Ti-6A1-4V合金表面微弧氧化膜的制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弧氧化技术是一项具有较大潜力和广阔应用前景的表面改性新技术,在航空、航天领域有重要的应用背景和价值。
     为了在Ti-6A1-4V合金表面获得良好的氧化膜层,本文采用直流稳压电源微弧氧化设备进行了NaOH、Na_2SiO_3、Na_2HPO_4三种电解液体系中的微弧氧化试验,并优选出最佳工艺参数。利用XRD、SEM、EDS等手段对涂层的微观组织结构进行分析,研究了涂层的形成机制,并测试了涂层的厚度、硬度和耐腐蚀性。以及电解液浓度和初始温度对微弧氧化的起弧电压变化规律的影响。在Na_2HPO_4和Na_2SiO_3溶液作为电解液时,起弧电压都是随着电解液浓度、初始温度的升高而线性减小。当浓度过小时,在阳极钛合金板的边缘易发生烧损现象;当电解液浓度过大时,阳极钛合金板不易起弧;
     在Na_2HPO_4和Na_2SiO_3溶液作为电解液时,在不同的处理时间、电解液浓度和电压下制备的微弧氧化膜表面都呈现多孔结构。随着微弧氧化时间的延长,氧化膜的厚度不断增加,而生长速率和耐腐蚀性先增加后减小,表面粗糙程度、硬度和微孔尺寸逐渐增大,微孔密度逐渐减小。膜层主要由锐钛矿和金红石型TiO_2组成;随着微弧氧化时间、电解液浓度和电压的增加,膜层中锐钛矿型TiO_2逐渐减少,而金红石型TiO_2则逐渐增多并最终在膜层中占据主导地位;
     在NaOH电解液中,氧化膜表层质量随着添加剂NaF的浓度增加而变的更加光滑,膜层厚度和耐腐蚀性随着添加剂NaF的浓度的增加都在逐渐增加。虽然微孔尺寸逐渐增大,微孔数目也在逐渐减少,但其耐腐蚀性却在逐渐增大。这与上述两种电解液中制备的微弧氧化膜性能不尽相同,所以一定程度上,在含有添加剂NaF的NaOH溶液中所生成的氧化膜层更具有耐腐蚀性;
     实验确定的最佳测定条件:在含有添加剂NaF的NaOH溶液中,电解液浓度为3g/LNaOH +0.4mol/LNaF,微弧电压为280V,氧化时间为10min;在Na_2HPO_4溶液中,电解液浓度为0.3mol?L,微弧电压为180V,微弧氧化时间为300s,电解液初始温度为10℃;在Na_2SiO_3溶液中,电解液浓度为50g?L,电解液初始温度为20℃,微弧电压为280V,微弧氧化时间50s-150s为宜。这样可以得到孔径大小均匀而且致密性较好的氧化膜。
     综上所述,欲制备理想的微弧氧化膜就必须综合考虑各种因素的相互作用。
As a novel technology of surface modification, Microarc Oxidation(MAO) has great potential and abroad application prospect. It has important application background and value in aerospace and aviation fields.
     In order to obtain a good oxidation coating on surface of Ti-6A1-4V alloy,NaOH、Na2SiO3 and Na2HPO4 coatings were Prepared in the corresponding electrolyte system by micro-arc oxidation (MAO) method,and the optimal MAO parameters were obtained by using direct current constant voltage electrical source. Microstructure of the coatings was characterized using XRD, SEM and EDS techniques. The formation mechanism of MAO coating was investigated. The thickness, rigidity and anti-causticity of coatings were tested. The influence of electrolyte concentration and temperature was discussed to the variational disciplinarian of sparking voltage. As the result of research as follows:
     When Na2HPO4 and Na2SiO3 solution were choosed as electrolytic solution, the magnitude of sparking voltage minish linearly with the hoist of electrolytic solution and initial temperature. when the concentration was very small, the adust phenomenon took place easily on the edge of nodic titanium alloy board; by contraries, sparking was found difficultly.
     When Na2HPO4 and Na2SiO3 solution were choosed as electrolytic solution, micro-arc oxidation coatings had the porous structure in different disposal time、electrolytic solution concentration and voltage. The rigidity、thickness、surface roughness and size of tiny hole augment of coating increased gradually, growth velocity and corrosion resistance increased primitively and then minish, but density of tiny hole decreased gradually. The results show that anatase and rutile titania on the titanium surface mostly. Anatase titania droped off and rutile titania increased gradually, which will play a leading role.
     The quality of oxidation film became more velveter with increase of NaF concentration. Thickness of film and rigidity increased gradually with increase of NaF concentration. Although pore size increased and the number of microporous decreased gradually, corrosion resistance increased gradually, the performance of oxidation film mentioned above two kinds of electrolyte was not the same, so the corrosion resistance of oxidation film was more better to a certain degree in NaOH solution Containing additive NaF.
     Through the test, the optimized working conditions are determined: electrolyte concentration is 3g/L NaOH +0.4mol/LNaF, micro-arc voltage is 280V, oxidation time is 10min in NaOH solution Containing additive NaF; electrolyte concentration is 0.3mol?L, micro-arc voltage is 180V, oxidation time is 300s, initial temperature of electrolyte is 10℃in Na_2HPO_4 solution; electrolyte concentration is 50g?L, micro-arc voltage is 280V, oxidation time is 50-150s, initial temperature of electrolyte is 20℃in Na_2SiO_3 solution; Like this, oxidation film of homogeneous pore size and good compactness can be obtained.
     In a word, to prepare perfect micro-arc oxidation film, interreaction of various factors must been taken into account.
引文
[1] A.Molinari, G.Straffelini, B.Tesi, T. Bacci. Dry Sliding Wear Mechanism of the Ti6Al4V Alloy.Wear.1997,208:105-122
    [2] H.Culeryuz, H. Cimenoglu. Surafce Modification of a Ti-6A1-4V Alloy by Thermal Oxidation.Surf.Coat.Technol.2005,192:164-170
    [3] A. Aladjem.Review: Anodic Oxidation of Titanium and its Alloys. J Mater. Sci. 1973, (8):688-704
    [4]稀有金属编委会编著.稀有金属手册下册.第一版.冶金工业出版社,1995: 87 -90
    [5]刘润泽,陈正云,李中等,钛的特性及其应用.纯碱工业.1997, 3:31-35.
    [6] R.M.邓肯等著,钛的应用与选择.周光爵等译,冶金工业出版社,1988:35-37
    [7] Kedici S P,Aksut A A,Kilicarslan M A,et al.Corrosion behaviour of dental metals and alloys in diffirent media.[J] Oral Rehabil 1988, 25(10):800-802
    [8]张亚平,高家诚,王勇,世界科技研究与发展,2000,22(1):47
    [9]孙宝全,衣光舜,赵淑英等,组织工程及其材料研究进展,高分子材料科学与工程,2003,19(4):1-5
    [10]浦素云,金属植入材料及其腐蚀,北京:北京航空航天大学出版社,1990.23 [1l]师昌绪,材料科学技术百科全书编委会,材料科学与技术百科全书,北京:中国大百科全书出版社,1995.1169
    [12]白新德,范玉殿,金属腐蚀理论及应用,北京:机械工业出版社,1996. 256-258
    [13]王海林,徐大元,张诗虎,短碳纤维增强PMMA颅骨板材的研制和临床应用,中华神经外科杂志,1993,9(5):295
    [14] Van Noort R.Review titanium:the implant materials of today.J Mater Sci.1989;223801-11
    [15] Parr GR.Gardner LK, Toth RW.Titanium: the mystery metal of implant dentistry.Dental materials aspects.J Posthent Dent.1995; 54 (3):410-414
    [16] Branemark PIl.Osseointegation and its experimental background.J Prosthet Dent.1993; 50:399-403
    [17] Squire M W Ricci J L, BiziosR Analysis of osteoblast mineral deposits on orthopaedic/dental implant metals.Biomaterials.1996; 17(7):725-33
    [18] CochranD L, Hermann J S, Schenk-RK, et al.Biologic width around titanium implants.Ahisto rneric analysis of the implanto-gingival junction around unloaded And loaded nonsubmetged impl-ants in the caninemandible.J-Periodontal.1997;68(2):86-98
    [19] Burstone C J, Goldberg AJ. Beta titanium: A new orthodontic alloy.Am J Orthod. 1980; 77 (2 ): 123-126
    [20] Andreason G F, Morrow R E, laboratory and clinical analyses of nitincl wires.Am J Orthod. 1980; 79 (2) 142-149
    [21]汪大林综述,彭玉田校,钛及钛合金义齿部件的加工,国外医学口腔分册1995:22:35-38
    [22]谭树松主编.有色金属材料学.第一版.北京:冶金工业出版社.1979:76-80
    [23]辛湘杰,薛峻峰,董敏主编.第一版,合肥:安徽科学技术出版社.1988:18-19
    [24] Y.Okazaki, I.Atsuo, T.Tetsuya, et al, Effect of alloying elements on anodic polarization pr operties of titanium alloys for medical implants in acid solutions[J],J Japan Inst Metals, 1993 , 57 (3):338-346
    [25] Titanium Association, Titanium Machining Technology [M], Tokyo: Nikan lndustry Shinbunsh ya, 1992, 12
    [26]郭天文,口腔科铸钛理论和技术,西安:世界图书出版社出版,1997,1-10
    [27]赵树萍,钛及其合金微弧氧化的应用[ J ].国外金属热处理.1999, 32 (6):22
    [28] Xue Wenbin, Deng Zhiwen, Lai Yongchun et al. J Am Cerm Soc[J], 1998,81(5):1365
    [29] Huang Ping, Xu Kewei, Han Yong, Rare Metal Materials and Engineering[J], 2003, 32(4):272
    [30] Yerokhin A L, Nie X, Leyland A et al. Surf Coat Technol[J], 1999, 122: 75
    [31] Wei Tongbo, Tian Jun, Journal of Materials and Engineering[J], 2000, 130: 95
    [32] Van T.B , Brown S .D .and Wirtz GP.Mechanism of Anodic spark Deposition[J], Am, Ce ram. Soc Bull, 1977, 56(6): 563-566
    [33] Krysmamrw,Kruze P, Diltrich K. H., Schneider H.G. Process characteridtics and Parameters of Anodic Oxidation by spark Discharge(ANOF)[J] . Cryst.Res.Technol., 1984, 19(7): 973-979
    [34] Wrtc GP, Brown S. D, Knven W. M. Ceramic Coatings by Anodic spark Deposition[J]. Mster. Manuf. Process, 1991, 6 (1): 87-115
    [35] Young L. [J]. Trans Faraday Soc, 1957, 51(2): 229-233
    [36] Yahalom J, Zahavi J. [J]. ElectrochimActa, 1970,15(9): 1429-1435
    [37] Yahalom J, Zahavi J.[J]. ElectrochimActa, 1971, 16(5): 603-607
    [38] Wood G C, Pearson C. [J]. Corros Sci, 1967, 7(2): 119-125
    [39] Alwitt R S, Vijh A K.[J]. J Electrochem Soc,1969, 116(3):388-390
    [40] Vijh A . K. [J]. Corros Sci, 1971, 11(6): 411-417
    [41] Ikonopisov S. [J]. ElectrohimActa, 1969, 14(8): 761-771
    [42] Ikonopisov S, Andreeva L. [J]. J. Electrochem Soc, 1973, 120(10): 1361
    [43] Ikonopisov S. [J]. Electrochim Acta, 1977, 22 (10): 1077-1082
    [44] Vijh A K.[J]. Surf Technol, 1976, 4(1): 7-30
    [45] Kadary V, Klein N.[J]. J. Electrochem Soc, 1980, 127(1): 139-151
    [46] Kadary V, Klein N.[J]. J Electrochem Soc,1980, 127(1): 152-155
    [47] Albella J M, Montero I, Martinez-Duart J M.[J]. J Electrochem Soc, 1984, 131(5):1101-1104
    [48] Montero I, Albella J M. Martinez-Duart J M.[J]. J Electrochem Soc, 1985, 132(4):814-818
    [49] Montero I, Albella J M, Martinez-Duart J M.[J]. J Electrochem Soc, 1985, 132(4): 976-978
    [50] Albella J M, Montero I, Martinez-Duart J M.[J]. ElectrochimActa, 1987, 32(2):255-258
    [51]刘凤玲,驼更新等,微弧氧化与材料表面陶瓷化[J].材料保护,1998, 31 (3):21-24
    [52] Denisenko V A, Pokrovskii V A, Osipova N I. et al.Mass spectrometric investigation of TiO2 f ilms obtained by microarc oxidation. Protection of Metals[J], 1989, 25 (6) : 765-766
    [53] Kandinskii M P.Gordienko P S,Ziatdinov A M. X-Ray electron study of titanium coatings Prepared in Phosphate electrolyte by the microarc oxidation method.Zhurnal Neorganicheskoi Khimii, 1989, 34(4): 823-826
    [54]薛文斌,邓志威,陈如意等,钛合金在硅酸盐溶液中微弧氧化陶瓷膜的组织结构.金属热处理,2000,(2):5-7
    [55]薛文斌,邓志威,李永良等,Ti-6Al-4V在NaAlO2溶液中微弧氧化陶瓷膜的组织结构研究,[ J ].材料科学与工艺,2000,(9): 41-45
    [56]姜兆华,吴晓宏等.Na3PO4 - Na2B4O7体系中钛合金微等离子体氧化陶瓷膜研究.稀有金属2001,(3):151-153
    [57]王亚明,蒋百灵,雷廷权等,Na2SiO3系溶液Ti-6A1-4V微弧氧化陶瓷膜的结构与力学性能.稀有金属材料与工程,2004,33(5):502-506
    [58] Schreokenbach J P, Marx G, schlottig F, et al. Characterization of anodic spark-converted titanium surfaces for biomedical application. Joumal ofMaterials science -Materials in Medicine, 1999, 10(8): 453-457
    [59] Han Y, Hong S H, Xu K. W. Porous nanoerystalline titania films by plasma electrolytic oxidation, Surf. Coat. Technol, 2002, 154(4): 314-318
    [60]憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物薄膜的结构.无机材料学报,2001,16(5):952-956
    [61] Nykyforchyn H M, Klapkiv M D, Posuvailo V M. Properties of synthesized oxide-ceramic Coatings in electrolyte plasma on aluminium alloys[J]. Surface and Coatings Technology, 1998, (100-101): 219-221
    [62] Belevantsev V I, Terleevaop, Markov G A, etal.Micro-plasma electrochemical process review Zashch Met, 1998, 34(5): 469
    [63] Timoshenko A V, Magurova Y V . Micro-plasma oxidation of Al-Cu alloys. Zashch Met., 1995, 31(5): 523
    [64] Drobyshevsk E M, Zhukovit B G.Radiation and equilibrium composition of the Plasma in a Pulsed discharge in an e1ectro1yte. Z.H Tckh Fiz, 1977, 7: 55-62
    [65]薛文斌,邓志威,来永春等,LY12铝合金微弧氧化的尺寸变化规律.中国有色金属学报,1997,7(3):40-143
    [66]王为,曾曙等,恒压阳极氧化膜形成过程的理论研究,电镀与精饰,19(115 ) , 1997 (13)
    [67]郝建民,陈宏,蒋百灵,钛合金微弧氧化陶瓷层的耐蚀性[J].中国有色金属学报,2003,4(13):988- 991
    [68] Xue Wenbin(薛文斌) et al. Journal of Inorganic Materials(无机材料学报)[J], 2002,17(2):326
    [69] T shizaw A H, Ogimo M. Formation and characterization of anodic t itanium oxide films containing Ca and P [J ]. JB ioM ed Mater Res, 1995, 29: 65-69
    [70] Schreckenbach J P, M arx G, Schl ot t ig F, et al .Characterization of anodic spark converted titanium surfaces for biomedical applications [J ]. J Mater Sci Mater M, 1999, 10: 453 458.
    [71] YEROKHIN A L, NIE X, L EYLAND A, et a1. Plasma dee-trolysis for Surface engineering[J]. Surface and Coating Technology.1999 (23): 73-93.
    [72] XUE W B, FENG Z W, CHEN R Y.et al.Growth regularity of ceramic coatings formed by micro-arc oxidation on AI-Cu-Mg alloy[J].2000.372(1-2): 114-117
    [73] XUE W B, WANG C, CHEN R Y. et a1. Structure and properties characterization of ceramic coatings produced on Ti26Al24Valloy by micro-arc oxidation in aluminates-solution[J]. Mat Lett, 2002, 52(6)1435-441.
    [74]李元东,郝远,金玉花.半固态等温热处理对AZ91D镁合金组织的影响[J].甘肃工业大学学报,2001,27(1):27-30.
    [75]张岱岚,白新德,李宏义,陈建新等.电解液参数对锆合金微弧氧化膜层结构和性能的影响.稀有金属材料与工程.2007(8).1448-1449
    [76]姜兆华,吴晓宏等.NaPO-NaBO体系中钛合金微等离子体氧化陶瓷膜研究.稀有金属,2001,(3):151-153
    [77] Wu H H, Jin Z S, Long B Y et al Characterization of microa microarc oxidation process on Aluminium alloy. Chin. Phys. Lett, 2003,20 (10): 1815-1819
    [78] Wang Y M, Jiang B L, Lei T Q, et al. Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Mater Lett, 2004, 58: 1907-1911
    [79]吴汉华,于凤荣,李俊杰等.铝合金微弧氧化陶瓷膜形成过程中的特性研究.无机材料学报,2004,19(3):1-6
    [80]邵学俊,董平安,魏益海.无机化学(下册).武汉:武汉大学出版社,1996
    [81] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al.Production of hard and heat-resistant coatings on aluminium using a Plasma micro-discharge micro-discharge.Surf .Coat .Technol,2000,123:24-28
    [82]王亚明,雷延权.氧化处理时间对Ti-6A1-4V微弧氧化陶瓷膜的影响.材料科学与工艺,2003,11(3):243-247
    [83]王亚明,蒋百灵,雷廷权等,电参数对Ti-6A1-4V合金微弧氧化陶瓷膜结构特性的影响.无机材料学报,2003,18(6):1325-1330
    [84] Wang Y M, Jia D C, Guo L X, et al, Effect of discharge pu1sating on microarc oxidation coatings formed on Ti6Al4V alloy .Mat.Chem.Phys, 2005, 90: 128-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700