坏死性凋亡参与NMDA诱导大鼠皮层神经元的兴奋性神经毒作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酸是中枢神经系统重要的兴奋性神经递质,在神经发育、突触传递、突触可塑性、学习、记忆等一系列脑功能活动中发挥重要作用。而过量谷氨酸可引起NMDA受体的过度活化并诱导神经元死亡,该作用被称为兴奋性神经毒(excitotoxicity)。兴奋毒在许多急慢性疾病中发挥重要作用包括神经退行性疾病、不同原因造成的神经损伤包括缺血/再灌的损伤。根据谷氨酸作用的相对强度和持续时间不同,兴奋毒引起的损伤可能存在坏死或凋亡等不同的细胞死亡形式。坏死性凋亡是新近发现的一种细胞死亡方式,由于兼具坏死及凋亡的特征因此得名,包括出现坏死的形态特征及某些凋亡的信号通路同时伴随自噬的活化。Necrostatin-1(Nec-1)是一种特异且有效的抑制坏死性凋亡的小分子物质,可用来鉴定在神经损伤中是否存在坏死性凋亡的途径。迄今为止,坏死性凋亡的机制并不清楚,Nec-1的发现为评价坏死性凋亡的特征及作用提供了唯一的可能。本研究利用Nec-1作为工具药,通过观察Nec-1对NMDA诱导的兴奋毒的抑制作用,从而明确NMDA诱导的兴奋毒中是否存在坏死性凋亡以及钙超载在其中的作用。实验中通过检测细胞活力、LDH释放及Calcein-AM染色观察NMDA的毒性作用及证实Nec-1的抑制作用,通过激光共聚焦检测NMDA引起的胞内Ca~(2+)升高及Nec-1的作用,证实Ca~(2+)超载在坏死性凋亡的作用。
     结果显示:1. Nec-1抑制NMDA引起的细胞活力的降低。换句话也就是说Nec-1预处理引起细胞活力的增加,并呈剂量依赖性。Nec-1(30μmol/L)和Nec-1(100μmol/L)分别使其增加12%(p < 0.05)和26%(p < 0.01),但Nec-1(10μmol/L)并不能抑制NMDA引起的细胞活力的降低。
     2. Nec-1抑制NMDA引起的活细胞数的减少。Nec-1(30μmol/L)和Nec-1(100μmol/L)分别使活细胞数增加11%(p < 0.05)和23%(p < 0.01)。
     3. Nec-1抑制NMDA引起的LDH释放的增加。Nec-1(30μmol/L)和Nec-1(100μmol/L)分别使LDH释放减少14%(p < 0.05)和28%(p < 0.01)。
     4. Nec-1抑制NMDA引起的胞内Ca~(2+)的升高。Nec-1(100μmol/L)使NMDA诱导的胞内Ca~(2+)的升高降低36%(p < 0.05)。
     上述结果表明,除坏死和凋亡外,坏死性凋亡也参与兴奋性神经毒的病理过程。由于NMDA引起兴奋毒在多种损伤中发挥重要作用,因此预防和治疗兴奋毒对预防和治疗神经损伤有至关重要的意义。由于坏死性凋亡具有可调控的特征,因此提供了一个更有意义的预防治疗兴奋性神经毒的靶点。结论:1.坏死性凋亡参与NMDA诱导的兴奋毒;2.胞内Ca~(2+)升高可能是坏死性凋亡发生的机制之一;3.尽管坏死性凋亡在NMDA诱导的兴奋毒中起作用,但其作用可能仅占其中一小部分。
Glutamate is the primary excitatory amino acid neurotransmitter in the central nervous system. Excess of glutamate can cause excessive activation of N-methyl-D-aspartate (NMDA) receptors and induce neuronal death described as excitotoxicity. Excitotoxicity is involved in a wide range of acute and chronic diseases with both necrosis and apoptosis, depending on the relative intense and time course. Necroptosis is a newly discovered type of cell death characterized with the combined biochemical and ultrastructural features of necrosis and apoptosis. Nec-1 has been reported to exhibit the selective inhibition for necroptosis, which has now been used as an operational definition of necroptosis. The purpose of this study was to evaluate whether necroptosis is involved in the NMDA-induced excitotoxicity and furthermore whether the elevation of intracellular Ca~(2+) is involved in the NMDA-induced necroptosis. Our findings showed that Nec-1 (100μmol/L) inhibited NMDA-induced decrease of cell viability by 26% (p < 0.01), suppressed NMDA-induced decrease of living cells by 23% (p < 0.01) and attenuated NMDA-induced leakage of LDH by 28% (p < 0.01). In addition, Nec-1 also suppressed NMDA-induced the elevation of intracellular Ca~(2+) by 36% (p < 0.05). These findings indicated for the first time that necroptosis contributes to the NMDA-induced excitotoxicity, and the elevation of intracellular Ca~(2+) may be one of potential mechanisms underlying NMDA-induced necroptosis. Although necroptosis involved in the NMDA-induced excitotoxicity, it may just constitute a small contribution.
引文
[1] Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol. 200l;58(3):365-70.
    [2] Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol. 1992;54:507-36.
    [3] Liu Y, Zhang J. Recent development in NMDA receptors. Chin Med J (Engl). 2000;113(10):948-56.
    [4] Takei N, Endo Y. Ca2+ ionophore-induced apoptosis on cultured embryonic rat cortical neurons. Brain Res. 1994;652(1):65-70.
    [5] Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1:623-34.
    [6] Miller LP, Lyeth BG, Jenkins LW, Oleniak L, Panchision D, Hamm RJ, Phillips LL, Dixon CE, Clifton GL, Hayes RL. Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res. 1990;526(1):103-7.
    [7] Hayes RL, Jenkins LW, Lyeth BG, Balster RL, Robinson SE, Clifton GL, Stubbins JF, Young HF. Pretreatment with phencyclidine, an N-methyl-D-asparatate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J Neurotrauma. 1988;5(4):259-74.
    [8] Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907-16.
    [9] Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995;92(16):7162-6.
    [10] Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112-9.
    [11] Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552-65.
    [12] Gwag BJ, Canzoniero LM, Sensi SL, Demaro JA, Koh JY, Goldberg MP, Jacquin M, Choi DW. Calcium ionophores can induce either apoptosis or necrosis in cultured cortical neurons.Neuroscience. 1999;90(4):1339-48.
    [13] Cebere A, Liljequist S. Ethanol differentially inhibits homoquinolinic acid- and NMDA-induced neurotoxicity in primary cultures of cerebellar granule cells. Neurochem Res. 2003;28(8):1193-9.
    [14] Beal MF. Role of excitotoxicity in human neurological disease. Curr Opin Neurobiol. 1992;2(5):657-62.
    [15] Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol. 1999;45(1):25-32.
    [16] Beal MF. Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis. Ann Neurol. 1998;44(3 Suppl 1):S110-4.
    [17] Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004;45(5):583-95.
    [18] Bonde C, Noraberg J, Noer H, Zimmer J. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience. 2005;136(3):779–94.
    [1] Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol. 200l;58(3):365-70.
    [2]魏东升,胡国渊.兴奋性氨基酸受体的分子生物学.神经科学. 1994;1:43-7.
    [3] Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: A revolving neurochemical axis for therapeutic intervention? Prog Neurobiol. 2005;77(4):252–82.
    [4] Gasic GP, Hollmann M. Molecular neurobiology of glutamate receptors. Annu Rev Physiol. 1992;54:507-36.
    [5]林奕斌,赵同军,展永. N-甲基-D-天氡氨酸受体的分子结构与生理功能.生命科学. 2007;19(1):57-62.
    [6] Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature. 1984;309(5965):261-3.
    [7] Liu Y, Zhang J. Recent development in NMDA receptors. Chin Med J (Engl). 2000;113:948-56.
    [8]姚志彬,陈以慈.《脑研究前沿》.广东科技出版社. 1995;206-7.
    [9] Takei N, Endo Y. Ca2+ ionophore-induced apoptosis on cultured embryonic rat cortical neurons. Brain Res. 1994;652(1):65-70.
    [10] Siesj? BK. Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci. 1988;522:638-61.
    [11] Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol. 1957;58:193-201.
    [12] Olney JW. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: an electron microscopic study. J Neuropathol Exp Neurol. 1971;30:75-90.
    [13] Miller LP, Lyeth BG, Jenkins LW, et al. Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res. 1990;526(1):103-7.
    [14] Mitani A, Imon H, Iga K, et al. Gerbil hippocampal extracellular glutamate and neuronal activity after transient ischemia. Brain Res Bull. 1990;25(2):319-24.
    [15] Hayes RL, Jenkins LW, Lyeth BG, et al. Pretreatment with phencyclidine, an N-methyl-D-asparatate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. J Neurotrauma. 1988;5(4):259-74.
    [16]江涛,戴钦舜,刘恩重,等.脑缺血-再灌注损伤中兴奋性氨基酸的变化.中华神经外科杂志. 1997;13:219-21.
    [17] Faden AI, Demediuk P, Panter SS, et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;244(4906):798-800.
    [18]易声禹,费舟,徐如祥.尼莫地平救治重型颅脑损伤的理论基础和临床研究.中华神经外科杂志. 1994;10(1):28-30.
    [19] Clark GD. Role of excitatory amino acids in brain injury caused by hypoxia-ischemia, status epilepticus, and hypoglycemia. Clin Perinatol. 1989;16(2):459-74.
    [20] Tanovi? A, Alfaro V. Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia. [Article in Spanish] Rev Neurol. 2006;42(10):607-16.
    [21] Olanow CW. The pathogenesis of cell death in Parkinson's disease. Mov Disord. 2007;22 Suppl 17:S335-42.
    [22] Estrada Sánchez AM, Mejía-Toiber J, Massieu L. Excitotoxic Neuronal Death and the Pathogenesis of Huntington's Disease. Arch Med Res. 2008;39(3):265-76.
    [23] O′Donnell LA, Agrawal A, Jordan-Sciutto KL, et al. Human immunodeficiency virus (HIV)-induced neurotoxicity: roles for the NMDA receptor subtypes. J Neurosci. 2006;26(3):981-90.
    [24] McDonald JW, Shapiro SM, Silverstein FS, et al. Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn rat model. Exp Neurol. 1998;150(1):21-9.
    [25] Prange HW. Pathophysiology, therapy and prognosis of hypoxic-ischemic brain damage. [Article in German] Z Kardiol. 1994;83 Suppl 6:127-34.
    [26] Kampel A , Posmantur RM , Zhao X , et al. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: a review and update. J Neurotrauma, 1997;14(3):121-34.
    [27]吴启伟.血管性痴呆的基础性研究进展.中华医学研究杂志. 2005;5(10):1009-11.
    [28] Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acethlcholine. Nature. 1980;288(5789):373-6.
    [29] Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524-6.
    [30] Moncada S, Higgs A, Furchgott R. International union of pharmacology nomenclature in nitric oxdie research. Pharmacol Rev. 1997;49(2):137-42.
    [31]关新民.《医学神经生物学》.人民卫生出版社. 2002;130-5.
    [32] Seidel C, Bicker G. Nitric oxide and cGMP influence axonogenesis of antennal pioneer neurons. Development. 2000;127(21):4541-9.
    [33] Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke. 1997;28(6):1283-8.
    [34] Wallace MN, Geddes JG, Farquhar DA, et a1. Nitric oxide synthase in reactive astrocytes adjacent toβ-amyloid plaques. Exp Neurol. 1997;144:266-72.
    [35]施金龙,陈建,施炜.大鼠创伤性脑损伤后诱导型NOS阳性表达与神经细胞凋亡的关系.南通医学院学报. 2004;24(3): 254-5,253.
    [36] Dawson VL, Dawson TM, London ED, et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA. 1991;88:6361-71.
    [37] Yamauchi M, Omote K, Ninomiya T. Direct evidence for the role of nitric oxide on the glutamate-induced neuronal death in cultured cortical neurons. Brain Res. 1998;780:253-9.
    [38] Dawson VL, Dawson TM, London ED, et al. Mechanisms of nitric oxide-mediated neurotoxicity in primary cortical cultures. J Neurosci. 1993;13:2651-61.
    [39] Tauma Y, Sato Y, Akaike A. Mechanisms of cholecystokinin-induced protection of cultured cortical neurons against N-methyl-D-aspartate neurotoxicity. Brain Res. 1993;625:337-41.
    [40] Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 1996;36:83-106.
    [41]张素华,张兆志.一氧化氮的神经毒性机制.职业与健康. 2004;20(3):10.
    [42] Pulsinelli WA, Brierley LB, Plum FC. Temporal profile of neuronal damage in a model of transient ischemia. Ann Neural. 1982;11:491-8.
    [43] Dawso VL, Dawson TM, Batley DA, et al.Mechanism of nitric oxide-mediated neurotoxity in primary brain cultures. J Neurosic. 1993;13(6): 2651-61.
    [44] Dawson TM, Dawson VL, Snyder SH. Nitric oxide as a mediator of neurotoxicity. NIDA Res Monogr. 1993;136:258-71.
    [45] Yang SN, Hsieh WY, Liu DD, et al. The involment of nitric oxide in synergistic neuronal damage induced by beta-amyloid peptide and glutamate in primary rat cortical neurons. Chin J Physiol. 1998;41(3):175-9.
    [46] Widmann C, Gibosn S, Jarpe MB, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79 (1):143-80.
    [47] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transductionpathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807-69.
    [48] Shapiro PS, Ahn NG. Feedback regulation of raf-1 and mitogen-activated protein (MAP) kinase kinases 1 and 2 by map kinase phosphatase-1 (MKP-1). J Biol Chem. 1998;273:1788-93.
    [49] Mu Jin-ye, Chen Xiao-Guang. The progress of the study on the mitogen-activated protein kinase pathways. Chin Bull Life Sci. 2002;14(4):208-11.
    [50] Boulton TG, Nye SH, Robbins DJ, et al. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991;65 (4):663-75.
    [51] Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838-49.
    [52] Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911-2.
    [53] Subramaniam S, Zirrgiebel U, von Bohlen Und Halbach O, et al. ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol. 2004;165(3):357-69.
    [54] Farrokhnia N, Roos MW, Terent A, et al. Differential early mitogen-activated protein kinase activation in hyperglycemic ischemic brain injury in the rat. Eur J Clin Invest. 2005;35(7):457-63.
    [55] Enomoto T, Osugi T, Satoh H, et al. Pre-Injury magnesium treatment prevents traumatic brain injury-induced hippocampal ERK activation, neuronal loss, and cognitive dysfunction in the radial-arm maze test. J Neurotrauma. 2005;22(7):783-92.
    [56] Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239-52.
    [57] Fleming Y, Armstrong CG, Morrice N, et al. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem J. 2000;352 Pt 1:145-54.
    [58] Eferl R, Wagner E F. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer. 2003;3(11):859-68.
    [59] Buschmann T, Potapova O, Bar-Shira A, et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol. 2001;21(8):2743-54.
    [60] Noguchi K, Kitanaka C, Yamana H, et al. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem. 1999;274(46):32580-7.
    [61] Brewster JL, de Valoir T, Dwyer ND, et al. An osmosensing signal transduction pathway in yeast. Science. 1993;259(5102):1760-3.
    [62] Raingeaud J, Whitmarsh AJ, Barrett T, et al. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996;16(3):1247-55.
    [63] Kang YJ, Seit-Nebi A, Davis RJ, et al. Multiple activation mechanisms of p38alpha mitogen-activated protein kinase. J Biol Chem. 2006;281(36):26225-34.
    [64] Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270(13):7420-6.
    [65] Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996;272(5266):1347-9.
    [66] Zervos AS, Faccio L, Gatto JP, et al. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci U S A. 1995;92(23):10531-4.
    [67] Ghatan S, Larner S, Kinoshita Y, et al. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol. 2000;150(2):335-47.
    [68] Ketam S, John F, Brion N, et al. Inhibition of p38 mitogen-activated protein kinase increases LPS induced inhibition of apoptosis in neutrophils by activating extracellular signal regulated kinase. Surgery. 2001;130(2):242-7.
    [69] Ross J, Armstead WM. NOC/oFQ activates ERK and JNK but not p38 MAPK to impair prostaglandin cerebrovasodilation after brain injury. Brain Res. 2005;1054(1):95-102.
    [70] Zhang JZ, Jing L, Ma AL, et al. Hyperglycemia increased brain ischemia injury through extracellular signal-regulated protein Kinase. Pathol Res Pract. 2006;202(1):31-6.
    [71] Lu KT, Wang YW, Wo YY, et al. Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett. 2005;386(1):40-5.
    [72] Jiang Q, Gu Z, Zhang G, et al. Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res. 2000;857(1-2):71-7.
    [73] Grant ER, Errico MA, Emanuel SL, et al. Protection against glutamate toxicity through inhibition of the p44/42 mitogen-activated protein kinase pathway in neuronally differentiated P19 cells. Biochem Pharmacol. 2001;62(3):283-96.
    [74] Jiang Q, Gu Z, Zhang G, et al. N-methyl-D-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death. Brain Res. 2000;887(2):285-92.
    [75] Centeno C, Repici M, Chatton JY, et al. Role of the JNK pathway in NMDA-mediated excitotoxicity of cortical neurons. Cell Death Differ. 2007;14(2):240-53.
    [76] Borsello T, Croquelois K, Hornung JP, et al. N-methyl-D-aspartate–triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci. 2003;18 (3):473-85.
    [77] Borsello T, Clarke PG, Hirt L, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9(9):1180-6.
    [78] Ko HW, Park KY, Kim H, et al. Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures. 1998;71(4):1390-5.
    [79] Kawasaki H, Morooka T, Shimohama S, et al. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem. 1997;272(30):18518-21.
    [80] Segura Torres JE, Chaparro-Huerta V, Rivera Cervantres MC, et al. Neuronal cell death due to glutamate excitotocity is mediated by p38 activation in the rat cerebral cortex. Neurosci Lett. 2006;403(3):233-8.
    [81] Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res. 2005;1044(2):227-40.
    [82] Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991;71(3):813-47.
    [83] Goll DE, Thompson VF, Li H, et al. The calpain system. Physiol Rev. 2003;83(3):731-801.
    [84] Geesink GH, Nonneman D, Koohmaraie M. An improved purification protocol for heart and skeletal muscle calpastatin reveals two isoforms resulting from alternative splicing. Arch Biochem Biophys. 1998;356(1):19-24.
    [85] Carafoli E, Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun. 1998;247(2):193-203.
    [86] Chen LN, Yan B, Chen DP, et al. Protective effect of calpain inhibitor-3 on hypoxic-ischemic brain damage of neonatal rats. Zhonghua Er Ke Za Zhi. 2008;46(1):13-7.
    [87] Lynch DR, Guttmann RP. Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther. 2002;300(3):717-23.
    [88] Yokota M, Saido TC, Kamitani H, et al. Calpain induces proteolysis of neuronal cytoskeleton in ischemic gerbil forebrain. Brain Res. 2003;984(1-2):122-32.
    [89] Wu HY, Tomizawa K, Oda Y, et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem. 2004;279(6):4929-40.
    [90] Lee MS, Kwon YT, Li M, et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 2000;405(6784):360-4.
    [91] Patzke H, Tsai LH. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J Biol Chem. 2002;277(10):8054-60.
    [92] Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000;150(4):887-94.
    [93] Saido TC, Yokota M, Nagao S, et al. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993;268(33):25239-43.
    [94] Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 1999;402(6762):615-22.
    [95] Kim MJ, Jo DG, Hong GS, et al. Calpain-dependent cleavage of cain/cabin1 activates calcineurin to mediate calcium-triggered cell death. Proc Natl Acad Sci U S A. 2002;99(15):9870-5.
    [96] Wang KK. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000;23(1):20-6.
    [97] Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol. 2000;62(3):273-95.
    [98] Chiu K, Lam TT, Ying Li WW, et al. Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res. 2005;1046(1-2):207-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700