okuno O, Shimizu A, Miura I, Fundamental study on titanium alloys for dental casting (in Japanese), J Jpn Dent Mater, 1985, 4:7-15
    [14] 尹玉姬,李方等,生物医用材料,化工进展, 2001,20(2):4-7
    [15] 张兴栋,面临重大突破的生物医学材料科学与产业,新材料发展现状及21世纪发展趋势研讨会论文集, 西安,2001:27-30
    [16] Leventhalcs, Titanium, metal for surgery, Bone joint surg, 1951, A33:473-474
    [17] 稀有金属编委会编著,稀有金属手册下册,北京:冶金工业出版社,1995。87-90
    [18] R.M.邓肯等著,周光爵等译,钛的应用与选择,北京:冶金工业出版社,1988。35-7
    [19] 刘润泽,陈正云,李中,等,钛的特性及其应用,北京:化学工业出版社,1997,3。31-35
    [20] 陈治清,口腔生物材料学,北京:化学工业出版社,2004。192-235
    [21] Christoph Leyens, Manfred Peters编著,陈振华等译,钛与钛合金,北京:化学工业出版 社,2005。393-401
    [22] 王大林,徐君武,钛在牙科上的应用,稀有金属材料与工程,1993,22(3):434-438
    [23] 于思荣,生物医学钛合金的研究现状及发展趋势,材料科学与工程,2000,18(2):131-134
    [24] 郭天文主编,口腔科铸钛理论和技术,西安:世界图书出版社出版,1997。1-10
    [25] 张玉梅,郭天文,离佐臣。钛及钛合金在口腔科应用的研究方向,生物医学工程学杂志, 2000,17(2):206-208
    [26] 宁聪琴,周玉,医用钛合金的发展及研究现状,材料科学与工艺,2002,10(2):100-106
    [27] Wolke J G C et.al, Plasma-sprayed hydroxyapatite coatings for biomedical applications, Proceeding of the third national thermal spray conference, 1990, 413-417
    [28] Gross K A, In vitro testing of plasma-sprayed hydroxyapatite coatings, J. Mat. Sci: Mat. in Medicine, 1994, 5:219-224
    [29] Shirkhanzadeh M, Bioactive calcium phosphate coatings prepared by electrodeposition, J. Mat. Sci. Lett, 1991, 10:1415-1417
    [30] Gorcia R, Doremus R H, Electron microscopy of the bone hydroxyapatite interface from a human dental implant, J. Mat. Sci: Mat. in Medicine, 1992, 3:154-156
    [31] L I Panjian, DE Grootk, Calcium phosphate formation within sol-gel prepared titania in vit ro and in vivo, J Biomed Mater Res, 1993, 27 (12): 1495-1500
    [32] A M Uchid, H M Kim, T Kokubo, et.al, Apatite2forming ability of sodium2containing titania gels in a simulated body fluid, J Am Ceram Soc, 2001, 84 (12): 969-974
    [33] 黄紫洋,刘榕芳,肖秀峰,电泳沉积羟基磷灰石生物陶瓷涂层的研究进展,硅酸盐学报,2003,31(6):68-74
    [34] 戴采云,张亚平,高家诚,等,生物陶瓷涂层技术及界面研究评述,材料导报,2003,5:45-47
    [35] 肖秀兰,陈志刚,羟基磷灰石涂层制备技术的可行性研究,材料导报,2003,17(4):32-34.
    [36] H Arita, V M Castano, Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity, J. Mat.Sci: Mat. in Medicine, 1995, 6:19-23
    [37] 张亚平,激光熔覆生物陶瓷复合涂层,材料研究学报,1994,8(1):93-96
    [38] 刘榕芳,肖秀峰等,电沉积HA/TiO2复合涂层的结合强度和热稳定性研究,无机化学学报,2004,20(2):225-230
    [39] Yong Han, Seong-Hyeon Hong, Kewei Xu, Synthesis of nanocrystalline titania films by micro-arc oxidation, Mater. Lett, 2002, 56:744-747
    [40] Ping Huang, Ke-wei Xu, Yong Han, Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application, Mater. Lett, 2005, 59: 185-189
    [41] Yaming Wang, Bailing Jiang, Tingquan Lei, Lixin Guo, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse, Mater. Lett, 2004, 58: 1907-1911
    [42] 张欣宇,石玉龙,方明,微弧氧化陶瓷膜的性能研究,电镀与涂饰,2002,21(6):1-4
    [43] 薛文彬,邓志威,来永春,汪新福,陈如意.铝合金微弧氧化陶瓷膜的形成过程及其特性,电镀与精饰,1996,18(5):3-6
    [44] T. B.Van, S. D.Brown, G. P.Wirtz, Mechanism of Anodic Spark Deposition, A m. Ceram. Soc. Bull, 1977, 56(6): 563-566.
    [45] W.Krysmann, P.K.Urze, K.H. Dittrich, H.G.Schneider, Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF), Crystal Res & Technol, 1984, 19(7): 973-979
    [46] Sluginov N P, Electric discharges in water, J Russ Phys Chem Soc, 1980, 12(12): 193
    [47] 石玉龙,茹凤虎,彭红瑞,谢广文,铝材表面的等离子微弧氧化技术研究,电镀与涂饰, 2000,19(1):15-17
    [48] Shi Yulong, Yan Fengying, Xie Guangwen, et.al, Effect of pulse duty cycle on micro-plasma oxidation of aluminium alloy, Mater. Lett, 2005, 59, 2725-2728
    [49] 薛文斌,邓志威,来永春,等,有色金属表面微弧氧化技术评述,金属热处理,2000, (1):1-3
    [50] 薛文斌,邓志威,来永春,陈如意,铝合金微弧氧化陶瓷膜的相分布及其形成,材料研究学报,1997,11(2):21-23
    [51] V. N. Malyshev, A.G. Kolmakov, E. E. Baranov, Optimizing Microarc Oxidation Process on the Basis of the System Approach, Perspekt.Mater.(Russia), Mar-Apr.2003: 5-16.
    [52] K. H. Dittrich, W.Krysmann, P.Kurze, H.G.Schnelder, Structure and Properties of ANOF Layers, Crystal Res&Technol, 1984, 19(1): 93-99
    [53] Shi Yulong, Zhang Xinyu, Yan Fengying, et.al, Hard coatings on aluminium alloy surfaces produced using microplasma oxidation, Mater. Sci. Technol, 2004, 20:673-675
    [54] Xue Wenbin, Deng Zhiwei, Lai Yongchun,et.al, Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy, J.Am.Ceram.Soc, 1998, 81(5): 1365-1368
    [55] Xue Wenbin, Deng Zhiwei, Chen Ruyi,et.al, Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation, Journal of Materials Science,2001,36(11): 2615-2619
    [56] 闫凤英,石玉龙,周旋,微弧氧化电解液配方改良的初步研究,电镀与涂饰,2003,22(1):5-7
    [57] 张欣宇,石玉龙,闫凤英,铝及其合金等离子微弧氧化技术,电镀与涂饰,2001,20(6):24-27
    [58] L.H. Li, Y.M. Kong, H.W. Kim, et.al, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 2004,25:2867-2875
    [59] Y.T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials, 2003, 24:3893-3907
    [60] W.H. Song, Y.K.Jun, Y. Han, et.al, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 2004, 25:3341-3349
    [61] Y.Han, S.H.Hong, K.W.Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation, Surf. Coat.Technol, 2003, 168:249-258
    [62] Tang Guang-xin, Zhang Ren-ji, Yan Yong-nian, et.al, Preparation of porous anatase titania film, Mater. Lett, 2004, 58: 1857-1860
    [63] V A Denisenko, V A Pokrovskii, N I Osipova, et.al, Mass-spectrometric investigation of TiO2 films obtained by mocroarc oxidation, Protection of Metals, 1998, 25(6): 765-766.
    [64] M P Kandinskii, P S Gordienko, A M Ziatdinov, X-Ray electron study of titanium coatings prepared in phosphate electrolyte by the microarc oxidation method, Zhumal Neorganicheskoi Khimii, 1989, 34(4): 823-826
    [65] 薛文斌,邓志威,钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构,金属热处理,2000, (2):5-7
    [66] 薛文斌,邓志威,Ti-6A1-4V在NaAlO2溶液中微弧氧化陶瓷膜的组织结构,材料科学与工艺,2000,(9):41-45
    [67] 王亚明,蒋百灵,Na2SiO3系溶液中Ti6A14V微弧氧化陶瓷膜的结构与力学性能,稀有金属材料与工程,2004,33(5):502-506
    [68] 姜兆华,吴晓宏,Na3PO4-Na2B4O7体系中钛合金微等离子体氧化陶瓷膜研究,稀有金属,2001,(3):151-153
    [69] Chen Jian-zhi, Shi Yu-long, Wang Lei, Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation, Mater. Lett. 2006, 60: 2538-2543.
    [70] M J Coathup, J Blackburn, A E Goodship,et al, Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components, Biomaterials, 2005, 26(19): 4161-4169
    [71] Akin FA, Zreiqat H, Jordan S, et al, Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants, J. Biomed Mater Res, 2001, 57(4): 588-596
    [72] Rohanizadeh R, Al-Sadeq M, Legeros RZ, Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition, J Biomed Mater Res, 2004, 71A(2): 343-352
    [73] Takebe J, Itoh S, Okada J, et al, Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro, J. Biomed Mater Res, 2000, 51(3): 398-407
    [74] 张玉梅,赵铱民,黄平,钛表面处理后表面能分析及对细胞附着的影响,稀有金属材料与工程,2004,33(5):518-521
    [75] 卢光, 张建, 李建新,等,血管组织工程生物材料细胞相容性的评价,首都医科大学学报,2006,27(3):321-324
    [76] T Kokubo, H Kushitani, S Sakka, et al, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W, J Biomed Mater Res, 1990, 24(6): 721-734
    [77] J Takebe, S Itoh, K Ishibashi, Anodic Oxidation and Hydrothermal Treatment of Titanium Results in a Surface That Cause Increased Attachment and Altered Cytoskeletal Morphology of Rat Bone Marrow Stromal Cells in Vitro, J Biomed Mater Res, 2000, 51(3): 398~407
    [78] X Nie, A Leyland, A Matthews, Deposition of layered bioceramic hydroxyapatite/TiO_2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coat.Technol, 2000, 125(1-3): 404-414
    [79] J Baszkiewicz, D Krupa, J Mizera, Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment, Vacuum, 2005, 78(2-4): 143-147
    [80] 孙秋霞,材料腐蚀与防护,北京:冶金工业出版社,2001。41-48
    [81] 高颍,邬冰,电化学基础,北京:化学工业出版社2004。20-56
    [82] 刘永辉,张佩芬,金属腐蚀学原理,北京:航空工业出版社1993。85-94
    [83] 宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988。154-179
    [84] 陈宗淇,戴闽光,胶体化学,北京:高等教育出版社,1984。234-308
    [85] 张建民,杨长春,石秋芝,电泳沉积功能陶瓷涂层技术,中国陶瓷,2000,36(6):36-40.
    [86] Alexandra E. Porter. Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition, Micron, 2006, 37: 681-688
    [87] 唐晓恋,刘榕芳,肖秀峰,含硅羟基磷灰石的研究进展,硅酸盐通报,2005,6:89-94
    [88] Carlise E.M.Silicon: a possible factor in bone Calcification, Science, 1970, 167:179-280
    [89] 刘榕芳,肖秀峰,许道璇,复合电沉积制备HA/Ag生物陶瓷涂层,硅酸盐学报,2003, 31(6):615-619
    [90] K Hangst, J Eitenmuller, R Weltin, et al, Hydroxyapatite silver phosphate ceramics: production analysis and biological testing of their antibacterial electiveness, Mater Res Symp Proc, 1989, 110: 269-274.
    [91] J Eitenmuller, K Hangst, G Peters, et al, Tissue tolerance and antibacterial effectiveness of hydroxyapatite silver phosphate ceramics, Mater Res Symp Proc, 1989, 110:277—284
    [92] 吕晓迎,H.F.Kappert,牙科材料细胞毒性评定的新方法(MTT法),中华口腔医学杂志,1995,30(6):377-379
    [93] 贺亚敏,黄培林,吕晓迎,几种医用材料的细胞生物相容性评价的实验研究,东南大学学报(医学版),2003,22(2):75-79
    [94] T Mosmann, Rapid colorimetric assay for celluar growth and survival: application to proliferation cytotoxicity assays, J Immu Meth, 1983, 65(1): 55-63
    [95] 郝和平主编,医疗器械生物学评价标准实施指南,北京:中国标准出版社,2000。100-110
    [96] J R Mauney, J Blumberg, M Pirun,et al, Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vivo, Tissue Eng, 2004, 10(1-2): 81-92
    [97] J W Vehof, A E Ruijte, P H Spauwan, et al, Influence of rhBMP-2 on rat bone marrow stromal cells cultured on titanium fiber meshs, Tissue Eng, 2001, 7(4): 373-383
    [98] D Campoccia, C R Arciola, M Cervellati, et al, In vitro behaviour of bone marrow-derived mesenchymal cells cultured on fluorohydroxyapatite-coated substrata with different roughness, Biomaterials, 2003, 24(4): 587-596
    [99] S Radin, G Reilly, G Bhargave, et al, Osteogenic effects of bioactive glass on bone marrow stromal cells, J Biomed Mater Res A, 2005, 73(1):21-29
    [100] Maitz MF, Poon RWY, Liu XY, et al. Bioactivity of titanium following sodium plasma immersion ion implantation and deposition, Biomaterials, 2005, 26(27):5465-5473
    [101] Li LH, Kong YM, Kim HW, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 2004, 25(14):2867-2875
    [102] Feng B, Weng J, Yang BC, et al. Characterization of surface oxide filrns on titanium and adhesion of osteoblast, Biomaterials, 2003, 24(25):4663-4670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700