AZ91D镁合金微弧氧化陶瓷膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度小、比强度和比刚度高、减震性好、电磁屏蔽性好等特性,具有广泛的应用前景。然而镁合金较差的抗腐蚀能力是制约其发展的主要因素。为了提高镁合金的防腐性能,必须对其表面进行改性。本论文选取AZ91D镁合金为研究对象,采用脉冲电源,在合金表面进行微弧氧化,并对微弧氧化陶瓷膜的制备及其性能进行了详细研究。
     本文首先选择出了适合于AZ91D镁合金表面微弧氧化的电解液组成。研究结果发现在铝酸盐体系或硅酸盐体系中能够得到性能良好的微弧氧化膜,其中铝酸盐体系中偏铝酸钠为主成膜剂,氢氧化钠为辅助成膜剂,蒙脱石、EDTA、阿拉伯树胶为性能改善剂;硅酸盐体系中硅酸钠为主成膜剂,氢氧化钠为辅助成膜剂,蒙脱石、EDTA、阿拉伯树胶为性能改善剂。
     对铝酸盐体系的组成进行了优化实验,选出铝酸盐体系主盐组成:偏铝酸钠30g/L,氢氧化钠20g/L。在此基础上,通过单因素和正交实验系统研究了各添加剂对微弧氧化膜层的影响,获得了较佳的添加剂组成为:蒙脱石3g/L、5%阿拉伯树胶50mL/L。采用单因素和正交实验对采用铝酸盐体系的微弧氧化工艺条件进行了优化研究,获得了较佳的工艺成膜条件为:氧化时间为30min、终止电压为180V、脉冲周期为20ms、占空比为50%。
     研究了硅酸盐体系各配方的组成,得到最优的主盐组成为:硅酸钠30g/L,氢氧化钠20g/L。通过正交实验系统研究了各添加剂对微弧氧化膜层的影响,获得了较佳的添加剂组成:蒙脱石4g/L、EDTA2g/L、5%阿拉伯树胶50mL/L。在硅酸盐体系的最佳组成条件下,对最佳工艺条件进行了研究,获得了最佳的工艺成膜条件为:氧化时间为30min、终止电压为200V、周期为30ms、占空比为40%。
     借助SEM,EDS、XRD,电化学腐蚀等方法,对最优实验条件下制备陶瓷层的形貌、成分、相组成和耐蚀性等性能进行了测试分析。SEM实验结果表明陶瓷膜表面比较光滑致密,但还是有少量的微孔存在,陶瓷膜纵向断面由内部致密层和外部疏松层组成,致密层组织致密,与基体结合紧密,属于冶金结合;疏松层组织有一些微孔。EDS结果表明电解液中所含的组分参与了微弧氧化成膜反应,电解液中一些原子进入微弧氧化膜层,使得可以通过改变电解液成分、浓度等参数来调整膜层的相组成,这有利于膜层的进一步改性。XRD实验结果表明在铝酸盐体系中,微弧氧化膜层主要由Mg、MgO、MgAl_2O_4和Al_(12)Mg_(17)等组成;在硅酸盐体系中,微弧氧化膜层主要由MgO、Mg_2SiO_4和SiO_2等组成。电化学腐蚀实验结果和浸泡实验结果表明微弧氧化处理后所得膜层显著提高了基体镁合金的耐腐蚀能力。通过两种电解液和工艺参数所形成的微弧氧化陶瓷膜的性能对比研究表明:与硅酸盐体系相比,铝酸盐体系中微弧氧化处理后的膜层具有更优良的耐蚀性。
Magnesium alloys have an extensive application foreground because of their low density, high specific strength, high specific stiffness, good shock absorption and good electro-magnetic shielding etc. However magnesium alloys have a poor corrosion resistance that hinders their development. In order to improve the anti-corrosion properties, the surface must be modified. In this paper, AZ91D magnesium alloys had been selected for the study and a pulse power was used. The alloy was treated on the surface by micro-arc oxidation(MAO) process, and ceramic coating was prepared and the performance was studied in details.
     We initially selected some chemicals for the electrolyte solution which were suitable for MAO on AZ91D Magnesium alloy surface. The result showed that a good MAO film can be performed on AZ91D alloy surface in the aluminate system or silicate system. In aluminate system, NaAlO_2 is the main substance and NaOH is auxiliary into the film. Montmorillonite, EDTA and Arab resin play the role of performance improvement in aluminate system. Na_2SiO_3 is the main substance and NaOH is the auxiliary into the film, and montmorillonite, EDTA, Arab resin play the role of performance improvement in silicate system.
     The composition of the aluminate system was optimized in the thesis. The optimized main components were: NaAlO_2 was 30g/L, NaOH was 20g/L. On this basis, though a single factor experiment and an orthogonal experiment, the additives of aluminate system on the impact of MAO film were obtained as follows: Montmorillonite was 3g/L, 5%Arab resin was 50mL/L. By a single factor experiment and an orthogonal experiment, the conditions of MAO process were obtained as follows: Oxidation time was 30min, the termination voltage was 180V, pulse period was 20ms and occupy-empty ratio was 50%.
     The optimized composition of the silicate system was studied. The main components of silicate system were selected: Na_2SiO_3 was 30g/L, NaOH was 20g/L. The additives in the solution of MAO were studied by an orthogonal experiment. The optimized composition of additives are obtained as follows: Montmorillonite was 4g/L, EDTA was 2g/ L and 5% Arab resin was 50mL/L. The conditions of MAO process in silicate solution were obtained as follows: Oxidation time was 30min, the termination voltage was 200V, pulse period was 30ms and occupy-empty ratio was 40%.
     It was analyzed that morphology, composition, phase composition and corrosion resistance properties of the MAO ceramic layer that was formed in the optimal experimental conditions by SEM, EDS, XRD, electrochemical corrosion and so on. SEM results showed the surface of ceramic coating was relatively smooth and dense, but still existed some small micro-porous. Vertical cross-section of ceramic membrane showed it was composed of an outer loosed layer and an inner compact layer. Owing to the metallurgical bonding, the inner layer had good interfacial connection with the substrate. EDS results showed that the components contained in electrolyte were involved in the MAO film by MAO process. By changing the electrolyte composition, concentration and other parameters, we can adjust the phase composition, which is conducive to the further modification of the film. XRD results showed that in aluminate system, MAO coating are mainly composed of Mg, MgO, MgAl_2O_4, Al_(12)Mg_(17) and so on. While in silicate systems, MAO coating are mainly composed of MgO, Mg_2SiO_4, SiO_2 and so on. According to results of the electrochemical experiments and the corrosion immersion test, we found the corrosion resistance of MAO film was significantly increased compared with the substance of magnesium alloy. The corrosion resistance of MAO film on AZ91D magnesium alloy surface formed in aluminate solution was better than in silicate solution.
引文
[1]刘正,张奎.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002
    [2]师昌绪,李恒德,王淀佐,等.加速我国金属镁工业发展的建议[J].材料导报,2001,15(4):5-6
    [3]林肇琦,有色金属材料学[M].沈阳:东北工学院出版社,1986
    [4]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术,2001,29(11):1-2
    [5]曾小勤,王渠东,吕宜振,等.镁合金应用新进展[J].铸造,1998,(11):39-43
    [6]黄光胜,范永革,汤爱涛,等.镁及镁合金腐蚀最新研究进展[J].材料导报,2002,16(4):38-40
    [7]李青.镁的表面处理[J].功能材料,1996,27(3):281-282
    [8]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006,(6):1-2
    [9]J.E.Gray,B.Luan.protective coatings on magnesium and its alloys--a Critical review[J].Journal of Alloys and ComPounds,2002:88-113
    [10]王秀鸾.冶金和金属材料[M].化学工业出版社,2001:75-79
    [11]克雷莫夫BB,维什克瓦柯TC.镁合金定型铸造[M].北京:国防工业出版社,1956
    [12]张金山,许春香,韩富银.镁工业是能实现可持续发展的优势产业[J].铸造设备研究,2002,(3):46-51
    [13]陈力禾,赵惫捷,刘正,等.镁合金压铸及其在汽车工业中的应用[J].铸造1999,(10):45-50
    [14]张君尧,韩秉诚.镁合金的应用[J].国外轻金属,1980,(60):38-45
    [15]王渠东,吕宜振,曾小勤,等.镁合金在电子器材壳体中的应用[J].材料导报,2000,14(6):22-23
    [16]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工学院学报2002,23(3):191-192
    [17]周婉秋,单大勇.镁合金的腐蚀形为与表面防护方法[J].材料保护,2002,35(7):1-3
    [18]李金桂.现代表面工程设计手册[M].北京:国防工业出版社,2000
    [19]杨金瑞,叶信宏.镁合金表面处理简介[J].工业材料,1988,(8):106-107
    [20]边风刚,李国禄,刘金海,等.镁合金表面处理的发展现状[J].材料保护,2002,35(3):1-2
    [21]Hiroyuki Umehara.An Investigation of the Structure and Corrosion Resistance of a Permanganate Conversion Coating on AZ91D Magnesium Alloys[J].Journal of Japan Institute of Light Metals.2000,50(3):109-115
    [22]钱建刚,李荻.镁合金的化学转化膜[J].材料保护,2002,35(3):5-6
    [23]罗湘燕.飞机镁合金零部件表面腐蚀的原位修复工艺[J].材料保护,2002,35(1):57-58
    [24]DavidHawke,Albright DL.A phosphate-permanganate conversion coating for magnesium.Metal Finishing.1995,93(10):34-35
    [25]贾春萍.镁合金无铬阳极氧化工艺的研究现状[J].南京工程学院学报(自然科学版),2006,4(3):23-26
    [26]郭兴伍,丁文江.镁合金阳极氧化的研究与发展现状[J].材料保护,2002,35(2):1-3
    [27]张永君,严川伟,楼翰一,等.镁及镁合金阳极氧化工艺综述[J].材料保护,2001,34(9):24-26
    [28]蒋玉思.镁及其合金阳极氧化技术的进展[J].广东有色金属学报,2001,11(2):120-124
    [29]Sharma A K.Studies on anodization of magnesium alloy for thermal control applications[J].Metal Finishing,2003,95(3):43-51
    [30]Bardon T F,Johnson C B.The effect of electrolyte on the anodized finish of a magnesium alloy[J].Plating and Surface Finishing,2004,82(5):76-79
    [31]高福麒,高斌,高翔.镁合金及其表面电镀技术[J].表面技术,2004,33(1):8-10
    [32]Jianshen lian,Zhongcai Shao,Xinzhang,Yanwen Tian.The electroless nickel --Plating on magnesium alloy using NISO_4·6H_2O as the main salt[J].Surface and Coati ngs Technology,2006,200:3010-3015
    [33]李建中,邵忠财,田彦文.以硫酸镍为主盐的化学镀镍[J].中国有色金属学报,2005,15(1):152-157
    [34]陈长军,王茂才,刘一鸣.镁合金表面改性新技术[J].腐蚀科学与防护技术,2004,16(4):215-217
    [35]Kadary V.Klein N.Electrical breakdown during the anodic grown of tantalum pentoxide[J].J Electrochem Soc,1980,127(1):139-151
    [36]Wirtz G P,Brown S D,Kfiven W M.Ceramic coatings by spark deposition[J].Mater Manuf Process,1991,6(1):87-115
    [37]Dittrich K H,Leoard L G.Microarc oxidation of aluminium alloy Components[J].Cryst Res Technol,1984,19(1):93-96
    [38]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及其应用[J].材料保护,2001,34(1):17-18
    [39]Gunthersehulze A,Betz H.Neue Untersuchungen uber die elek.trolytisehe ventilwirkung[J].Z.Phys.,1932,78:196-210
    [40]Gunthersehulze A BetzH.Die elektronenstromungin isolatorenbei extremen feledstarken[J].Z.Phys.1934,91:70-96
    [41]薛文斌,邓志威.有色金属表面微弧氧化技术评述[J].金属热处理,2000,1:1-2
    [42]Brown S D,Wirtz G P.Mechanism of anodic spark deposition[J].American Ceramic Society Bulletin,2004,56(6):563-566
    [43]薛文斌,邓志威.铝合金微弧氧化膜的形成过程及其特性[J].电镀与精饰,1996,18(5):3-4
    [44]邓志威,薛文斌.铝合金表面微弧氧化技术[J].材料保护,1996,29(2):15-16
    [45]薛文斌.LY12铝合金微弧氧化陶瓷膜相分布及形成[J].材料研究学报,1997,11(2):169-172
    [46]薛文斌,来永春.镁合金微等离子体氧化膜的特性[J].材料科学与工艺,1997,5(2):89-92
    [47]Yemkhin A L,Ashitkov R V.Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys[J].Ceramics International,2004,24(1):1-6
    [48]Tran B V,Sherman D,Gerald P.Mechanism of anodic spark deposition[J].Amedcan Ceramic Society Bulletin.1977,56(6):563-566
    [49]Vijh A K.Sparking voltages and side reactions during anodization of valve metals interms of electron tunneling[J].Corrs.Sic,1971,(11):411-417
    [50]Hongping Duan,ChuanweiYan,Fuhui Wang.Effects of electrolyte additives on Performance of Plasma electrolytie oxidation films formed on magnesium alloy AZ91D[J].Electrochimica Acta,2007,52(11):3785-3793
    [51]周惠,李正堂,李争显,等.钦合金表面微弧氧化膜及抗氧化性能的研究[J].稀有金属材料与工程,2005,34(1):1935-1938
    [52]郭宏飞,安茂忠,许萃,等.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响[J].材料工程,2006,36(3):29-32
    [53]吴向清,谢发勤.钛合金表面微弧氧化技术的研究[J].材料导报,2005,19(6):85-87
    [54]蒋百灵,白力静,蒋永峰.铝合金微弧氧化技术[J].西安理工大学学报,2000, 16(2):138-141
    [55]旷亚非,许岩,李国希.铝及其合金材料表面处理研究进展[J].电镀与精饰,2000,22(1):16-19
    [56]Van T B,Brown S D,Wirtz G P,Mechanism of anodic spark deposition[J].Am.Ceram.Soc.Bull.,1977,56(6):563-566
    [57]Dittfich K H,Leoard L G,Microarc oxidation of aluminate alloy components[J].Crys & ResTechnol,1984,19(1):93-96
    [58]魏同波.液相等离子体电沉积表面处理技术[J].材料科学与工程学报,2003,21(3):450-452
    [59]候伟鹜.触变成形AZ91D镁合金表面预处理、电参数对微弧氧化膜的影响及化学镀工艺的研究:[硕士学位论文].兰州:兰州理工大学,2006
    [60]Ikonopisov.S.Theory of electrical breakdown during information of barrier anodic films[J].Electrochem..Acta,1997.22:1077-1082
    [61]Bakovets V.V etal.[J].Zashch.Met,1986,22(3):440
    [62]刘建平,旷亚非.微弧氧化技术及其发展[J].材料导报,1998,12(5):27
    [63]Eauvir J,Gersion M.The AITiM TD Proeess Enables New APPlieation for Aluminium·Galvan organo-Traitement de Surface(Franee).2001,67(710):173-175
    [64]Lawrence H,Dumey J.Electroplating Engineering Handbook 4th Edition[C].Wokingham Berkshire:Van Nostrand Reinhold,Co.,1984:410
    [65]Kurze P et al.Ger(East) patent:DD205197,1983
    [66]黄京浩,张永君.镁合金微弧氧化新型电解液配方研究[J].材料保护,2007,40(2):30-37
    [67]贺子凯,唐培松.溶液体系对微弧氧化陶瓷膜的影响[J].材料保护,2001.12-15
    [68]梁永政.镁合金表面微弧氧化工艺的研究:[硕士学位论文].兰州:兰州理工大学,2004:42-47
    [69]Santway R W,Alwitt R S.Side Reactions during the Anodization of Aluminium in a Glyed Borate Electrolyte[J].J Electrochem Soc,1970,117(10):1282-1286
    [70]刘文亮.铝合金在不同溶液中的微弧氧化膜层性能研究[J].电镀与精饰,1999,21(4):9
    [71]Ladimir M.Mikrolichtbogen oxidation[J].Oberflchentechnik.1995,49(8):606
    [72]Guntherschulze A Betz H.Die Elektronenstromungin Isolatorenbei extremen Feledstarken[J].Z.Phys.1934,91:70-96
    [73]石玉龙.等离子体微弧氧化技术及其应用[J].青岛化工学院学报,2002, 23(1):70-73
    [74]Kurze P.Krysmann G A.Magnesium legierungen electrochemisch beschichten[J].Metal-loberflache,1994,48(2):104-105
    [75]徐勇.国内铝和铝合金微弧氧化技术研究动态[J].腐蚀与防护,2003,24(4):155-156
    [76]屠振密,韩书梅,杨哲龙,等.防护装饰性涂层[M].北京:化学工业出版社,2004:465-469
    [77]陈宏,郝建民,王利捷.镁合金微弧氧化处理电压对陶瓷层的影响[J].表面技术,2004(6):17-19
    [78]黄京浩,张永君.镁合金微弧氧化新型电解液配方研究[J].材料保护,2007,40(2):30-37
    [79]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:231-239
    [80]师昌绪,李恒德等.加速我国镁工业发展的建议[J].材料导报,2001,15(4):5-6
    [81]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1994:154
    [82]梁浩成.金属腐蚀学导论[M].北京:机械工业出版社,1999:5-7
    [83]陈鸿海.金属腐蚀学[M].北京:北京理工大学出版社,1995:11-13
    [84]刘永辉、张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993:8-10
    [85]蒋百灵,张淑芳.镁合金微弧氧化层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-7
    [86]石玉龙,张欣宇.氢氧化钠电解液中铝合金的微弧氧化[J].新技术新工艺,2002,8:39-40
    [87]李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2005,4:94-98
    [88]奥野忠一,芳贺敏郎.实验设计方法[M].北京:机械工业出版社,1969,5:144-146
    [89]卫中领,陈秋荣.镁合金微弧氧化膜微结构和性能研究[C].全国腐蚀电化学及测试方法专业委员会2002年学术交流会论文集,2002:83-88
    [90]吴国建.镁合金微弧氧化膜层制备技术及其耐蚀性研究:[硕士学位论文].西安:西安理工大学,2002
    [91]GB10124-88.金属材料实验室均匀腐蚀全浸试验方法[s]
    [92]薛文斌,邓志威,来永春,等.ZM5镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998,19(3)42-44
    [93]Brown S D,Wirtz G P.Mechanism of anodic spark deposition[J].American Ceramic Society Bulletin, 1977, 56(6): 563-566
    [94] Kurze P, Krysmann W, Schreckenbach J, ColouredANOF layers on aluminium, Cryst.Res.Technol., 1987, 22(1): 53-58
    [95] Krysmann W, Dittrich K H.Process characteristics and parmaeters of anodic oxidation by Spark Dischange[J].Crystal Research and Technology. 1984, 19(7):973-979
    [96] Urze P , Magnesium legierungen elektroche misch beschichten[J].Metal Oberfache, 2004, 48(2): 104-105
    [97] S.Dconopisov. Theory of electrical breakdown during formation of barrier anodic films[J] .Electrochem.Acta, 1997, 22: 1077-1082
    
    [98] Albella J M, Montern I.Electron injection and avalancke during the anodic oxidation of tantalum[J].Journal of The Electrochemical Society. 1984, 131:1101-1108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700