新型二茂铁双胆固醇衍生物的合成及其胶凝行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于小分子化合物的有机凝胶受到日益广泛的关注,这不仅仅是因为它们能够通过分子间弱相互作用自组装成丰富多样的超分子结构,更是因为它们本身就是性质独特的软物质材料。小分子凝胶属于物理凝胶,其形成主要依靠氢键、范德华力、π-π堆积、静电、配位、疏溶剂以及偶极-偶极等弱相互作用,因而往往具有良好的热可逆性。而一些特殊功能基团的引入可使其具有更加优良的性质,如对外界光、电、主客体、氧化还原以及剪切力等的刺激响应,因而小分子凝胶在传感器、药物缓释、模板合成、文物保护、水处理以及油水分离等方面都具有潜在的应用价值。
     胆固醇分子具有刚性骨架、多手性中心,易于通过范德华作用发生簇集,其衍生物往往表现出良好的胶凝能力,是一类常见的小分子胶凝剂。二茂铁所具有的磁性、催化特性、电活性以及非线性光学等性质使其衍生物在催化、分子电子器件、非线性光学材料、传感器等方面显示出很好的应用前景。本学位论文立足本实验室已有的工作基础,将二茂铁置于双胆固醇结构连接臂的侧链位置,设计合成了LS2型(L代表连接臂,S代表胆甾基)的双胆型小分子有机胶凝剂,并对其形成的凝胶进行了深入的研究,同时还获得了油包水型(W/O)L凝胶乳液。本学位论文主要包括以下两部分内容:
     第一部分:通过改变连接臂上氢键结合位点的数目,设计合成了3种以二茂铁为侧链的双胆固醇型化合物(分别是1,2,3)。利用1HNMR、FT-IR和元素分析对这三种化合物的组成和结构进行了表征,并系统考察了这三种化合物在常见有机溶剂中的胶凝行为。发现化合物1不能胶凝所测试的34种溶剂,化合物2可以使正己烷、正庚烷、正辛烷、正壬烷、正癸烷以及环己烷胶凝化,而化合物3则只可以使DMSO和环己烷胶凝。其中,2/正癸烷体系具有多重刺激响应性(图1)。利用红外、核磁以及X射线衍射等手段探讨了凝胶的形成机理,观察了部分凝胶网络的微观结构,推测了凝胶形成基本过程,提出了化合物2在正癸烷中的簇集体模型。
     第二部分:在第一部分工作基础上,以化合物2为稳定剂制备了含水量(分散相)可达97%(v/v)的2/正癸烷/水凝胶乳液,研究了含水量对该体系相行为的影响。光学显微镜观察表明体系是典型的凝胶乳液泡沫结构。流变学研究表明,2/正癸烷/水凝胶乳液具有良好的力学稳定性以及凝胶类物质所拥有的典型的粘弹性,而且凝胶乳液的储能模量G′和屈服应力都随着分散相体积分数增加而增加,这一结果与文献报道一致。同时,还发现2/甲基丙烯酸叔丁酯/水凝胶乳液体系,通过自由基引发聚合的方法得到了多孔结构的低密度聚合物材料(图2)。
Recently, increasing interest has been paid to organogels based on low-molecular-mass compounds. This is not only because various superamolecular networks can be formed due to self-assembly of the gelator molecules in the medium, but also because they are soft materials with special properties. Low-molecular-mass gels belong to physical gels and they are formed and maintained by weak interactions including hydrogen bonding, van der Waals interactions,π-πstacking, electrostatic interactions, coordination interactions, and dipole-dipole interactions, ect. Therfore, these systems usually possess better thermo-reversibility. Furthermore, introduction of some functional groups in low-molecular-mass gelators may result in stimulus-responsive properties, in which the stimuli can be irradiation, electron or charge transfer, host-guest interaction, oxidative/reductive reaction, and shearing force, etc. It is because of these reasons that low-molecular-mass gels have promising potential applications in sensors and actuators, drug delivery, protection of historical relics, as templates for preparing micro/nano-materials, oil recovery, mild separation and purification, etc.
     It is known that cholesterol possesses a rigid skeleton, several sterogenic centers, and a strong tendency to form aggregates via van der Waals interaction. These structural characteristics make it an ideal component for designing various potential low-molecular-mass organic gelators (LMOGs) and in fact cholesteryl derivatives are efficient LMOGs. Ferrocene (Fc), a typical organometallic compound, possesses cataytic, magnetic, electrical activity and nonlinear optical properties., As a result, its derivatives have been widly applied in asymmetric catalysis, in the development of molecular electronic materials, in light stabilizer, electrochemical sensor, etc. As the continuation of our work on the studies of LMOGs, Fc has been intentionally introduced into three specially designed LS2 type di-cholesteryl derivatives as a pendant structure, where L denotes a linker and S stands for a steroidal unit. Their gelation behaviors are investigated and water-in-oil (W/O) gel-emulsions have been obtained. This distation is maily composed of the follow ing two parts:
     In the frist part, three compounds denoted as 1,2, and 3, respectively, are designed and sytheszied by varying the number of hydrogen-bonding sites in the linkers. The structures and compositions of all these compounds are characterized by 1H NMR, FT-IR spectroscopy, elemental analysis, and satisfied results have been obtained. The gelation properties of the three compounds in common solvents are studied systematically. It is found that that 1 gels none of the 34 solvents tested, 2 gels some of the alkanes, and 3 gels only cyclohexane and DMSO. Importantly, the gel system of 2/n-decane exhibits a sol-gel phase transition upon thermal, ultrasonic, mechanical or even chemical treatments (Fig.1). The micro-morphologies of some xerogels are investigated by SEM. Concentration dependent of the morphology of the xerogel was also intentionally investigated in order to examine the evolution process of the microstructures of the xerogels. FT-IR、XRD and 1H NMR studies revealed the formation mechanism of the organogel. At last, a structural mode has been proposed to describe the fundamental assembly of 2 in n-decane.
     In the second part, compound 2 as a stabilizer was used to prepare the water in oil gel emulsion as a continuation of the frist part. Frist, the systems of 2/n-decane/water with different water contents were adopted as example systems to look for the effect of the water content on phase behavior. For the system of 2/n-decane/water, the maximum volume ratio of water (dispersed phase) is 97%(v/v). Optical microscopy measurements confirmed the foam-like structures of the gel emulsions. Rheological measurements demonstrated that the 2/n-decane/water gel emulsions possess good mechanical stability, and exhibit typical viscoelastic properties. It was found that the storage modulus (G') and the yield stress of the gel emulsions increase along with increasing the volume ratio of the dispersed phase, a result consistent with the result of the traditional gel emulsions. At the same time, the system of 2/tert-butyl methacrylate/water gel emulsion was created (Fig.2). Tert-butyl methacrylate was successfully polymerized by free redical polymerization in this gel emulsion to get porous and low-density material (Fig.2).
引文
[1]A. Vintiloiu, J. C. Leroux. Organogels and their use in drug delivery-A review[J]. J. Control. Release,2008,125:179-192.
    [2]D. J. Lloyd. The problem of gel structure[M]. Colloid Chemistry,1926,1:767-782. Chemical. Catalogue Company:New York.
    [3]P. J. Flory. Introductory lecture:Gels and gelling processes[J]. Faraday Discuss. Chem. Soc.,1974,57:7-18.
    [4]X. Y. Liu, P. D. Sawant, W. B. Tan, I. B. M. Noor, C. Pramesti, B. H. Chen. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks[J]. J. Am. Chem. Soc.,2002,124:15055-15063.
    [5]D. R. Trivedi, A. Ballabh, P. Dastidar, B. Ganguly. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures[J]. Chem. Eur. J.,2004,10: 5311-5322.
    [6]R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, K. Hischberg, R. F. M. Lange, J. K. L. Lowe, E. W. Meijer. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J]. Science, 1997,278:1601-1604.
    [7]G. J. Wang, A. D. Hamilton. Low molecular weight organogelators for water[J]. Chem. Commun.,2003,3:310-311.
    [8]M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. M. Ree, N. Khazanovich. Self-assembling organic nanotubes based on a cyclic peptide architecture [J]. Nature,1993,366:324-327.
    [9]C. H. Tan, L. H. Su, R. Lu, P. C. Xue, C. Y. Bao, X. L. Liu, Y. Y. Zhao. A family of low-molecular-weight organogelators based on long chain substituted benzoic acid hydrazides[J]. J. Mol. Liq.,2006,124:32-36.
    [10]A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles, T. C. B. McLeish, M. Pitkeathly, S. E. Radford. Responsive gels formed by the spontaneous self- assembly of peptides into polymeric beta-sheet tapes[J]. Nature,1997,386: 259-262.
    [11]K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komri, F. Olrseto, K. Ueda, S. Shinkai. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels[J]. J. Am. Chem. Soc.,1994,116:6664-6676.
    [12]C. Wang, D. Q. Zhang, D. B. Zhu. A low-molecular-mass gelator with an electro-active tetrathiafulvalene group:tuning the gel formation by charge-transfer interaction and oxidation[J]. J. Am. Chem. Soc.,2005,127: 16372-16373.
    [13]M. George, R. G Weiss. Chemically reversible organogels via "latent" gelators. Aliphatic amines with carbon dioxide and their ammonium carbamates[J]. Langmuir,2002,18:7124-7135.
    [14]T. Naota, H. Koori. Molecules that assemble by sound:an applcation to the instant gelation of stable organic fluids[J]. J. Am. Chem. Soc.,2005,127: 9324-9325.
    [15]H. Ihara, T. Sakurai, T. Yamada, T. Hashimoto, M. Takafuji, T. Sagawa, H. Hachisako. Chirality control of self-assembling organogels from a lipophilic L-glutamide derivative with metal chloride[J]. Langumuir,2002,18:7120-7123.
    [16]J. L. Pozzo, G M. Clvaier. Rational design of new acid-sensitive ograno-gelators[J]. Mater. Chem.,1998,8:2575-2581.
    [17]刘凯强,屈育龙,王明珍,胡道道,房喻,王宁飞.小分子有机胶凝剂和凝胶推进剂的研究进展[J].火炸药学报,2003,26:23-26.
    [18]A. Friggeri, B. L. Feringa, J. V. Esch. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator[J]. J. Control. Release,2004,97:241-248.
    [19]S. Tamaru, M. Takeuchi, M. Sano, S. Shinkai. Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica:unimolecular stacks versus helical bundles as templates[J]. Angew. Chem. Int. Ed.,2002,41:853-856.
    [20]D. T. Mcquade, A. E. Pullen, T. M. Swager. Conjugated polymer-based chemical sensors[J]. Chem. Rev.,2000,100:2537-2574.
    [21]Y. C. Lin, R. G Weiss. Evidence for random parallel and anti-parallel packing between neighboring cholesteryl 4-(2-anthryloxy)butyrate (CAB) molecules in the cholesteric liqud-crystalline phase-identification of the 4 photodimers from CAB[J]. Liq. Cryst.,1989,4:367-384.
    [22]Y. C. Lin, B. Kachar, R. G Weiss. Liquid-crystalline solvents as mechanistic probes. Part 37. Novel family of gelators of organic fluids and the structure of their gels[J]. J. Am. Chem. Soc.,1989,111:5542-5551.
    [23]P. Terech, R. G. Weiss. Low molecular gelators of organic liquids and the properties of their gels[J]. Chem. Rev.,1997,97:3133-3159.
    [24]T. Klawonn, A. Gansauer, I. Winkler, T. Lauterbach, D. Franke, J. M. R. Nolte, C. M. Feiters, H. Borner, J. Hentschel, K. H. Dotz. A tailored organometallic gelator with enhanced amphiphilic character and structural diversity of gelation[J]. Chem. Commun.,2007,19:1894-1895.
    [25]G. Buhler, M. C. Feiters, R. J. M. Nolte, K. H. Dotz. A metal-carbene carbohydrate amphiphile as a low-molecular-mass organometallic gelator [J]. Angew Chem. Int. Ed.,2003,42:2494-2497.
    [26]T. Tu, W. Assenmacher, H. Peterlik, R. Weisbarth, M. Nieger, K. H. Dotz. An air-stable organometallic low-molecular-mass gelator:synthesis, aggregation, and catalytic application of a palladium pincer complex [J]. Angew Chem. Int. Ed.,2007,46:6368-6371.
    [27]J. Liu, J. L. Yan, X. W. Yuan, K. Q. Liu, J. X. Peng, Y. Fang, A novel low-molecular-mass gelator with a redox active ferrocenyl group:Tuning gel formation by oxidation[J]. J. Colloid Interface Sci.,2008,318:397-404.
    [28]J. Liu, P. L. He, J. L. Yan, X. H. Fang, J. X. Peng, K. Q. Liu, Y. Fang. An organometallic super-gelator with multiple-stimulus responsive properties[J]. Adv. Mate.,2008,20:2508-2511.
    [29]刘静.含二茂铁基小分子有机胶凝剂的设计合成及其胶凝行为研究[D].西安:陕西师范大学,2008.
    [30]P. Sahoo, D. K. Kumar, D. R. Trivedi, P. Dastidar. An easy access to an organometallic low molecular weight gelator:a crystal engineering approach[J]. Tetrahedron Lett.,2008,49:3052-3055.
    [31]G. Ghini, L. Lascialfari, C. Vinattieri, S. Cicchi, A. Brandi, D. Berti, F. Betti, P. Baglioni, M. Mannini. Towards a general organogelator:combining a versatile scaffold and an efficient linking process[J]. Soft Matter,2009,5:1863-1869.
    [32]P. Terech, G Gebel, R. Ramasseul. Molecular rods in a Zinc(Ⅱ) porphyrin/ cyclohexane physical gel:neutron and X-ray scattering characterizations[J]. Langmuir,1996,12:4321-4323.
    [33]T. Ishi, J. H. Jung, S. Shinkai. Intermolecular porphyrin-fullerene interaction can reinforce the organogel structure of a porphyrin-appended cholesterol derivativ[J]. J. Mater. Chem.,2000,10:2238-2240.
    [34]T. Ishi, R. Iguchi, E. Snip, M. Ikeda, S. Shinkai. [60]Fullerene can reinforce the organogel structure of porphyrin-appended cholesterol derivatives:novel odd-even effect of the (CH2)n spacer on the organogel stability[J]. Langmuir,2001, 17:5825-5833.
    [35]T. Kishida, N. Fujita, O. Hirata, S. Shinkai. Axial coordination changes the morphology of porphyrin assemblies in an organogel system[J]. Org. Biomol. Chem.,2006,4:1902-1909.
    [36]T. Kishida, N. Fujita, K. Sada, S. Shinkai. Porphyrin gels reinforced by sol-gel reaction via the organogel phase[J]. Langmuir,2005,21:9432-9439.
    [37]T. Kishida, N. Fujita, K. Sada, S. Shinkai. Sol-gel reaction of porphyrin-based superstructures in the organogel phase:creation of mechanically reinforced porphyrin hybrids[J]. J. Am. Chem. Soc.,2005,127:7298-7299.
    [38]S. Malika, S. I. Kawanoa, N. Fujitaa, S. Shinkai. Pyridine-containing versatile gelators for post-modification of gel tissues toward construction of novel porphyrin nanotubes[J]. Tetrahedron,2007,63:7326-7333.
    [39]M. Shirakawa, S. I Kawano, N. Fujita, K. Sada, S. Shinkai. Hydrogen-bond assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system[J]. J. Org. Chem.,2003,68:5037-5044.
    [40]Z. Y. Xiao, J. L. Hou, X. K. Jiang, Z. T. Li, Z. Ma. Complexes between hydrogen bonded bisporphyrin tweezers and cholesterol-appended fullerenes as organo-gelators and liquid crystals[J]. Tetrahedron,2009,65:10182-10191.
    [41]D. D. Diaz, J. J. Cid, P. Vazquez, T. Torres. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry[J]. Chem. Eur. J.,2008,14:9261-9273.
    [42]T. Naota, H. Koori. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids[J]. J. Am. Chem. Soc.,2005,127: 9324-9325.
    [43]M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, S. Shinkai. Organogel of an 8-quinolinol platinum(Ⅱ) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching[J]. Chem. Commun., 2005,4149-4151.
    [44]A. Y.Y.Tam, K. M. C. Wong, G X. Wang, V. W. W. Yam. Luminescent metallogels of platinum(Ⅱ) terpyridyl complexes:interplay of metal-metal,π-π and hydrophobic-hydrophobic interactions on gel formation[J]. Chem. Commun.,2007,2028-2030.
    [45]S. T. Lam, G X Wang, V. W. W. Yam. Luminescent metallogels of alkynyl-rhenium(I) tricarbonyl diimine complexes[J]. Organometallics,2008,27:4545-4548.
    [46]A. Kishimura, T. Yamashita, T. Aida. Phosphorescent organogels via "metall-ophilic" interactions for reversible RGB-color switching[J]. J. Am. Chem. Soc., 2005,127:179-183.
    [47]S. I. Kawano, N. Fujita, S. Shinkai. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli[J]. J. Am. Chem. Soc.,2004,126:8592-8593.
    [48]C. Martini, F. J. Stadler, A. Said, V. Heresanu, D. Ferry, C. Bailly, J. Ackermann, F. Fages. Dye-adsorption-induced gelation of suspensions of spherical and rodlike zinc oxide nanoparticles in organic solvents[J]. Langmuir, 2009,25:8473-8479.
    [49]P. Terech, C. Chachaty, J. Gaillard, A. M GiroudGodquin. Electron paramagnetic resonance study of the physical gelation of a copper complex in cyclohexane[J]. A. M. J. Phys.,1987,48:663-671.
    [50]T. Tu, X.1. Bao, W. Assenmacher, H. Peterlik, J. Daniels, K. H. Dotz. Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: Synthesis, aggregation and application of pyridine-bridged bis(benzimid-azolylidene)-Palladium complexes. Chem. Eur. J.,2009,15:1853-1861.
    [51]C. Dammer, P. Maldivi, P. Terech, J.-M. Guenet. Rheological study of a bicopper, tetracarboxylate/decalin[J]. Langmuir,1995,11:1500-1506.
    [52]D. Lopez, J. M. Guenet. Behavior of a self-assembling bicopper complex in organic solutions[J]. Macromolecules,2001,34:1076-1081.
    [53]P. Terech, V. Schaffhauser, P. Maldivi, J. M. Guenet. Living polymers in organic solvents[J]. Langmuir,1992,8:2104-2106.
    [54]Y. R. Liu, L. He, J. Y. Zhang, X. B. Wang, C. Y. Su. Evolution of spherical assemblies to fibrous networked Pd(Ⅱ) metallogels from a Pyridine-based tripodal ligand and their catalytic property [J]. Chem. Mater.,2009,21: 557-563.
    [55]Y. M. A. Yamada, Y. Maeda, Y. Uozumi. Novel 3D coordination palladium network complex:a recyclable catalyst for suzuki-miyaura reaction[J]. Org. Lett.,2006,8:4259-4262.
    [56]J. M. J. Paulusse, D. J. M. V. Beek, R. P. Sijbesma. Reversible switching of the sol-gel transition with ultrasound in Rhodium(Ⅰ) and Iridium(Ⅰ) coordination networks[J]. J. Am. Chem. Soc.,2007,129:2392-2397.
    [57]M. George, G. P. Funkhouser, R. G. Weiss. Organogels with complexes of ions and phosphorus-containing amphiphiles as gelators. Spontaneous gelation by in situ complexation[J]. Langmuir,2008,24:3537-3544.
    [58]G. P. Funkhouser, N. Tonmukayakul, F. Liang. Rheological comparison of organogelators based on Iron and Aluminum complexes of dodecylmethyl-phosphinic acid and methyl dodecanephosphonic acid[J]. Langmuir,2009,25: 8672-8677.
    [59]O. Roubeau, A. Colin, W. Schmitt, R. Clerac. Thermoreversible gels as magneto-optical switches[J]. Angew. Chem. Int. Ed.,2004,43:3283-3286.
    [60]S. Kume, K. Kuroiwa, N. Kimizuka. Photoresponsive molecular wires of Fe(Ⅱ) triazole complexes in organic media and light-induced morphological transformations[J]. Chem. Commun.,2006,2442-2444.
    [61]K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto, N. Kimizuka. Heat-set gel-like networks of lipophilic Co(Ⅱ) triazole complexes in organic media and their thermochromic structural transitions[J]. J. Am. Chem. Soc.,2004,126: 2016-2021.
    [62]J. B. Beck, S. J. Rowan. Multistimuli, multiresponsive metallo-supramolecular polymers[J]. J. Am. Chem. Soc.,2003,125:13922-13923.
    [63]W. Weng, J. B. Beck, A. M. Jamieson, S. J. Rowan. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels[J]. J. Am. Chem. Soc.,2006,128:11663-11672.
    [64]W. G. Weng, Z. Li, A. M. Jamieson, S. J. Rowan. Control of gel morphology and properties of a class of metallo-supramolecular polymers by good/poor solvent environments[J]. Macromolecules,2009,42:236-246.
    [65]Y. Q. Zhao, J. B. Beck, S. J. Rowan, A. M. Jamieson. Rheological behavior of shear-responsive metallo-supramolecular gels[J]. Macromolecules,2004,37: 3529-3531.
    [66]H. J. Kim, E. Y. Jung, L. Y. Jin, M. S. Lee. Solution behavior of dendrimer-coated rodlike coordination polymers[J]. Macromolecules,2008,41: 6066-6072.
    [67]H. J. Kim, W. C. Zin, M. S Lee. Anion-directed self-assembly of coordination polymer into tunable secondary structure[J]. J. Am. Chem. Soc.,2004,126: 7009-7014.
    [68]S. Y. Zhang, S. Y. Yang, J. B Lan, S. J Yang, J. S. You. Helical nonracemic tubular coordination polymer gelators from simple achiral molecules[J]. Chem. Commun.,2008,6170-6172.
    [69]A. Westcott, C. J. Sumby, R. D. Walshaw, M. J. Hardie. Metallo-gels and organo-gels with tripodal cyclotriveratrylene-type and 1,3,5-substituted benzene-type ligands[J]. New J. Chem.,2009,33:902-912.
    [70]K. Murata, M. Aoki, T. Nishi, A. Ikeda, S. Shinkai. New cholesterol-based gelators with light- and metal-responsive functions[J]. Chem. Commun.,1991, 1715-1718.
    [71]N. Amanokura, Y. Kanekiyo, S. Shinkai, D. N. Reinhoudt. New sugar-based gelators with an amino group, the gelation ability of which is remarkably reinforced by the hydrogen bond and the metal coordination[J]. J. Chem. Soc., Perkin Trans.2,1999,1995-2000.
    [72]F. Camerel, R. Ziessel, B. Donnio, D. Guillon. Engineering of an iron-terpyridine complex with supramolecular gels and mesomorphic properties[J]. New J. Chem.,2006,30:135-139.
    [73]S. I. Kawano, N. Fujital, K. J. C. V. Bommel, S. Shinkai. Pyridine-containing cholesterols as versatile gelators of organic solvents and the subtle influence of Ag(I) on the gel stability[J]. Chem. Lett.2003,32:12-13.
    [74]Q. T. Liu, Y. L. Wang, W. Li, L. X. Wu. Structural characterization and chemical response of a Ag-coordinated supramolecular gel[J]. Langmuir,2007, 23:8217-8223.
    [75]K. Imazu, S. Kusuda, I. Yoshihama, M. Tonegawa, Y. Nishimura, K. I. Kitahara, S. Oishi, T. Takemura, S. Arai. Organogel formation by self-assembly of Ag(I) and mono-urea derivatives containing pyridyl group[J].2006,35:634-635.
    [76]L. Applegarth, N. Clark, A. C. Richardson, A. D. M. Parker, I. R. Evans, A. E. Goeta, J. A. K. Howard, J. W. Steed. Modular nanometer-scale structuring of gel fibres by sequential self-organization[J]. Chem. Commun.,2005, 5423-5425.
    [77]A. Gasnier, G. Royal, P. Terech. Metallo-supramolecular gels based on a multitopic cyclam bis-terpyridine platform[J]. Langmuir,2009,25:8751-8762.
    [1]P. C. Xue, R. Lu, D. M. Li, M. Jin, C. H. Tan, C. Y. Bao, Z. M. Wang, Y. Y. Zhao. Novel CuS nanofibers using organogel as a template:controlled by binding sites[J]. Langmuir,2004,20:11234-11239.
    [2]P. D. Sawant, X. Y. Liu. Formation and novel thermomechanical processing of biocompatible soft materials[J]. Chem. Mater.,2002,14:3793-3798.
    [3]T. C. Dowling, M. A. Arjomand, E. T. Lin, L. V. Allen, M. Mcpherson. Relative bioavailability of ketoprofen 20% in a poloxamer-lecithin organogel[J]. Am. J. Health-Syst. Pharm.,2004,61:2541-2544.
    [4]D. T. McQuade, A. E. Pullen, T. M. Swager. Conjugated polymer-based chemical sensors[J]. Chem. Rev.,2000,100:2537-2574.
    [5]A.-C. Couffin-Hoarau, A. Motulsky, P. Delmas, J.-C. Leroux. In situ-forming pharmaceutical organogels based on the self-Assembly of L-alanine derivatives[J]. Pharm. Res.,2004,21:454-457.
    [6]M. E. Byrne, K. Park, N. A. Peppas. Biomimetic networks for selective recognition of biomolecules novel polymers for glucose recognition[J]. Adv. Drug Delivery Rev.,2002,54:149-161.
    [7]X. P. Yan, Y. Cui, Q. He, K. W. Wei, J. B. Li. Orangogel based on self-assemble of diphenylalanine petide and their application to immobilize quantum dots[J]. Chem. Mater.,2008,20:1522-1526.
    [8]X. H. Yan, Y. Cui, W. Qi, Y. Yang, Q. He, J. B. Li. Self-assemble of peptide-based colloids containing lipophilic nanocrystals[J]. Small,2008,4: 1687-1693.
    [9]A. R. Hirst, B. Huang, V. Castelletto, I. W. Hamley, D. K. Smith. Self-organisation in the assembly of gel from mixture of mixture of different dendritic peptide buliding blocks[J]. Chem. Eur. J.,2007,13:2180-2188.
    [10]P. Terech, R. G. Weiss. Low molecular mass gelator of oragnic liquids and the properties of their gels[J]. Chem. Rev.,1997,97:3133-3159.
    [11]D. Gao, M. Xue, J. X. Peng, J. Liu, N. Yan, P. L.He, Y. Fang,.Preparation and gelling properties of sugar-contained low-molecular-mass gelators: combination of cholesterol and linear glucose[J]. Tetrahedron,2010,16: 2961-2968.
    [12]H. M. Willemen, T. Vermonden, A. T. M. Marcelis, E. J. R. Sudholter. Alkyl derivatives of cholic acid as organogelators:one-component and two-component gels[J]. Langmuir,2002,18:7102-7106.
    [13]K. Akiyoshi, T. Nishikawa, Y. Mitsui, T. Miyata, M. Kodama, J. Sunamoto. Self-assembly of polymer amphiphiles:thermodynamics of complexation between bovine serum albumin and self-aggregate of cholesterol-bearing pullulan[J]. Colloids Surf. A,1996,112:91-95.
    [14]S. Deguchia, K. Kurodaa, K. Akiyoshia, B. Lindmanb, J. Sunamoto. Gelation of cholesterol-bearing pullulan by surfactant and its rheology[J]. Colloids Surf., A,1999,147:203-211.
    [15]S. Rozner, N. Garti. The activity and absorption relationship of cholesterol and phytosterols[J]. Colloids Surf., A,2006,282-283:435-456.
    [16]K. Yasuhara, Y. Sasaki1, J. Kikuchi1.A photo-responsive cholesterol capable of inducing a morphological transformation of the liquid-ordered microdomain in lipid bilayers[J]. Colloid Polym. Sci.,2008,286:1675-1680.
    [17]M. Zinic, F. Vogtle, F. Fages. Cholesterol-based gelators[J]. Top. Curr. Chem., 2005,256:39-76.
    [18]M. George, R. G. Weiss. Molecular organogels. soft matter comprised of low-molecular-mass organic gelators and organic liquids[J]. Acc. Chem. Res.,2006, 39:489-497.
    [19]X. Huang, P. Terech, S. R. Raghavan, R. G. Weiss. Kinetics of 5α-cholestan-3β-yl N-(2-naphthyl) carbamate/n-alkane organogel formation and its influence on the fibrillar networks[J]. J. Am. Chem. Soc.,2005,127:4336- 4344.
    [20]P. C. Xue, R. Lu, D. M. Li, M. Jin, C. Y. Bao, Y. Y. Zhao, Z. M. Wang. Rearrangement of the aggregation of the gelator during sol-gel transcription of a dimeric cholesterol-based viologen derivative into fibrous silica[J]. Chem. Mater.,2004,16:3702-3707.
    [21]H. Tong, Y. Hong, Y. Dong, Y. Ren, M. Haussler, J. W. Y. Lam, K. S. Wong, B. Z. Tang. Color-tunable aggregation-induced emission of a butterfly-shaped molecule comprising a pyran skeleton and two cholesteryl wings[J]. J. Phys. Chem. B,2007,111:2000-2007.
    [22]J. H. Jung, H. Kobayashi, M. Masuda, T. Shimizu, S. Shinkai. Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription[J]. J. Am. Chem. Soc.,2001,123:8785-8789.
    [23]T. Naota, H. Koori. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids[J]. J. Am. Chem. Soc.,2005,127: 9324-9325.
    [24]D. M. Loveless, S. L. Jeon, S. L. Craig. Chemoresponsive viscosity switching of a metallo-supramolecular polymer network near the percolation threshold[J], J. Mater. Chem.,2007,17:56-61.
    [25]J. M. J. Paulusse, D. J. M. van Beek, R. P. Sijbesma. Reversible switching of the sol-gel transition with ultrasound in Rhodium(I) and Iridium(I) coordination networks[J]. J. Am. Chem. Soc.,2007,129:392-397.
    [26]W. G. Weng, J. B. Beck, A. M. Jamieson, S. J. Rowan. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels[J]. J. Am. Chem. Soc.,2006,128:11663-11672.
    [27]T. Tu, W. Assenmacher, H. Peterlik, R. Weisbarth, M. Nieger, K. H. Dotz. An air-stable organometallic low-molecular-mass gelator:synthesis, aggregation, and catalytic application of a palladium pincer complex[J]. Angew Chem. Int. Ed.,2007,46:6368-6371.
    [28]G.Ghini, L. Lascialfari, C. Vinattieri, S. Cicchi, A. Brandi, D. Berti, F. Betti, P. Baglioni, M. Mannini. Towards a general organogelator:combining a versatile scaffold and an efficient linking process[J]. Soft Matter,2009,5:1863-1869.
    [29]P. Sahoo, D. K. Kumar, D. R. Trivedi, P. Dastidar. An easy access to an organometallic low molecular weight gelator:a crystal engineering approach[J]. Tetrahedron Lett.,2008,49:3052-3055.
    [30]A. Gansauer, I. Winkler, T. Klawonn, R. J. M. Nolte, M. C. Feiters, H. G. Borner, J. Hentschel, K. H. Dotz. Novel organometallic gelators with enhanced amphiphilic character:structure-property correlations, principles for design, and diversity of gelation[J]. Organometallics,2009,28:1377-1382.
    [31]D. Lee, F. Mikulec, B. Korgel. Carbon nanotube synthesis in supercritical toluene[J]. J. Am. Chem. Soc.,2004,126:4951-4957.
    [32]M. Sailer, F. Rominger, T. J. J. Muller. Ferrocenyl oligophenothiazines as organo-metallic hybrid electrophores-synthesis, structure, and electronic properties[J]. J. Organomet Chem.,2006,691:299-308.
    [33]J. L. Deschenaux, R. Marendaz, J. Santiago. Crystal smectic-b phase from a meso morphic ferrocene derivative[J]. Helvetica Chimica Acta.,1995,78: 1215-1218.
    [34]J. Liu, J. L. Yan, X. W. Yuan, K. Q. Liu, J. X. Peng, Y. Fang. A novel low-molecular-mass gelator with a redox active ferrocenyl group:tuning gel formation by oxidation[J]. J. Colloid Interface Sci.,2008,318:397-404.
    [35]J. Liu, P. L. He, J. L. Yan, X. H. Fang, J. X. Peng, K. Q. Liu, Y. Fang. An organo-metallic super-gelator with multiple-stimulus responsive properties[J]. Adv. Mater.,2008,20:2508-2511.
    [36]J. Nagasawa, M. Kudo, S. Hayashi, N. Tamaoki. Organogelation of diacetylene cholesteryl esters having two urethane linkages and their photopolymerization in the gel state[J]. Langmuir,2004,20:7907-7916.
    [37]Y. G Li, K. Q. Liu, J. Liu, J. X. Peng, X. L. Feng, Y. Fang. Amin acid derivatives of cholesterol as "latent" organogelators with hydrogen chloride as a protonation reagent[J]. Langmuir,2006,22:7016-7020.
    [38]M. Xue, D. Gao, K. Q. Liu, J. X. Peng, Y. Fang. Cholesteryl derivatives as phase-selective gelators at room temperature [J]. Tetrahedron,2009,65: 3369-3377.
    [39]S. M. A. Cohen. Supramolecular perspectives in colloid science[J]. Colloid Polym. Sci.,2008,286:855-864.
    [40]K. Hanabusa, T. Hirata, D. Inoue, M. Kimura, H. Shirai. Formation of physical hydrogels with terpyridine-containing carboxylic acids[J]. Colloids Surf., A, 2000169:307-315.
    [41]P. L. Zhu, X. H. Yan, Y. Su, Y. Yang, J. B. Li. Solvent-induced structural transition of self-assembled dipeptide:From orgnogel to microcrystals[J]. Chem. Mater.,2010,26:3176-3183.
    [42]B. K. An, D. S. Lee, J. S. Lee, Y. S. Park, H. S. Song, S. Y. Park. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoro-methyl-based cyanostilbene derivative [J]. J. Am. Chem. Soc.,2004,126: 10232-10233.
    [43]M. George, G.P. Funkhouser, P. Terech, R. G Weiss. Organogels with Fe(III) complexes of phosphorus-containing amphiphiles as two-component isothermal gelators[J]. Langmuir,2006,22:7885-7893.
    [44]M. G Page, G.Gregory, G.G.Warr. Structure and dynamics of self-assembling aluminum didodecyl phosphate organogels[J]. J. Phys. Chem. B,2004,108: 16983-16989.
    [45]J. Brinksma, B. L. Feringa, R. M. Kellogg, R. Vreeker, J. van Esch. Rheology and thermotropic properties of bis-urea-based organogels in various primary alcohols[J]. Langmuir,2000,16:9249-9255.
    [46]S. N. Qu, M. Li. Self-assembly of linear-shaped bi-dihydrazine derivative through intermolecular quadruple hydrogen bonding[J]. Tetrahedron,2008,64: 10890-10895.
    [47]J. X. Peng, K. Q. Liu, J. Liu, Q. H. Zhang, X. L. Feng, Y. Fang. New dicholesteryl-based gelators:chirality and spacer length effect[J]. Langmuir, 2008,24:2992-3000.
    [48]M. Xue, K. Q. Liu, J. X. Peng, Q. H. Zhang, Y. Fang. Novel dimeric cholesteryl-based A(LS)2 low-molecular-mass gelators with a benzene ring in the linker[J]. J. Colloid Interface Sci.,2008,327:94-101.
    [1]K. J. Lissant. The geometry of high-internal-phase-ratio emulsions[J]. J. Colloid Interface Sci.,1966,22:462-468.
    [2]D. Barby, Z. Haq. Eurpoean Patent 0060138 (Unilever),1982.
    [3]J. Esquena, G. S. R. R. Sankar, C. Solans. Highly concentrated W/O emulsions prepared by the PIT method as templates for solid foams[J]. Langmuir,2003, 19:2983-2988.
    [4]N. Fa, V. G. Babak, M.-J. Stebe. The release of caffeine from hydrogenated and fluorinated gel emulsions and cubic phase[J]. Colloids Surf., A,2004,243: 117-125.
    [5]V. G. Babak, M. J. Stebe, N. Fa. Physicochemical model for molecular diffusion from highly concentrated emulsions[J]. Mendeleev Commun.,2003, 13:254-256.
    [6]S. Rocca, S. Muller, M. J. Stebe. Release of a model molecule from highly concentrated fluorinated reverse emulsions influence of composition variables and temperature[J]. J. Controlled Release,1999,61:251-265.
    [7]G. Caldero, M. J. Garcia-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions(gel-emulsions)[J]. Langmuir,2000,16:1668-1674.
    [8]C. Solans, J. Esquena. Highly concentrated (Gel) emulsions as reaction media for the preparation of advanced materials[J]. J. Colloid Interface Sci.,2009, 291-297.
    [9]J. Normatov, M. S. Sliverstein. Porous interpenetrating network hybrids synth-esized within high internal phase emulsions[J]. Polymer,2007,48:6648-6655.
    [10]A. Barbetta, N. R. Cameron. Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble progenic solvents: span 80 as surfactane[J]. Macromolecules,2004,37:3188-3201.
    [11]Z. Bhumgara. Polyhipe foam materials as filtration media[J]. Polymeric Foam Filter Media,1995,245-251.
    [12]N. R. Cameron. Emulsion templating as a route to well-defined porous polymers[J]. Polymer,2005,46:1439-1449.
    [13]A. Barbetta, R. J. Carnachan, K. H. Smith. C.-T. Zhao, N. R. Cameron, R. Kataky, M. Hayman, S. A. Przyborski, M. Swan. Porous polymers by emulsion templating [J]. Macromol. Symp.,2005,226:203-211.
    [14]M. R. Powell, A. Bismarck. Open porous polymer foams via inverse emulsion polymerization:should the definition of high internal phase (Ratio) emulsions be extended?[J]. Macromolecules,2006,39:2034-2035.
    [15]H. Maekawa, J. Esquena, S. Bishop, C. Solans, B. F. Chmelka. Meso/ Macroporous inorganic oxide monoliths from polymer foams[J]. Adv. Mater., 2003,15:591-596.
    [16]L. Espelt, P. Clapes, J. Esquena, A. Manich, C. Solans. Enzymatic carbon-carbon bond formation in water-in-oil highly concentrated emulsions (gel-emulsions)[J]. Langmuir,2003,19:1337-1346.
    [17]G. Caldero, M. J. Garcla-Celma, C. Solans, R. Pons. Effect of pH on mandelic acid diffusion in water in oil highly concentrated emulsions (gel-emulsions)[J]. Langmuir,2000,16:1668-1674.
    [18]J. Normatov, M. S. Silverstein. Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions[J]. Chem. Mater.,2008,20:1571-1577.
    [19]常海涛,鲁在君.高内相比乳液模板法合成多孔材料的研究进展[J].化学通报,2007,11:829-833.
    [20]J. M. Williams, D. A. Wrobleski. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene[J]. Langmuir,1988,4:656-662.
    [21]W. Busby, N. R. Cameron, C. A. B. Jahoda. Tissue engineering matrixes by emulsion templating[J]. Polym. Int.,2002,51:871-881.
    [22]N. R. Cameron. High internal phase emulsion templating as a route to a well-defined porous polymers[J]. Polymer,2005,46:1439-1449.
    [23]N. S. Ramesh, D. H. Rasmussen, G. A. Campbell. Numerical and experimental studies of bubble growth during the microcellular foaming process[J]. Polym. Eng.Sci.,1991,31:1657-1664.
    [24]R. Butler, I. Hopkinson, A. I. Cooper. Synthesis of porous emulsion-Templated Polymers using high internal phase CO2-in-water emulsions[J]. J. Am. Chem. Soc.,2003,125:14473-14481.
    [25]W. Busby, N. R. Cameron, C. A. B. Jahoda. "Emulsion-derived (PolyHIPE) foams containing poly(e-caprolactone) as matrixes for tissue engineering" [J]. Biomacromolecules,2001,2:154-164.
    [26]M. W. Hayman, K. H. Smith, N. R. Cameron, S. A. Przyborski. Growth of human stem cell-derived neurons on solid three-dimensional polymers[J]. Biochem. Biophys. Methods,2005,62:231-240.
    [27]P. Krajnc, J. F. Brown, N. R. Cameron. Monolithic scavenger resins by amine functionalizations of poly(4-vinylbenzyl chloride-co-divinylbenzene) poly-HIPE materials[J]. Org. Lett.,2002,15:2497-2500.
    [28]M. Ottens, G. Leene, A. Beenackers, N. R. Cameron, D. C. Sherrington. PolyHipe:a new polymeric support for heterogeneous catalytic reactions: kinetics of hydration of cyclohexene in two-and three-phase systems over a strongly acidic sulfonated polyHipe[J]. Ind. Eng. Chem. Res.,2000,39: 259-266.
    [29]H. Deleuze, B. Maillard, O. M. Monvalb. Development of a new ultraporous polymer as support in organic synthesis[J]. Bioorg Chem. Lett.,2002,12: 1877-1880.
    [30]R. Abreu, M. G. Roman, H. Kunieda. Rheology and dynamics of micellar cubic phases and related emulsion[J]. Langmuir,2004,20:5235-5240.
    [31]R. Pal. Rheology of high internal phase ratio emulsions[J]. Food Hydrocolloids, 2006,20:997-1005.
    [32]解丽娜,涂治勇,刘英菊,罗颖,董先明.聚甲基丙烯酸丁酯/炭黑导电复合材料用于空气中有机蒸汽检测[J].材料导报,2009,23:36-39.
    [33]张洪涛,王岸林,曹建华.氧化-还原低温引发甲基丙烯酸甲酯/丙烯酸丁酯超浓乳液聚合研究[J].高分子学报,2003,1:23-29.
    [34]徐溢,徐平洲,曹强,卢倩,温志渝.采用甲基丙烯酸丁酯整体微柱芯片系统测定血样中痕量异烟肼[J].分析化学,2008,36:1636-1640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700