Ti/TiO_2/HA生物复合材料的制备及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基生物医用材料优良的力学性能使其在口腔科和整形外科中得到了广泛应用。与其他金属相比,钛具有较好的生物相容性和耐蚀性,但生物活性欠佳。羟基磷灰石最大的优点是生物活性较好,但强度低、韧性差。结合二者优势的钛基羟基磷灰石复合材料具有重要的科学研究价值和很好的临床应用前景。
     本文采用微弧氧化和水热处理对钛材进行表面改性,制备二氧化钛/羟基磷灰石复合膜层,系统研究了微弧氧化工艺参数和水热处理条件对膜层的影响,探讨了模拟体液条件下复合材料的生物活性。研究结果表明,在含钙磷的溶液中对钛进行微弧氧化不仅可以获得活性高的多孔二氧化钛表面层,而且可以使钙磷元素进入膜层,经后续水热处理,钙磷可以转变为羟基磷灰石。微弧氧化过程中改变电压、电流、电解液浓度可以改变膜层的形貌、晶型和钙磷含量;恒压与恒流模式中各参数对氧化效果的影响相同,但反应中的能量规律不同;随着电压的升高、电解液中钙浓度的提高和电流的增大,膜层中的微孔增大、金红石型二氧化钛增多、钙磷含量增多、钙磷比增大并且水热处理获得的羟基磷灰石衍射峰增强。用不同的水热处理介质、温度和时间可以影响羟基磷灰石的晶体形态和数量;以去离子水作为水热处理介质能够获得棒状羟基磷灰石晶体,而氨水处理能够获得粒状晶体;随着温度的升高和保温时间的延长,羟基磷灰石的衍射峰增强,晶体颗粒变大;氨水处理得到的羟基磷灰石比去离子水处理的更细小均匀。钛经过微弧氧化和微弧氧化—水热处理后都可以在模拟体液中诱导形成羟基磷灰石层,微弧氧化—水热处理的试样沉积羟基磷灰石的速度比单纯微弧氧化处理的快。低压处理(300V)和高压处理(500V)方法都能沉积羟基磷灰石层。
     微弧氧化与水热处理相结合制备出的钛/二氧化钛/羟基磷灰石复合材料有较好的生物活性。
The metal materials have been used widly in oral and orthopedics because of the excellent mechanical properties. Titanium has better biocompatibility and corrosion resistance ability comparing to other metals. It is surface active, and will not beget ill feedback with bone. The maximal virtue of hydroxyapatite (HA) is it's excellent bioactivity. But it is confined in replacement of hard tissue because of the low strength and toughness. Titanium based HA composite material shows important value in research.
    The effect of the parameteres of microarc-oxidation (MAO) and hydrothermal synthesis (HS) on the titamnium oxide film, the bioactivity of the composite materials in the stimulated body fluid (SBF), were studied in this paper. The test results showed: The pure titanium was changed into Ti/TiO_2/HA composite whose synthetical mechanical properties are equivalent to pure titanium's and the bioactivity is super than titanium's after modified by MAO and HS. Treated titanium with MAO in electrolyte containing Ca and P not only gets the high active porous titanium oxide, but also puts the Ca and P into the oxide. The morphology, the crystal type and the quantity of the Ca and P in the titanium oxide film can be changed by the voltage, the current, and the electrolyte. Different medium, temperature and disposed time affect the morphology, the quantity and the rime extent of the HA. Along with the rising of the voltage, the augment of the current and the Ca concentration, the apertures in the films get bigger, the rutile, the contents of Ca and P, and the ratio of Ca to P increase, the HA diffracted intensity becomes stronger. HS in the medium of deionized water gets clubbed crystal, while in the ammonia gets granular crystal. Along with the rising of the temperature and the prolonging of the disposed time, the HA diffracted intensity becomes stronger, the quantity increases and the crystals largen. Disposed in the ammonia gets more symmetrical and more finer HA than in the deionized water. Titanium induces HA forming in the SBF after treated with MAO or MAO-HS. But the MAO-HS samples get HA faster than pure MAO treated samples. Sample after low voltage treated deposits HA as well as high voltage treated.
    MAO combines with HS can activate the titanium surface to get excellent bioactivity.
引文
[1] 周长忍.生物材料学.北京:中国医药科技出版社,2004.
    [2] 俞耀庭,张兴栋.生物医用材料.天津大学出版社,2000.
    [3] 迪伊K C,普莱奥D A,比齐奥斯R编著 黄楠译.组织—生物材料相互作用导论.北京:化学工业出版社,2005.
    [4] Hench Larry L, Polak Julia M. Third-Generation Biomedical materials. Science, 2002, 295: 1014~1017.
    [5] Long Marc, Rack H J. Titanium alloys in total replacement——a materials science perspective. Biomaterials, 1998, 19: 1621~1639.
    [6] 赵树萍,吕双坤,郝文杰.钛合金及其表面处理.哈尔滨:哈尔滨工业大学出版社,2003.
    [7] 李德华.医用钛表面的微观改造.国外医学生物医学分册,1997,20(1):24~27.
    [8] 吕宇鹏,朱瑞富,马泉生,等.医用钛及钛合金种植体材料的研究进展.中国口腔种植学杂志,2000,5(1):43~49.
    [9] 柯华,宁聪琴,贾德昌,等.羟基磷灰石及钛作为骨替代材料的研究进展.有色金属,2001,53(4):8~14.
    [10] 陈治清.口腔生物材料学.北京:化学工业出版社,2004.
    [11] 陈艳,何翔,孔中华.脉冲等离子体微弧氧化法制备YiO_2薄膜及膜层的性能研究.腐蚀与防护,2004,25(8):332~335.
    [12] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002.
    [13] Oh Seung-Han, Finones Rita R, Daraio Chiara, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 2005, 26: 4938~4943.
    [14] Zhu Xiaolong, Kim Kyo-Han, Jeong Yongsoo. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials, 2001, 22: 2199~2206.
    [15] 唐光昕,张人佶,颜永年,等.复合法制备多孔二氧化钛梯度薄膜.稀有金属,2004,28(4):790~793.
    [16] 马楚凡,李冬梅,蒋百灵,等.钛种植体表面微弧氧化生物改性的研究.第四军医大学学报,2004,25(1):4~7.
    [17] 冯波.表面氧化钛膜含钙和含磷的钛表面特征与钛生物活性:[博士学位论文].四川:四川大学,2001.
    [18] 宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺,2002,10(1):100~106.
    [19] 魏建华,刘宝林,付涛,等.四种钛种植体表面在模拟体液中诱导磷灰石沉积的研究.口腔医学研究,2003,9(1):25~27.
    [20] 牟战旗,梁成浩.钛生物医学材料耐蚀性能研究进展.腐蚀科学与防护技术,1998,10(2):103~108.
    [21] 刘华,崔春翔,申玉田.生物医用钛合金的表面改性.河北工业大学学报,2003,32(5):17~22.
    [22] 吴兴全 摘译.医用钛及钛合金植入材料.稀有金属快报,2004,23(7):18.
    [23] 张春宝,陈富林,张蓉,等.Ti—75合金对人成骨细胞的生长、增殖和功能分化的影响.实用口腔医学杂志,2000,16(1):24~27.
    [24] 我国钛义齿研究及临床应用获突破性进展.新材料产业,2002,(8):54.
    [25] 周磊,黄建生,黄云飞,等.钛膜引导骨再生在骨内种植体植入中的应用.中国口腔种植学杂志,2002,7(4):169~172.
    [26] 阮建明,邹俭鹏,黄伯云.生物材料学.科学出版社,2004.
    [27] 王希军,陈合新,钟刚毅,等.钛环植入豚鼠中耳腔的生物相容性研究.临床耳鼻咽喉科杂志,1998,12(3):134~136.
    [28] Zaffe Davide, Bertold Carloi, Consolo Ugo. Element release from titanium devices used in oral and maxillofacial surgery. Biomaterials, 2003, 24: 1093~1099.
    [29] 周殿阁.骨科生物材料应用进展.新材料产业,2004,(12):39~44.
    [30] 张文光,王成焘,刘维民.钛合金表面改性层的摩擦学性能.摩擦学学报,2003,23(2):91~94.
    [31] 杨敏,郑昌琼,冉均国,等.钛基—TiN—TiC系梯度薄膜材料的生物摩擦磨 损特性研究.功能材料,2000,31(2):209~211.
    [32] 宿玉成.现代口腔种植学.人民卫生出版社,2004.
    [33] 熊信柏,李贺军,黄剑锋,等.钛基金属表面生物活性改性研究进展.稀有金属快报,2004,23(3):4~9.
    [34] 王革.纯钛种植体的表面预备.国外医学生物医学工程分册,1998,21(6):361~363.
    [35] 王力平,曹阳,张波,等.医用钛表面组织结构和形貌特征与表面生物活性的研究.化学研究与应用,2004,16(3):399~400.
    [36] Assender Hazel, Bliznyuk Valery, Porfyrakis Kyriakos. How surface topography relates to materials' properties. Science, 2002, 297: 973~976.
    [37] 姜淑文,齐民.生物医用多孔金属的研究进展.材料科学与工程,2002,20(4):597~600.
    [38] 梁芳慧,王克光,周廉.不同过饱和钙化溶液中多孔钛表面羟基磷灰石层的形成.稀有金属材料与工程,2004,33(2):166~170.
    [39] 冯颖芳.人工关节与钛及钛合金植入物材料.金属学报,2002,38(增刊):539~541.
    [40] 李永琦.羟基磷灰石涂层钛种植体远期临床疗效评价.广东牙病防治,2004,12(2):146~147.
    [41] Spoerke Erik D, Stupp Samuel I. Synthesis of a poly(L-lysine)-calcium phosphate hybrid on titanium surfaces for enhanced bioactivity. Biomaterials, 2005, 26: 5120~5129.
    [42] 杨俊.钛基羟基磷灰石涂层制备方法.临床口腔医学杂志,2004,20(6):382~383
    [43] 梁芳慧,周廉.钛和钛合金生物活化研究现状.稀有金属材料与工程,2003,32(4):241~245.
    [44] 张辉耀.提高钛及钛合金种植体表面生物活性的方法.国外医学口腔医学分册,2004,31(增刊):109~111.
    [45] Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W~3. Journal of Biomedical Materials Research, 1990, 24(6):721~734.
    [46] 黄岳山,赵修华,吴源青.微弧氧化改性二氧化钛生物活性膜的研究进展.医疗卫生装备,2004,(4):22~23.
    [47] 张玉梅,赵铱民,黄平,等.钛表面处理后表面能分析及对细胞附着的影响.稀有金属材料与工程,2004,33(5):518~521.
    [48] 胡耀君.微弧氧化技术在钛工业的应用.钛工业进展,1998,(3):43.
    [49] 赵树萍.钛及其合金微弧氧化镀层的形成及性质.钛工业进展,2002,(3):5.
    [50] Ishizawa Hitoshi, Ogino Makoto. Formation and characterization of anodic oxide films containing Ca and P. Biomedical Materials Research, 1995, 29 (1): 65~72.
    [51] Ishizawa Hitoshi, Ogino Makoto. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. Biomedical Materials Research,1995, 29 (9): 1071~1079.
    [52] Song Won-Hoon, Jun Youn-Ki, Han Yong, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004, 25: 3341~3349.
    [53] Liang Bojian, Fujibayashi Shunsuke, Neo Masashi, et al. Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials, 2003, 24: 4959~4966.
    [54] Sul Young-Taeg. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials, 2003, 24: 3893~3907.
    [55] Li Long-Hao, Kong Young-Min, Kim Hae-Won, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 2004, 25: 2867~2875.
    [56] Li Long-Hao, Kim Hae-Won, Lee Su-Hee, et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. Biomedical Materials Research, 2005, 73A(1): 48~54.
    [57] Zhu Xiaolong, Kim Kyo-Han, Jeong Yongsoo. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials, 2001, 22: 2199~2206.
    [58] Han Yong, Hong Seong-Hyeon, Xu Kewei. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 2003, 168: 249~258.
    [59] Huang Ping, Zhang Yong, Xu Kewei, et al. Surface modification of titanium implant by microarc oxidation and hydrothermal treatment. Biomedical Materials Research,2004, 70B (2): 187~190.
    [60] 黄平,徐可为,憨勇.钙、磷在钛表面微弧氧化层中的存在形式及进入机制.硅酸盐学报,2004,32(9):1184~1188.
    [61] 黄平,徐可为,憨勇.富含钙磷的多孔氧化钛膜及其生物活化机理.硅酸盐学报,2004,32(12):1449~1454.
    [62] 张勇,黄平,徐可为,等.溶液钙浓度和水热合成条件对微弧氧化TiO_2/羟基磷灰石复合膜层形貌和组成的影响.稀有金属材料与工程,2003,32(12):1007~1010.
    [63] 马威,刘宝林,魏建华,等.微弧氧化处理后纯钛植入体的皮下埋植试验及表面元素成分研究.口腔医学研究,2004,20(4):376~378.
    [64] 马威,刘宝林,魏建华,等.纯钛表面微弧氧化处理后的细胞毒性研究.中国新医药,2003,2(12):12~14.
    [65] 马威,刘宝林,王新木,等.微弧氧化处理后纯钛材料不同形貌特点对细胞在其表面附着和增殖的影响.中国临床康复,2004,8(14):2618~2620.
    [66] 唐光昕,张人佶,颜永年.多孔二氧化钛涂层的表面形貌.清华大学学报(自然科学版),2004,44(11):1445~1447.
    [67] Wang Yaming, Lei Tingquan, Jiang Bailing, et al. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution. Applied Surface Science, 2004, 233: 258~267.
    [68] Wang Y M, Jiang B L, Guo L X, et al. Antifriction property of microarc oxidation coating on Titanium alloy under solid lubricating condition. Surface Review & Letters, 2004, (11): 367~372.
    [69] Wang Y M, Jiang B L, Guo L X, et al. Controlled synthesis of microarc oxidation coating on Ti6A14V alloy and its antifriction properties. Materials Science & Technology, 2004, 20 (12):1590~1594.
    [70] 张勇.医用钛的微弧氧化表面改性试验研究:[硕士学位论文].陕西:西安交通大学,2003.
    [71] 杜竹玮,李浩然.生物矿化材料的形成机制及模拟应用.有色金属,2003,55(4):35~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700