微弧氧化电解液参数对钛—瓷结合强度影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛瓷间的结合依赖钛表面的氧化膜作为介质,钛瓷结合强度无法达到传统金瓷系统的水平,主要原因是钛具有高亲氧性,在高温下可以从瓷粉氧化物中吸收氧原子,发生继续氧化,表面氧化膜变得疏松,与基底结合强度降低,从而影响了钛瓷结合强度。利用微弧氧化技术(MAO)可在钛表面形成陶瓷化氧化膜,该膜与基底呈冶金结合,结合强度高;其内层致密,可阻止烤瓷过程中钛基底继续氧化;外层多孔,可增加与瓷的接触面积;同时可通过调整电解液参数改变膜的性质和成分,增强与瓷粉的化学结合,是一种理想的中间层。在对微弧氧化电压参数进行研究的基础上,本研究通过调整电解液的成分、浓度等参数,研究电解液对微弧氧化膜性质及钛瓷结合强度的影响,以期筛选出有利于钛瓷结合的微弧氧化参数,为该技术应用于临床提供理论依据。
     目的:从微弧氧化的原理入手,探讨微弧氧化过程中电解液成分、浓度对氧化过程的影响,研究在不同电解液中微弧氧化处理对钛瓷结合强度的影响,筛选能够提高钛瓷结合强度的电解液配方。
     方法:首先选择NaH_2PO_4、Na_2B_4O_7、Na_2SiO_3、KF四种电解质,以去离子水配制浓度为20g/L的溶液作为电解液,在不锈钢容器(兼作阴极)中对纯钛片进行微弧氧化处理后,表面烤瓷(NoritakeTi22),以三点弯曲试验测得的钛瓷结合强度为主要评价指标,辅以SEM/EDS对氧化膜表面、截面进行分析,筛选对钛瓷结合最有利的电解液种类。在此基础上,改变电解液浓度,仍以三点弯曲试验测试钛瓷结合强度,SEM/EDS分析氧化膜表面、钛瓷结合界面,对电解液浓度的影响进行评价和分析。再根据上述实验的结果,对高浓度电解液的电源参数进行调整,通过对钛瓷结合强度研究以及膜层结构的分析,优化针对不同成分与浓度的电解液的微弧氧化电压参数。
     结果:在浓度为20g/L的NaH_2PO_4、Na_2B_4O_7、Na_2SiO_3、KF四种电解液中,阳极电压达到300V时钛片试样均能起弧,肉眼观察氧化膜均匀,为黑灰色。SEM显示Na_2SiO_3组与KF组膜层表面微孔的直径均匀,KF组略增大,有部分微孔融合,表面仍比较平整。NaH_2PO_4、Na_2B_4O_7组表面微孔数量极少,布满团块状熔融物,表面较粗糙,电镜下观察NaH_2PO_4、Na_2B_4O_7两组膜层中间有宽1μm左右连续的缝隙,说明该膜层强度较差。Na_2SiO_3、KF组膜层较薄,紧密均匀无缝隙,与基底结合牢固。三点弯曲试验发现微弧氧化处理组的钛瓷结合强度明显高于未作微弧氧化的对照组,在处理组中Na_2SiO_3、KF组高于NaH_2PO_4、Na_2B_4O_7组, Na_2SiO_3组与KF组之间无统计学差异,NaH_2PO_4组与Na_2B_4O_7组之间无统计学差异。
     采用钛瓷结合强度较高的Na_2SiO_3、KF为电解液,发现随着电解液浓度升高,膜层质量下降,SEM显示30g/L组与40g/L组表面氧化膜孔洞出现搭接、熔合,膜表面不平整,出现大量熔融的颗粒。三点弯曲试验显示钛瓷结合强度随电解液浓度增加而减小。
     采用40g/L Na_2SiO_3及KF溶液,通过调整微弧氧化电压参数,将反应电流控制在1A,可以制得较为致密的微弧氧化膜,表面烧结瓷粉后,该膜与瓷粉结合良好,达到了较高的钛瓷结合强度。
     结论:在Na_2SiO_3溶液中微弧氧化制得的陶瓷膜含有Si元素,KF溶液中微弧氧化制得的陶瓷膜含有F元素,均可有效的提高钛瓷间结合力;在电压为300V的情况下,随着电解液浓度升高,反应电流增大,对膜层产生不利影响,钛瓷间结合强度降低;通过应用较低的电压,可将反应电流控制在合适的范围,制得较理想的陶瓷氧化膜,有利于提高钛瓷结合强度。本实验结果提示:选用40g/L Na_2SiO_3在260V电压下或KF溶液在220V电压下进行微弧氧化,可达到较高的结合强度。
Titanium receives considerable amount of interests as a ceramic fused metal. But the bonding strength of titanium-porcelain system is still lower than that of conventional Ni-Cr/porcelain system, primarily because of the strong reactivity of Ti to non-metallic elements, such as oxygen, hydrogen, and nitrogen at high temperatures. Micro-arc oxidation is a recently developed surface treatment technology. To improve the bond strength of titanium-porcelain system, a protective ceramic film was created via micro-arc oxidation on titanium before porcelain fused on it. Electrolyte has strong influences on the structure and property of ceramic coatings created by micro-arc oxidation.
     Objectives: This study was made to evaluate the influence of electrical parameters including electrolyte and concentration at micro-arc oxide treatment on the bond strength of titanium to porcelain.
     Methods: Experiment1: NaB_4O_7、NaH_2PO_4、Na_2SiO_3 and KF were selected to be studied in this part. CP titanium specimens in the size of 25mm×3mm×0.5mm were treated with micro-arc oxidation(MAO) in this 4 solution respectively. Then the ceramic coating was observed by scanning electron microscope(SEM).After the porcelain was fused, the effect of the electrolyte on bonding strength of tatinium/porcelain were determine via a three-point-flexure-test according to ISO9693.
     The electrolytes used in the group which had the highest bonding strangth value were selected for experiment2. CP titaniunm specimens in the size of 25mm×3mm×0.5mm were treated with micro-arc oxidation(MAO) in solution of three different concentration respectively. After an ultra-low-fusing porcelain were applied, a three-point-flexure-test was employed to evaluate the bond strength of titaniunm to porcelain. The surface of the specimens was observed by SEM and EDS , as well as the interface between titanium and porcelain.
     In order to reduce the thickness and improve the quality of the film created in high concentration solutions, a lower voltage was applied in MAO treatment, and the effect on bonding strength was identified by three-point-flexure-test and SEM.
     Results: The bond strength values between porcelain and titanium treated with MAO in Na_2SiO_3 and KF solution was significantly higher then the control group’s and other two group’s. SEM indicated there was a crack in the ceramic coating created in NaH_2PO_4 and NaB_4O_7, implying the weakness of the coating. The bonding strength of this two group was lower then that of Na_2SiO_3 group and KF group.
     The bond strength of ceramic and titanium treated in solutions with deferent electrolyte concentration were compared in experiment2. Group 20g/L had the highest bond strength values in both Na_2SiO_3 and KF solutions according to the three-point-flexure-test. SEM /EDS suggested that a porous thin layer of oxide which contains Si or F element was created by MAO in Na_2SiO_3 or KF solutions. Higher concentration of Na_2SiO_3 (KF) lead to more Si (F) element in oxide, but a lower in bond strength values paradoxically. Increasing in electrolyte concentration lead to larger current in MAO procedure ,which brought faster film grown and thicker coating during the same time. SEM photograph of the interface area of ceramic and titanium indicated that there were tiny cracks between oxide film and the Ti substrata in group 30g/L and 40g/L, while group 20g/L had no defect.
     Bonding strength value of group Na_2SiO_3 20g/L treated with 300V and group 40g/L treated with 260V has no statistical significance,and group KF 20g/L treated with 300V and group 40g/L treated with 220V has no statistical significance according to the three-point-flexure-test. SEM photograph indicated that the coating created in 40g/L Na_2SiO_3 solutions with 260V and 40g/L KF solutions with 220V was compacted and well bonded to the substrata.
     Conclusions: MAO treating can improve bonding strength between titanium and ceramic. Na_2SiO_3 and KF are better than NaB_4O_7 or NaH_2PO_4 as electrolyte used for titanium MAO. Higher concentration of Na_2SiO_3 (KF) lead to lower bonding strength value under a consistent voltage of 300V. But 40g/L Na_2SiO_3,in pairs of 260V,or 40g/L KF in pairs of 220V, brought excellent bonding between titanium and ceramic.
引文
1 Lautenschlager E P , Monaghan P. Titanium and titanium alloys as dental materials[J] .Int Dent J 1993 ( 43):245-253
    2 Wang R R , Fenton A.Titanium for prosthodontic applications [J].Quintessence Int 1996(27):401-408
    3汪大林,艾绳前.钛及钛合金表面烤瓷的实验研究[J].中华口腔医学杂志,1995 (4):201-203
    4 Hautaniemi J A.Effect of Crystalline leucite on porcelain bonding to titanium[J].J Am Ceram Soc,1991(13):74
    5 Adachi K.Effect of barium in porcelain on bonding strength of titanium- porcelain system[J].Dent Mater J,1996 (15):111
    6 Claus H. Viele Faktoren haben Einfluss auf die Haftung der Dentalkeramik .Den Labor 1985 (33):897 - 900
    7 Voss R. Zur Beurteilung der Belastbarkeit von metallkeramischen Restaurationen ZWR.1989(98):434 - 442
    8 Yamamoto U. Metallkeramik-Prinzipien und Methoden Quintessenz Verlag Berlin.Chicago, Sao Paulo und Tokio.1986
    9 Borm M P ,Pask J A. Role of“adherence oxides”in the development of chemical bonding at glass-metal interfaces.J Am Ceram Soc 1966 (49):1-6.
    10 Pask J A , Fulrath R M. Fundamentals of glass-to-metal bonding: VIII.J Am Ceram Soc 1962(45):592-596
    11 Pask J.A. Fundamentals of wetting and bonding between ceramics and metals. In: Valega TM (ed), Alternatives to gold alloys in dentistry) Bethesda, Md: DHEW publication No. (NIH )77-1227. 1977: 235 - 254
    12 Bertolotti RL.Porcelain-to-metal bonding and compatibility. In Mclean JW(ed):Dental Ceramics: Proceedings of the First International Symposium on Ceramics.Chicago, Quintessence Publishing Co,1983:415
    13 King BW,Tripp HP,Duckworth WH. Nature of adherence of porcelain enamels to metals.J Am Ceram Soc.1995,42:504-509
    14 Tiller H J , Musil R. Der Sandstrahlprozess und seine Einwirkung auf den Oberflaechenzustand von Dentallegierungen II Quintessenz 10. 1985:2151- 2158
    15Freesmeyer W B, Lindemann W.Biegefestigkeit eines Edelmetall- Keramik-Verbundes in Abhaen gigkeit von der Vorbehandlung des Metallgeruestes DZZ 38, 1983:949-952
    16 Hautaniemi JA,Hero H,Juhanoja JT.Porcelain bonding on Ti:its dependence on surface roughness,firing time and vacuum level.Sur Intersurf Anal, 1993, 20:421-426
    17 Hennig G. Metal/Keramik-Bindung Dent Labor 24. 1976:1065 - 1071
    18 Rosin M, Rathaut J. Degutan-ein neue Legierung. Dent Labor 33, 1985: 897-900
    19 Cascone PJ,Nabatran H.Determination of thermal expansion compatibility limits for porcelain-metal systems [J].J Dent Res,1982,6l:330
    20 Kononem M,Kivilahti J.Bonding of low-fusing dental porcelain to commercially pure titanium. [J] Biomed Mater Res,1994,28:1027-1035.
    21 Hanawa T.Kon M .Ohkawa S et al.Diffusion of elements in Porcelain into titanium oxide.Dent Meter J,1994I 13(2):164
    22 Suansuwan N, Swain MV. Adhesion of porcelain to titanium and a titanium alloy. J Dent,2003,317:509-518
    23何惠明,徐丽辉.低温瓷熔附于T-75合金的实验研究[J].中华口腔医学杂志,1995,(5):267-268
    24 Jenkins AE.The oxidation of titanium at high temperatures in an atmosphere of pure oxygen . J Inst Metall,1954,82:213-221
    25 Yilmaz H, Dincer C. Comparison of the bond compatibility of titanium and an NiCr alloy to dental porcelain. J Dent, 1999, 27:215-222.
    26 Adachi M, Mackert JR, Jr Parry EE, et al. Oxide adherence and porcelain bonding to titanium and Ti-6Al-4V alloy. Scand J Dent Res, 1990,69:(10)1230
    27何惠明.多次烧瓷对钛瓷结合强度影响的实验研究[J].实用口腔医学杂志,1996,12(2):122-124.
    28何惠明.钛表面烤瓷的预氧化处理工艺研究[J].实用口腔医学杂志,1998,14(1):14-17.
    29 Wang RR,Fung KK. Oxidation behavior of surface-modified titanium for titanium- ceramic restorations. J Prosthet Dent, 1997, 77(4):423-434.
    30任卫红.RG钛专用低熔瓷粉的研制。第四军医大学博士论文,2001:18-65
    31王晓洁。GGW钛粘接瓷的研制及钛表面处理对钛-瓷结合强度的影响。第四军医大学博士论文,2005:2-4
    32 Abdulaziz Sadeq,Zhou Cai,Ronald D,et al.Effect of interfacial variables on ceramic adherence to cast and machined commercially pure titanium. J Prosthetic Dent, 2003 July;90(1):10-17.
    33 Gilbert JL,Covey DA,Lautenschlager EP.Bond characteristics of porcelain fused to milled titanium.dent Mater,1994,10:134-140.
    34 Oshida Y,Munoa CA,Winkler MM.Fractal dimension analysis of aluminum oxide particle for sandblasting dental use.Biomed Mater Eng,1993,3:117-126
    35 T. Derand, H. Hero. Bond strength of porcelain on cast vs. wrought titanium. Scand J Dent Res,1992,100:184-188
    36 Papadopoulos T, Tsetsekou A, Eliades G. Effect of aluminium oxide sandblasting on cast commercially pure titanium surfaces. Eur J Prosthodont Restor Dent, 1999 Mar;7(1):15-21.
    37 Togaya T.An application of pure titaniumto the metal porcelain system .Dent Mat J,1983,2(2):201-220
    38郭天文.口腔科铸钛理论和技术[M].西安:世界图书出版公司,1997.50-58.
    39 Pang OK.Hanawa T.Effect of barium in porcelain on bonding strengh of titanium-porcelain systerm.Dent Master J.1996,l5 (2):111-120
    40奠安春等.遮色瓷中结晶相对钛-瓷结合强度的影响研究[J].华西口腔医学杂志.2001.19(6):357-362
    41 Reyes MJ,Oshida Y, Andres CJ, et al. Titanium-porcelain system. Part III: effects of surface modification on bond strengths. Biomed Mater Eng, 2001,11(2):117-36
    42 Cai Z,Bunce N,Nunn ME,Okabe T.Porcelain adherance to dental cast CP titanium:effects of surface modifications.Biometerials,2001,(22):976-986
    43 Oshida Y, Hashem A. Titanium-porcelain system. Part I: Oxidation kinetics of nitrided pure titanium, simulated to porcelain firing process. Biomed Mater Eng, 1993,3(4):185-98.
    44 Oshida Y,Fung LW,Isikbay SC.Titaniium-porcelain systerm.Part2:Bond strength of fired porcelain on nitrided pure titanium.Biomed Mater Eng,1997,7:13-34
    45 Wang RR, Meyers E, Katz JL. Scanning acoustic microscopy study of titanium ceramic interface of dental restorations. J Biomed Mater Res,1998,42:508-516
    46 Wang RR, Welsh GE, Monteiro O. Silicon nitride coating on titanium to enable titanium-ceramic bonding. J Biomed Mater Res, 1999 Aug;46(2):262-70
    47张惠.钛表面磁控溅射氮硅锆涂层对钛瓷结合的影响及G-1钛遮色瓷的研制.第四军医大学博士论文.2006:2-4
    48李建学.微弧氧化能量参数对钛瓷结合强度影响的研究.第四军医大学硕士论文.2007:26-50
    49张文华,胡正前,马晋.俄罗斯微弧氧化技术的研究进展.世界有色金属.2004,19(1):43-46
    50薛文斌,邓志威,来永春等.有色金属表面微弧氧化技术评述.金属热处理.2004,25(l):1-3
    51 Vijh AK.Mechanism of Anodic Spark Desposition J.Corros Sci.1971( 11 ):411
    52 Ikonopisov S.Anodization of molybdenum in glycpl-borate electrolyte–A peculiar kineties of insulating film formation.Ele-ctrodeposition and surface Treatment.1973,1(4):305-317
    53 Albella JM,Montero I,Jiménez MC et al.Influence of the series resistance on the kinetics of the constant voltage stage during anodization-I.Electrochimica Acta.1988,33(10):1439-1444
    54 Krysmann W,Kurze P et al.Process characteristics parameters of anodic oxidation by spark discharge(ANOF).Crystal Res & Technol.1984,19(7): 973-979
    55 Dittrich KH,et al.Structure and Properties of ANOF Layers.Crystal Res& Technol.1984,19(1):93-99
    56 Kurze P.Magnesiumlegierungen elektrochemisch besehiehten.Metal loberfl- aehe. 1994,48(2):104-105
    57 Malyschev V.Mikrolichtbogen Oxidation.Metal loberflache.1995 , 49(8): 606-608
    58刘建平,旷亚非.微弧氧化技术及其发展.材料导报.1998,12(5):27-29
    59 Zhe X,Kim KH,Jeong Y.Anodic oxide film containing Ca and P of titanium biomaterial.Biomaterials.2001,22(16):2199-2206
    60李金桂.现代表面工程设计手册.北京;国防工业出版社.2000,317-321
    61 Van TB.Mechanism of Anodic Spark Deposition.Am CeramSoc Bulletin,1977,56(6):563-571
    62张通合,陈如意.微弧氧化技术的发展现状与展望.全国表面工程专题论文,1997:273-277
    63 Wang Yaming , Jiang Bailing , Lei Tingquan. Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse [J ]. Mater Lett ,2004 ,58:1907
    64来永春.铝合金表面微弧氧化处理.铝合金加工技术.2000,25(10):31-36
    65薛文斌,邓志威,等.铝合金微弧氧化膜的形成过程及其特性.电镀与精饰.1996,(4):3-6
    66邓志威,薛文斌,等.铝合金表面微弧氧化技术.材料保护.1996,29(2):15-16
    67李争显,杜继红,周慧,等.钛表面处理技术的发展现状.钛工业进展,2003,20(4):41-45
    68陈建治,张富强.钛表面氧化物膜的形成与活化.国外医学口腔医学分册,2006,33(1):48-50
    69李伟.与牙种植体有关的表面处理技术.国外医学口腔医学分册.2000,27(2):77-79
    70蒋永锋,李均明,蒋百灵,等.铝合金微弧氧化陶瓷层形成因素的分析.表面技术.2001,30(2):37-39
    71 Han I,Choi J H,Zhao B H,et al.Changes in anodized titanium surface morphology by virtue of different unipolar DC pulse waveform.Surf Coat Technol.2007,201(9-11):5533-5536
    72蒋百灵,徐胜,时惠英,等.电参数对钛合金微弧氧化生物活性陶瓷层钙磷成分的影响.中国有色金属学报.2005,15(2):264-266
    73魏同波,张学俊,王博,等.电流密度对铝合金微弧氧化膜的生长及结合力的影响.材料保护.2004,37(4):4-6
    74 Wang Yaming , Jiang Bailing , Lei Tingquan. Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse [J ]. Mater Lett .2004 ,58:1907
    75 Yao Zhongping ,Jiang Zhaohua , Sun Xuetong. Influences of current density on structure and corrosion resistance of ceramic coatings on Ti6Al4V alloy by micro-plasma oxidaion [J]. Thin Solid Films .2004 ,468:120
    76 Han Y,Hong S H,Xu K W.Structure and in vitro bioactivity of titania-based films by micro-arc oxidation.Surf Coat Technol.2003,168(2-3)249-258.
    77 Chen J Z,Yu-Long shi YL Wang L,et al.Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation.Materials Ltters.2006,60(20):2538-2543
    78 Yerokhin A L ,Nie X,Leyland A. Characterisation of oxideilms produced by electrolytic oxidation of Ti6Al4V [J ].Surf Coat Techn . 2000 ,130:195
    79徐勇.国内铝和铝合金微弧氧化技术研究动态J.腐蚀与防护.2003,4 (24):154
    80蒋百灵,张淑芬,吴国建.镁合金微弧氧化陶瓷层耐蚀性的研究J.中国腐蚀与防护学报.2002,5(22):300
    81 Yerokhin A L, Shatrov A, Samsonov V, et al. Fatigue properties of Keronite coatings on a magnesium alloy[J ]. Surface and Coatings Technology. 2004, 182: 78-84
    82 Barton, Thomas Francis. Anodization of Magesium and Mag nesium BasedAlloys[P]. US Pat:5792335, 1998
    83胡宗纯,谢发勤,吴向清等.电解液和电参数对钛合金微弧氧化的影响.材料导报.2006,20(11):373-375
    84李冬梅,马楚凡,郭天文,等.微弧氧化表面处理提高钛与瓷聚合体粘结强度的研究.中国美容医学.2008,17(2):240-242
    85昱昕,憨勇,黄平等.微弧氧化钛膜的结合强度与生物活性[J].硅酸盐学报,2004,32(2):122-126
    86郭洪飞,安茂忠,霍慧彬,等.电解液组成对AZ91D镁合金微弧氧化的影响,材料科学与工艺.2006.14(2):116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700