AZ91D镁合金微弧氧化电解液寿命的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金微弧氧化技术是通过电解液中的高压放电作用,使镁合金表面形成硬质陶瓷膜层的一种新工艺,所形成的陶瓷膜层具有硬度高、绝缘性和耐蚀性好、与基体结合力强的优点,是一种极具发展前途的镁合金表面处理技术。
     本文在硅酸盐体系中,探索了AZ91D镁合金微弧氧化电解液的使用寿命问题。首先研究了试验次数对微弧氧化起弧电压和终止电压、电解液电导率、电解液离子浓度以及膜层微观结构和性能的影响,并通过对电解液的分析研究,探讨电解液老化的原因。利用TT260数字式涂层测厚仪、JSM-6700F扫描电子显微镜和2206型表面粗糙度测量仪等研究了膜层的微观结构,并利用化学分析的方法研究了电解液离子浓度的变化。
     在微弧氧化过程中,阳极的镁合金溶解到电解液中,和电解液中的元素反应生成沉淀物,且大部分为胶体沉淀。采用交流脉冲电源会使阴极不锈钢溶解到电解液中生成氢氧化铁沉淀,氢氧化铁沉淀亦为胶体沉淀。胶体沉淀的生成使电解液的粘度增大,离子扩散变慢,导致电解液电导率下降。
     随着试验次数的增加,电解液电导率逐渐减小,则电解液的电阻越大,作用在电解液中的电压越大,起弧电压随之增大。电导率逐渐下降,分配在试样上的电压也逐渐变小,发生击穿瞬间的能量越小,使得放电通道凝固后留下的微孔孔径越来越小,但孔的数量增多。由于微弧氧化膜层表面熔融物颗粒减小,孔洞减小的缘故,使膜层表面的粗糙度减小,但由于后期膜层的外观质量明显下降,而导致膜层表面粗糙度急剧增大。膜层的耐蚀性开始在一个稳定的范围内波动而后下降。在电解液失效前,膜层的厚度和致密度基本不受影响,且厚度和致密度成正比。膜层的成分不受试验次数的影响,主要由MgO,MgSiO_3,Mg_7F_2(SiO_4)_3相组成。
     过滤沉淀后,可以提高膜层的氧化速度,延长电解液的使用寿命。沉淀对电解液电导率有影响,过滤后电解液的电导率值比过滤前电解液的电导率有所增加,比最开始电解液的电导率低。同时,起弧电压也有所下降。氢氧根离子浓度增大,氢氧根离子浓度的大小对成膜及膜层的性能有重要的影响。
Micro-arc oxidation(MAO) of magnesium alloys is a plasma discharge that occurs at the metal/electrolyte interface when the applied voltage exceeds a certain critical breakdown value.The process produces thick,hard and well-adhered ceramic-like coatings to be obtained with high corrosion resistance,thermal stability and dielectric properties.Therefore,MAO is one of the most prospective methods of surface treatment for magnesium and its alloys.
     Service life of electrolyte of micro-arc oxidation on AZ91D magnesium alloy in silicate solutions were probed into.First,effect of experiment periodicity on start voltage,final voltage,conductivity and concentration of electrolyte,microstructure and properties of micro-arc oxidation coating were studied,and the reason of electrolyte aging was discussed by analysis electrolyte.The microstructures of micro-arc oxidation coating were studied by means of TT260 digital coating thickness gauge,JSM-6700F scanning electron microscope(SEM) and 2206 surface roughness measuring instrument.Concentrations of electrolyte were studied by means of analytical chemistry.
     Magnesium alloy of anode dissolve into electrolyte and react with element in the electrolyte,the reactant is amorphous precipitate mostly.Stainless steel of cathode dissolve into electrolyte in the double pole pulse power,the reactant is hydrate of Iron. Hydrate of Iron is amorphous precipitate,as well.Amorphous precipitate decrease the Speed of ion moving and decrease conductivity of electrolyte.
     Resistance of electrolyte increases with the reducing of conductivity.Accordingly, voltage of electrolyte becomes smaller and start voltage increases,as well. Conductivity decreased gradually and voltage of sample becomes smaller,leading to energy decreased.The size of micro-pore in the micro-arc oxidation coating becomes smaller,but the amount of micro-pores increases.Accordingly,the roughness of coating becomes smaller.Finally,the macro-quality of MAO coating becomes rougher. Accordingly,the roughness of coating becomes larger quickly.Corrosion resistance of coating reduces with the increasing of roughness(the macro-quality of MAO coating descend).Before electrolyte failure,thickness and increase weight of coating steadied. The phase of the coatings was hardly effect,the coatings was mainly composed of MgO,MgSiO_3,Mg_7F_2(SiO_4)_3.
     Filtrating Precipitate can quicken the rate of film forming and increase the service life of electrolyte.Conductivity of electrolyte becomes larger than without filtrating and becomes smaller than forepart.Simultaneity,start voltage declined than without filtrating.OH~-'s concentration in the electrolyte increases in evidence,OH~-'s concentration has effect on forming and properties of micro-arc oxidation coating.
引文
[1]张文华,胡正前,马晋.俄罗斯微弧氧化技术研究进展[J].轻合金加工技术,2004,32(1):25-29.
    [2]Rudnev V S,Vasil' evaM S,Lukiyanchuk I V.On the Surface Structure of Coatings Formed by Anodic Spark Method[J].Protection of Metal,2004,40(4):352-357.
    [3]Wang Y K,Sheng L,Xiong R Z.Study of Ceramic Coatings Formed by Micro-arc Oxidation on AlMatrix Composite Surface[J].Surface Engineering,1999,15(2):112-113.
    [4]薛文斌,邓志威,来永春,等.铝合金微弧氧化陶瓷膜的形成过程及其特性[J].电镀与精饰,1996,(4):3-6.
    [5]刘凤岭,骆更新,毛利信.微弧氧化与材料表面陶瓷化[J].材料保护,1998,31(3):22-25.
    [6]侯亚丽,刘忠德.微弧氧化技术的研究现状[J].电镀与精饰,2005,27(3):24-26.
    [7]师昌绪,李恒德,王淀佐等.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):5-6.
    [8]王立世,蔡启舟,魏伯康,等.国外镁合金微弧氧化研究状况[J].材料保护,2004,37(7):61.
    [9]薛文斌,邓志威,来永春,等.有色金属表面微弧氧化技术评述[J].金属热处理,2000,(1):1-3.
    [10]邓志威,薛文斌,汪新福,等.铝合金表面微弧氧化技术[J].材料保护,1996,29(2):15-17.
    [11]左洪波,孔庆山,尚久琦.等离子体增强电化学表面陶瓷化技术[J].材料保护,1995,28(7):21-23.
    [12]旷亚非,许岩,李国希.铝及其合金材料表面处理研究进展[J].电镀与精饰,2000,22(1):16-19.
    [13]Yerokhin A L,Voerodin A A.Plasma electrolytic fabrication of oxide ceramic surace layers for tribo technical purpose on Al alloys[J].Surf Coatings Techn,1998,110-140.
    [14]Nie X,Leyand A,Song H W.Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on Al alloys[J].Surf Coatings Techn,1999,40(13):116-119.
    [15]Mordike B L,Ebert Y.Magnesium:properties-applications-potential[J].Materials Science and Engineering,2001,30(2):37-45.
    [16]张承忠.金属的腐蚀与防护[M].北京:冶金工业出版社,1985:32-178.
    [17]王秦生.超硬材料电镀制品[M].北京:中国标准出版社,2001:7-23.
    [18]柴跃升,孙刚,梁爱生.镁及镁合金生产知识问答[M].北京:冶金工业出版社,2005:3-4.
    [19]王殊,师春生,赵乃勤.自行车车架材料以及镁合金的应用[J].材料导报,2006,20(8):87-89,93.
    [20]陈振华.变形镁合金[M].北京:化学工业出版社,2005:23-25.
    [21]黄瑞芬.镁合金的研究应用及其发展[J].内蒙古科技与经济,2006,11:58-59.
    [22]钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向[J].电镀与涂饰,2005,24(6):47-50.
    [23]查康,魏晓伟.添加剂对镁合金微弧氧化的影响[J].表面技术,2006,35(4):56-58.
    [24]刘君,强颖怀,熊党生.3种溶液体系中镁合金微弧氧化研究:第一部分--氧化膜的相组成及 其耐蚀性[J].电镀与涂饰,2006,25(10):38-42.
    [25]龙北玉,吴汉华,龙北红,等.电解液对铝合金微弧氧化陶瓷膜相组成和元素成分的影响[J].吉林大学学报,2005,43(1):68.
    [26]王燕华,王佳,张际标.AZ91D镁合金微弧氧化过程中的火花放电现象研究[J].中国腐蚀与防护学报,2006,26(5):265-270.
    [27]梁军,郭宝刚,田军.镁合金微弧氧化膜的SEM研究[J].电子显微学报,2004,23,(4):445-445.
    [28]卫中领,陈秋荣,郭歆聪.镁合金微弧氧化膜的微观结构及耐蚀性研究[J].材料保护,2003,36(10):26-30.
    [29]陈显明,罗承萍,刘江文.镁合金微弧氧化膜层形成过程探讨[J].中国表面工程,2006,19(5):14-18.
    [30]章志友,赵晴,陈宁.镁合金微弧氧化陶瓷层的生长过程研究[J].电镀与涂饰,2007,26(7):5-8.
    [31]Shigang XIN,Zhaohua JIANG,Fuping WANG,et al.Effect of Current Density on Al Alloy Microplasma Oxidation[J].Journal of Material Science and Technology,2001,17(6):657-660.
    [32]蒋百灵,张淑芬.氧化镁陶瓷层的组织结构及耐蚀性能[J].西安理工大学学报,2000,16(4):327-329.
    [33]S.V.Gnedenkov,P.S.Gordienko,O.A.Khrisanfova,et al.Formation of BaTiO3 coating on titanium by microarc oxidation method[J].Journal of Material Science,2002,37(1):2263-2265.
    [34]L.S.Saakiyan,A.P.Efremov,A.V.Epel'fel'd.Further development of ideas of G.V.Akimov on the surface oxide films and their effect on the corrosion and mechanical behavior of aluminum alloys[J].Protection of metals,2002,38(2):161-165.
    [35]Hong ping Duan,Chuanwei Yan,Fuhui Wang。Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J].Electrochimica Acta,2007,52(11):3785-3793.
    [36]Jun Liang,Baogang Guo,Jun Tian。Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy[J].Applied Surface Science,2005,252(2):345-351.
    [37]梁永政.镁合金表面微弧氧化工艺的研究[D].兰州:兰州理工大学,2004.
    [38]Hongfei Guo,Maozhong An.Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation[J].Thin Solid Films,2006,500(2):186-189.
    [39]刘惠,宋红年.溶液浓度对镁合金微弧氧化电解液失效的影响[J].材料开发与应用,2007,22(4):15-17.
    [40]黄京浩,张永君.镁合金微弧氧化新型电解液配方研究[J].材料保护,2007,40(2):30-31.
    [41]阎峰云,林华,王胜.AZ91D镁合金在硅酸盐体系下微弧氧化配方的优化[J].材料与表面处理技术,2006,(7):68-70.
    [42]张淑芬,张先锋,蒋百灵.溶液电导率对镁合金微弧氧化的影响[J].材料保护,2004,37(4):7-9.
    [43]蒋百灵,张先锋.不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J].稀有金属材料与工程,2005,34(3):393-395.
    [44]陈宏,郝建民,王利捷.镁合金微弧氧化处理电压对陶瓷层的影响[J].表面技术,2004,33(3):17-18.
    [45]赵晴,章志友,陈宁.终止电压对MB8镁合金微弧氧化膜耐蚀性的影响[J].表面技术,2007,36(4):4-6.
    [46]王吉会,杨静.镁合金在硅酸盐体系中微弧氧化膜层的性能研究[J].材料热处理学报,2006,27(3):95-99.
    [47]王燕华,王佳,张际标.电流密度对AZ91D镁合金微弧氧化膜性能的影响[J].中国腐蚀与防护学报,2005,25(6):332-334.
    [48]郝建民,陈宏,张荣军.电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响[J].腐蚀与防护,2003,24(6):249-251.
    [49]张先锋,蒋百灵.能量参数对镁合金微弧氧化陶瓷层耐蚀性的影响[J].腐蚀科学与防护技术,2005,17(3):141-143.
    [50]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29(1):27-28.
    [51]姜兆华,李爽,姚忠平,等.电解液对微弧氧化陶瓷膜结构与耐蚀性的影响[J].材料科学与工艺,2006,14(5):460-462.
    [52]张学文,马保吉.硅酸盐体系电解液中添加剂对稀土镁合金微弧氧化陶瓷膜性能的影响[J].热加工工艺,2008,37(2):82-84.
    [53]刘永珍,刘向东,王晓军,等.NaOH浓度对ZAlSi12Cu2Mg1微弧氧化陶瓷膜形成及其特性的影响[J].稀有金属材料与工程,2007,36(3):599-603.
    [54]骆海贺,蔡启舟,魏伯康.AZ91D镁合金微弧氧化工艺参数的优化[J].特种铸造及有色合金,2007,27(7):554-556.
    [55]中华人民共和国国家标准GB14952.3-94.铝及铝合金着色阳极氧化膜色差和外观质量检验方法[S].
    [56]中华人民共和国第三工业部标准HB5061-77.镁合金化学氧化膜层质量检测.
    [57]西安热工研究所.国家标准GB12150-89硅的测定(钼蓝比色法)[S].北京:中国标准出版社,1989.
    [58]中华人民共和国国家标准GB/T 8538-1995.《饮用天然矿泉水偏硅酸测定》.
    [59]杭州大学分析化学教研室编.分析化学手册.第二分册[M].北京:化学工业出版社,1997:608-631.
    [60]朱明华.仪器分析[M].北京:高等教育出版社,2000:165-166.
    [61]胡敏.水中微量氟测定方法比较[J].牙膏工工业,2006,(2):41-43.
    [62]中华人民共和国国家标准GB/T 8538-1995.《饮用天然矿泉水氟化物测定》.
    [63]张新平,熊守美,许庆彦,等.微弧氧化工艺参数对覆盖层厚度的影响规律模型[J].材料保护,2004,37(8):19-20.
    [64]刘兆晶,左洪波,束术军,等.铝合金表面陶瓷膜层形成机理[J].中国有色金属学报,2000,10(6):859-863.
    [65]崔昌军,彭乔.铝及铝合金的阳极氧化研究综述[J].全面腐蚀控制,2002,16(6):12-17.
    [66]蒋百灵,张淑芳,吴建国,等.镁合金微弧氧化层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-7.
    [67]马跃洲,马凤杰,陈明,等.电解液温度对镁合金微弧氧化成膜过程的影响[J].兰州理工大学学报.2008,34(3):25-28.
    [68]张宝宏,从文博,杨萍.金属电化学腐蚀与防护[M].北京:化学工业出版社,2005:5-7.
    [69]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004:232-260.
    [70]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005:41-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700