基于红树林土壤微生物资源研发的宏基因组学平台技术的建立与应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林土壤处于“海洋-陆地”界面潮间带环境,其生境的独特性决定了其中微生物的多样性及基因资源的珍稀性,深入开展红树林土壤微生物的研究将加快新型功能基因、新颖天然产物的发现进程。完全不依赖于平板分离的现代宏基因组学技术为充分探索不同自然生境中的微生物资源提供了有力手段。然而,将该技术实施于红树林土壤微生物的研究时,尚存在若干困难:①红树林土壤为高粘质、高有机质含量类型土壤,提取DNA时存在大量腐殖酸及腐殖酸类等高分子量抑制性物质的共提取等问题,造成所得DNA品质低下,难于进行微生物多样性分析。②DNA提取过程中,红树林土壤中高含量的粘质极易吸附刚从微生物细胞裂解释放的大片段DNA,造成所得DNA提取物中大片段DNA所占比率低下,难以构建大片段宏基因组文库应用于特色微生物资源的“生物探矿”。针对上述难点,本论文系统开展了红树林土壤DNA提取缓冲液的改良与应用研究;红树林土壤大片段宏基因组文库构建方法的改良与应用研究;并针对现行环境宏基因组学技术所存在的“群落结构偏差”和“基因遗漏”等瓶颈,开展了不同裂解方式对红树林土壤不同类型土著微生物细胞裂解能力的研究;获得了如下主要研究结果与结论:
     1.提取土壤DNA时,缓冲液中的NaCl是决定抑制性物质共提取量高低的关键因素之一,随NaCl浓度的升高,腐殖酸等抑制性物质的共提取量明显下降,而Na_3PO_4对抑制性物质共提取量的影响却呈现完全相反的规律;PVP在土壤微生物细胞裂解前及裂解过程中使用均增加抑制性物质的共提取量,裂解后使用反而能提高DNA提取物的品质;PVPP在土壤微生物细胞裂解前及裂解过程中使用均减少抑制性物质的共提取量,裂解后使用反而无效;CTAB在土壤微生物细胞裂解前、裂解过程中及裂解后使用均能提高DNA初提物的品质;随缓冲液中SDS浓度的升高和裂解时间的延长,抑制性物质的共提取量明显增加:随缓冲液中CTAB浓度的升高,抑制性物质的共提取量逐渐减少,随裂解时间的延长,抑制性物质的共提取量表现为先增加后减少的规律;CTAB在缓冲液中使用具有裂解微生物细胞和去除抑制性物质的双重作用,去除抑制性物质的作用占主导地位;PVP、PVPP及CTAB在不同浓度及不同作用方式下使用均不改变环境样品的细菌群落结构;提取缓冲液含1.5mol.L~(-1)NaCl,2%CTAB及2%PVPP时,所得红树林土壤DNA初提物不经纯化即可成功进行PCR扩增反应。
     2.运用本研究改良后的原位裂解提取法能有效提高大片段DNA在总土壤DNA中的比率,该方法与电洗脱纯化法联用能高效构建红树林土壤大片段宏基因组文库。本论文所得4个季节红树林土壤宏基因组文库,含9570个cosmid克隆子,每个克隆子的平均插入片段均大于35kbp。运用功能筛选方法,从该文库中得到1株具有四环素抗性的克隆子,1株产褐色色素的克隆子和1株具有淀粉酶活性的克隆子。
     3.通过古生菌、细菌、真菌及放线细菌特异性引物对不同裂解方法所得红树林土壤DNA进行PCR反应,结果表明:SDS、溶菌酶、液氮冻融、玻璃珠剧烈振荡、超声波、微波等6种常规裂解方式单独应用均能裂解红树林土壤土著细菌和古生菌,均不能裂解红树林土壤土著放线细菌和真菌;SDS、溶菌酶及玻璃珠剧烈振荡等3种方法联用时能裂解红树林土壤土著真菌;SDS、溶菌酶、玻璃珠剧烈振荡及微波等4种方法联用时能裂解红树林土壤土著放线细菌。
     4.运用DGGE方法比较上述6种裂解方式捕捉红树林土壤土著细菌群落结构信息的能力,结果显示:没有1种裂解方式能获得完整的细菌群落结构信息;超声波、微波裂解法所得红树林土壤细菌群落结构与溶菌酶裂解法所得结果相似;其它4种裂解法所得红树林土壤细菌群落结构各不相同,每种裂解方法均含有其它方法所遗漏的物种信息。
     5.红树林土壤微生物胞外DNA包含细菌和古生菌的基因组信息,不包含放线细菌及真菌的基因组信息;同种红树植物-白骨壤根际土壤细菌群落受土壤深度及季节变化因素影响小。
     红树林土壤微生物宏基因组学研究平台技术的建立,不仅为潮间带特色微生物的生态学基础研究、生物技术应用研究提供了有力的技术保障,而且为其它生境宏基因组学领域的研究提供了有益借鉴。
Microbes inhabiting in special intertidal mangrove soil niches possess the enormous genetic diversity and immense potential to produce new secondary metabolites. Paying attention to the research mangrove soil microbes would accelerate the rate of discovering novel bioactive molecules. Culture-independent metagenomic technology provides a powerful tool to explore microbial resources with high throughput in diverse niches, however, some hurdles have not yet overcomed when it applied to mangrove soil niches. ( i) Mangrove soil is high in clay and rich in organic matter, the abundant high molecular weight inhibitors such as humic acid and humic compounds in soil samples are difficult to remove, and are always co-extracted with soil DNA, subsequent molecular diversity analysis would be hindered because of the poor quality of the isolated DNA. (ii) In the lysis step, DNA liberated from soil microbes, especially the large fragment DNA, was likely to adsorb to the soil clay. Therefore, the total extracts with low percentage of large fragment DNA failed to construct large insert environmental libraries for biotechnology use. Towards overcoming these hurdles, the method of extraction of mangrove soil DNA for microbial diversity research and the method of construction of large fragment metagenome library of mangrove soil were studied in this paper. The results were as follows:
     1. NaCl posed significance effect on yield of coextracted humic compounds (YCHC). YCHC decreased when the concentration of NaCl in the extraction buffer increased. Whereas, the effect of Na_3PO_4 on YCHC was just on the opposite; when polyvinylpyrrolidone (PVP) was used pre-lysis or in lysis, YCHC increased, whereas, when PVP was used after lysis, the quality of crude extracts was improved; when polyvinylpolypyrrolidone( PVPP) was used pre- lysis or in lysis, YCHC decreased, whereas, when PVPP wae used after lysis, it has no positive effect on the quality of crude extracts; Whenever CTAB was used pre lysis, in lysis or after lysis,, the quality of crude extracts was improved; When the concentration of SDS in the extraction buffer increased or the lysis time lasted more longer, the YCHC increased; When the concentration of CTAB in the extraction buffer increased, the YCHC decreased; The relationship between YCHC and lysis time with CTAB was as follows, the YCHC increased in the first two hours, then decreased gradually; The addition of CTAB in the extraction buffer not only resulted in lysing microbial cells but also removing the humic compounds, the latter one was the main function; Whenever PVP, PVPP, CTAB were used pre lysis, in lysis or after lysis, it does not resulted in the loss of microbial diversity; The quality of mangrove soil DNA without further purification was adequate for PCR when NaCl[1.5mol.L~(-1)], PVPP[2%] and CTAB[2%] introduced in the extraction buffer.
     2. Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significantly increased, and the large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. This library produced 9570 cosmid clone, the average insert size for this library was larger than 35kbp. At least 335Mbp valuable genetic information of mangrove soil microbes was encompassed in this culturing-independent library. A clone containing anti-tetracylin activity, a clone producing brown pigment and a clone containing amylase activity were detected by function- driven screening method.
     3. Experiments were designed to investigate the capability of capturing the indigenous microbial genome of SDS, lysomyze, shaking with bead beating, sonication, microwave and froze-thawn cycles in this study. Results showed, (i) Each methods could lyse the indigenous bacteria and archaea of mangrove soil, but could not lyse the indigenous actinobacteria and fungi. ( ii ) Indigenous fungi lysed when applying the the combination of SDS, lysomyze and shaking with bead beating. (iii) Indigenous actinobacteria lysed when applying the the combination of SDS, lysomyze, shaking with bead beating and microwave.
     4. DGGE was used to compare the mangrove soil community produced by six methods respectively. Results showed, none method could produce whole bacterial community, the DGGE profile produced by soniction, microwave and lysomyze were similar, the DGGE profile produced by SDS, shaking with bead beating, froze-thawn cycles and froze-thawn cycles contained special band respectively.
     5. The mangrove soil microbial extracellular DNA diversity was evaluated by PCR and the seasonal variation of bacterial diversity in the Avicennia marina rhizosphere was analyzed by DGGE. Results showed, DNA derived from bacteria and archaea were involved in extracellular DNA, but DNA derived from actinobacteria and fungi were excluded. The bacterial communities in the Avicennia marina rhizosphere of different depth in different seasons were similar.
     In summary, Establishment of metagenomic technology platform allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.
引文
[1] Torsvik V, Goksoyr J. Determination of bacterial DNA in soil [J]. Soil Biol Biochem, 1978, 10(1): 7-12.
    [2] Holben W E, Jansson J K, Chelm B K, et al. DNA probe method for the detection of specific microorganisms in the soil bacterial community [J]. Appl Environ Microbiol, 1988, 54(3): 703-711.
    [3] Selenska S, Klingmuller W. DNA recovery and direct detection of Tn5 sequences from soil [J]. Lett Appl Microbiol, 1991,13(1): 21-24.
    [4] Romanowski G, Lorenz M G, Sayler G, et al. Persistence of free plasmid DNA in Soil monitored by various methods, including a transformation assay [J]. Appl Environ Microbiol, 1992, 58(9): 3012-3019.
    [5] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products [J]. Chem Biol, 1998, 5 (10): 245-249.
    [6] Rondon M R, August P R, Bettermann AD,et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J]. Appl Environ Microbiol, 2000,66(6): 2541-2547.
    [7] Miller D N, Bryant J E, Madsen E L, et al. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples [J]. Appl Environ Microbiol, 1999, 65(10): 4715-4724.
    [8] Zhou J, Brans M A, Tiedje J M. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996,62(2): 316-322.
    [9] Burgmann H, Pesaro M, Widmer F, et al A strategy for optimizing quality and quantity of DNA extracted from soil [J]. J Microbiol Methods, 2001,45(1): 7-20.
    [10] Krsek M, Wellington E M H. Comparison of different methods for the isolation and purification of total community DNA from soil [J]. J Microbiol Methods, 1999,39(1): 1-16.
    [11] Gupta R, Beg Q K, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications [J]. Appl Microbiol Biotechnol, 2002, 59(1): 15-32.
    [12] Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Science, 2004,304(5667): 66-74.
    [13] Schmidt T, DeLong E, Pace N. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing [J]. J Bacteriol, 1991,173(14): 4371-4378.
    [14] Stein J L, Marsh T L, Wu K. Y, et al. Characterization of uncultivated prokaryotes: isolation and analysis of a 40~kilobase~pair genome fragment from a planktonic marine archaeon [J]. J Bacteriol, 1996,178(3):591~599.
    [15] Beja 0, Suzuki M T, Koonin E V, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol, 2000, 2(10): 516-529.
    [16] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammoniaoxidizing archaea in water columns and sediments of the ocean [J]. Oakley PNAS, 2005,102 (41):14683 - 14688.
    [17] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities [J]. Proc Natl Acad Sci, 2002,99(22): 14250-14255.
    [18] Breitbart M, Felts B, Kelley S, et al. Diversity and population structure of a near~shore marine sediment viral community [J]. Proc R Soc London Ser, 2004, 271(1539): 565-574.
    [19] Beja O, Aravind L, Koonin E V, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea [J]. Science, 2000,289(5486): 1902-1906.
    [20] McDonald A E, Vanlerberghe G C. Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea [J]. Gene, 2005,349: 15-24.
    [21] Kalyuzhnaya M G, Nercessian O, Lapidus A, et al. Fishing for biodiversity: novel methanopterin~linked C transfer genes deduced from the Sargasso Sea metagenome [J]. Environ Microbiol, 2005, 7(12): 1909-1916.
    [22] Howard E C, James R H, Alison B, et al. Bacterial taxa that limit sulfur flux from the ocean [J]. Science, 2006,314(5799): 649 - 652.
    [23] Kube M, Beck A, Meyerdierks A, et al A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats [J]. Systematic and Applied Microbiology, 2005, 28(4): 287-294.
    
    [24] Tringe S G, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities [J]. Science, 2005,308(5721): 554-557.
    [25] Ricke P, Kube M, Nakagawa S, et al. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to methylocapsa acidiphila B2 and for high~affinity methanotrophy involving particulate methane monooxygenase [J]. Appl Envir Microbiol, 2005, 71(11): 7472-7482.
    [26] Quaiser A, Ochsenreiter T, Klenk H P, et al. First insight into the genome of an uncultivated crenarchaeote from soil [J]. Environ Microbiol, 2002,4(10): 603-611.
    [27] Treusch A H, Kletzin A, Raddatz G, et al. Characterisation of large~insert DNA libraries from soil for environmental genomic studies of Archaea [J]. Environ Microbiol. 2004, 6(9):970~980.
    [28] Tyson G W, Chapman J, Hugenholtz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature, 2004, 428(6978): 37-43.
    [29] Nunoura T, Hirayama H, Takami H, et al. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments [J]. Environ Microbiol, 2005, 7(12): 1967-1984.
    [30] Elshahed M S, Najar F Z, Aycock M, et al. Metagenomic analysis of the microbial community at Zodletone Spring (Oklahoma): insights into the genome of a member of the novel candidate division OD1 [J]. Appl Environ Microbiol, 2005, 71(11):7598~7602.
    [31] Breitbart M. Hewson I, Felts B, et al. Metagenomic analyses of an uncultured viral community from human feces [J]. Bacteriol, 2003,185(20): 6220-6223.
    [32] Cann A, Fandrich S, Heaphy S. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes [J]. Virus Genes, 2005, 30(2): 151-156.
    [33] Cottrell M T, Moore J A, Kirchman D L. Chitinases from uncultured marine microorganisms [J]. Appl Environ Microbiol, 1999,65(6): 2553-2557.
    [34] Ferrer M, Golyshina O V, Chernikova T N, et al. Microbial enzymes mined from the Urania deep~sea hypersaline anoxic basin [J]. Chem Biol, 2005,12(8): 895-904.
    [35] Cottrell M T, Yu L Y, Kirchman D L. Sequence and Expression Analyses of Cytophaga~Like Hydrolases in a Western Arctic Metagenomic Library and the Sargasso Sea [J]. Appl Envir Microbiol, 2005, 71(12): 8506 - 8513.
    [36] Song J S, Jeon J H, Lee J H, et al. Molecular characterization of TEM~type beta~lactamases identified in cold~seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea) [J]. J Microbiol, 2005,43(2): 172-178.
    [37] Lee M H, Lee C H, Oh T K, et al. Isolation and Characterization of a Novel Lipase from a Metagenomic Library of Tidal Flat Sediments: Evidence for a New Family of Bacterial Lipases [J]. Appl Envir Microbiol, 2006,72(11): 7406 - 7409.
    [38] Park H J, Jeon J H, Kang SG, et al. Functional expression and refolding of new alkaline esterase, EM2L8 from deep~sea sediment metagenome [J]. Protein Expr Purif, 2007, 52(2): 340-347.
    [39] Brady S F, Clardy J. Long~chain N~acyl amino acid antibiotics isolated from heterologously expressed environmental DNA [J]. J Am Chem Soc, 2000,122(51): 12903-12904.
    [40] Wang G Y, Graziani E, Waters B, et al. Novel natural products from soil DNA libraries in a Streptomycete host [J]. Org Lett, 2000,2(16):2401-2404.
    [41] Brady S F, Chao C J, Handelsman J, et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from Edna [J]. Org Lett, 2001,3(2): 1981-1984.
    [42] Brady S F, Chao C J, Clardy J. New natural product families from an environmental DNA (eDNA) gene cluster [J]. J Am Chem Soc, 2002,124(34): 9968-9969
    [43] MacNeil I A, Tiong C I, Minor C, et al. Expression and isolation of antimicrobial small molecules from soil DNA libraries [J] J Mol Microbiol Biotechnol, 2001,3(2):301~308.
    [44] Gillespie D E, Brady S F, Bettermann A D, et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA [J]. Appl Environ Microbiol, 2002, 68(9): 4306-4310.
    [45] Courtois S, Cappellano C M, Ball M, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products [J]. Appl EnvironMicrobiol, 2003,69(1):49~55.
    [46] Brady S F, Chao C J, Clardy J. Long~Chain N~Acyltyrosine Synthases from Environmental DNA [J]. Appl Envir Microbiol, 2004, 70(11): 46865 - 46870.
    [47] Brady S F, Clardy J. Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from Bromeliad Tank water [J]. J Nat Prod, 2004, 67(8): 1283-1286.
    [48] Ginolhac A, Jarrin C, Benjamin G, et al. Phylogenetic Analysis of Polyketide Synthase I Domains from Soil Metagenomic Libraries Allows Selection of Promising Clones [J]. Appl Envir Microbiol, 2004, 70(9): 5522 ~ 5527.
    [49] Lim H K, Chung E J, Kim J C, et al Characterization of a Forest Soil Metagenome Clone That Confers Indirubin and Indigo Production on Escherichia coli[J]. Appl. Envir. Microbiol., 2005; 71(11): 7768-7777.
    [50] Yun J P, Kang S, Park S, et al. Characterization of a novel amylolytic enzyme encoded by a gene from a soil~derived metagenomic library [J]. Appl Environ Microbiol, 2004, 70(12): 7229-7235.
    [51] Voget S, Leggewie C, Uesbeck A, et al. Prospecting for novel biocatalysts in a soil metagenome [J]. Appl Environ Microbiol, 2003, 69(10): 6235-6242.
    [52] Gabor E M, de Vries E J, Janssen DB. Construction, characterization, and use of small~insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases [J]. Environ Microbiol, 2004,6(9): 948-958.
    [53] Riesenfeld C S, Goodman R M, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes [J]. Environ Microbiol, 2004,6(9): 981-989.
    
    [54] Henne A, Schmitz R A, Bomeke M, et al. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli [J]. Appl Environ Microbiol, 2000, 66(7): 3113-3116.
    [55] Rees H C, Grant S, Jones B, et al. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries [J], Extremophiles, 2003, 7(5): 415-421.
    [56] Lee S W, Won K, Lim H K, et al. Screening for novel lipolytic enzymes from uncultured soil microorganisms [J]. Appl Microbiol Biotechnol, 2004,65(6): 720-726.
    [57] Ranjan R, Grover A, Kapardar R K, et al. Isolation of novel lipolytic genes from uncultured bacteria of pond water [J]. Biochem Biophys Res Commun, 2005, 335(1): 57-65.
    [58] Rhee J K, Ann D G, Kim Y G, et al. New Thermophilic and Thermostable Esterase with Sequence Similarity to the Hormone~Sensitive Lipase Family, Cloned from a Metagenomic Library [J]. Appl Envir Microbiol, 2005,71(2): 817 - 825.
    [59] Kim J N, Seo M J, Cho E A, et al. Screening and characterization of an esterase from a metagenomic library[J].Journal of Microbiology and Biotechnology,2005,15(5):1067-1072.
    [60]Kim Y J,Choi G S,Kim S B,et al.Screening and characterization of a novel esterase from a metagenomic library[J].Protein Expr Purif,2006,45(2):315-323.
    [61]Elend C,Schmeisser C,Leggewie C,et al.Isolation and biochemical characterization of two novel metagenome~derived esterases[J].Appl Envir Microbiol,2006,72(5):3637-3645.
    [62]Lammle K,Zipper H,Breuer M,et al.Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning[J].J Biotechnol,2007,127(4):575-592.
    [63]Richardson T H,Tan X,Frey G,et al.A novel,high performance enzyme for starch liquefaction:Discovery and optimization of a low pH,thermostable alpha~amylase[J].J Biol Chem 2002,277(29):26501-26507
    [64]Voget S,Steele H L,Streit W R.Characterization of a metagenome~derived halotolerant cellulose[J].J Biotechnol,2006,126(10):26-36.
    [65]Gupta R,Beg Q K,Lorenz P.Bacterial alkaline proteases:molecular approaches and industrial applications[J].Appl Microbiol Biotechnol,2002,59(1):15-32.
    [66]胡婷婷,蒋承建,梁璇,等.碱性土壤微生物基因的克隆和多样性分析[J].遗传,2006,28(10):1287-1293.
    [67]Knietsch A,Bowien S,Whited G,et al.Identification and characterization of genes encoding coenzyme B12~dependent glycerol and diol dehydratases frommetagenomic DNA libraries extracted from enrichment cultures[J].Appl Environ Microbiol,2003,69(6):3048-3060.
    [68]陆伟,梁爱敏,孟秀萍,等.利用宏基因组文库筛选草甘膦不敏感的5~烯醇式丙酮莽草酰~3~磷酸合酶(EPSPS)基因[J].高技术通讯,2006,16(12):1284-1288.
    [69]DeSantis G,Zhu Z,Greenberg W A,et al.An enzyme library approach to biocatalysis:development of nitrilases for enantioselective production of carboxylic acid derivatives[J].Jam Chem Soc,2002,124(31):9024-9025.
    [70]Robertson D E,Jennifer A C,DeSantis G,et al.Exploring nitrilase sequence space for enantioselective catalysis[J].Appl Environ Microbiol,2004,70(4):2429-2436.
    [71]Liebeton K,Eck J.Identification and expression in E.coli of novel nitrile Hydratases from the metagenome[J].Engineering in Life Sciences,2004,4(6):557-562.
    [72] Entcheva P, Liebl W, Johann A, et al. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia [J]. Appl Environ Microbiol, 2001, 67(1): 89-99.
    [73] Henne A, Daniel R, Schmitz R A, et al. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4~hydroxybutyrate [J]. Appl Environ Microbiol, 1999, 65(9): 3901-3907.
    [74] Knietsch A, Waschkowitz T, Bowien S, et al. Metagenomes of complex microbial consortia extracted from different soils as sources for novel genes conferring formation of carbonyls from short~chain polyols on Escherichia coli [J]. J Mol Microbiol Biotechnol, 2003, 5(1): 46-56.
    [75] Knietsch A, Waschkowitz T, Bowien S, et al. Construction and screening of metagenomic libraries extracted from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli [J]. Appl Environ Microbiol, 2003, 69(3): 1408-1416.
    [76] van Hellemond E W, Fraaije M W, Janssen D B. Discovery of an epoxide forming monooxygenase from the metagenome [J]. Journal of Biotechnology, 2005,118(sup): 131.
    [77] Marzorati M, de Ferra F, Raemdonck H V, et al. A Novel Reductive Dehalogenase, Identified in a Contaminated Groundwater Enrichment Culture and in Desulfitobacterium dichloroeliminans Strain DCA1, Is Linked to Dehalogenation of 1,2~Dichloroethane [J]. Appl Envir Microbiol, 2007, 73(9): 2990 - 2999.
    [78] Kim B S, Kim S Y, Park J, et al. Sequence~based screening for self~sufficient P450 monooxygenase from a metagenome library [J]. J Appl Microbiol, 2007,102(5): 1392-1400.
    [79] Wang C, Meek D J, Panchal P, et al. Isolation of poly~3~hydroxybutyrate metabolism Genes from complex microbial communities by phenotypic Complementation of bacterial mutants [J]. Appl Environ Microbiol, 2006, 72(1): 384-391.
    [80] Piel J. A polyketide synthase~peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles [J]. Proc Natl Acad Sci USA, 2002,99(22): 14002-14007.
    [81] Piel J, Dequan H, Fusetani N, et al. Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia [J]. Environmental Microbiology, 2004,6(9): 921-927.
    [82]Piel J,Hui D Q,Wen G P,et al.Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei[J].PNAS,2004,101(46):16222-16227.
    [83]Hildebrand M,Waggoner L E,Liu H,et al.bryA:an unusual modular polyketide synt hase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugula neritina[J].Chemistry & Biology,2004,11(11):1543.
    [84]Schirmer A,Gadkari R,Reeves C D,et al.Metagenomic Analysis Reveals Diverse Polyketide Synthase Gene Clusters in Microorganisms Associated with the Marine Sponge Discodermia dissolute[J].Appl Envir Microbiol,2005,71(8):4840-4849.
    [85]Kim T K,Fuerst J A.Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata:culture-dependent and culture-independent approaches [J].Environ Microbiol,2006,8(8):1460-1470.
    [86]Diaz~Torres M L,McNab R,Spratt D A,et al.Novel tetracycline resistance determinant from the oral metagenome[J].Antimicrob Agents Chemother,2003,47(4):1430-1432.
    [87]吴杰,李志勇,张戌升,等.海绵宏基因组文库构建及抗菌肽功能基因的初步筛选[J].生物技术通报,2006,3:95-98.
    [88]Ferrer M,Golyshina OV,Chernikova TN,et al.Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora[J].Environ Microbiol,2005,7(12):1996-2010.
    [89]赵广存,段承杰,庞浩,等.牛瘤胃未培养细菌中一个β2葡萄糖苷酶基因umbg13A的克隆及鉴定[J].西南农业学报,2005,18(4):472-476.
    [90]Brennan Y Callen W N,Christoffersen L,et al.Unusual microbial xylanases from insect guts [J].Appl Environ Microbio,2004,70(6):3609-3617.
    [91]张鹏,段承杰,庞浩,等.堆肥未培养细菌的宏基因组文库构建及新的木聚糖酶基因的克隆和鉴定[J].广西科学,2005,12(4):343-346,352.
    [92]Lee C C,Kibblewhite~Accinelli R E,Wagschal K R et al.Cloning and characterization of a cold~active xylanase enzyme from an environmental DNA library[J].Extremophiles,2006,111(4):295-300.
    [93]许跃强,段承杰,周权能,等.造纸废水纸浆沉淀物中未培养微生物纤维素酶基因的克隆和鉴定[J].微生物学报,2006,46(5):783-788.
    [94]Ferrer M,Beloqui A,Golyshina O V,et al.Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome[J].J Biotechnol,2007,2(2):207-213.
    [95] Wexler M, Bond P L, Richardson D J, et al. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase [J]. Environ Microbiol, 2005,7(12): 1917-1926.
    [96] Beloqui A, Pita M, Polaina J, et al. Novel Polyphenol Oxidase Mined from a Metagenome Expression Library of Bovine Rumen: biochemical properties, structural Analysis, and phylogenetic relationships [J]. The Journal of Biological Chemistry, 2006, 281(32): 22933-22942.
    [97] Guan C H, Ju J H, Bradley R, et al. Signal mimics derived from a metagenomic analysis of gypsy moth gut microbiota [J]. Appl Environ Microbiol, 2007, 73(11): 3669-3676.
    [98] Schmeisser C, Steele H, Streit W R. Metagenomics, biotechnology with non~culturable microbes [J]. Appl Microbiol Biotechnol, 2007, 75(5): 955-962.
    [99] Delwart E L.Viral metagenomics [J]. Rev Med Virol, 2007,17(2): 115-131.
    [100] Lorenz P, Eck J. Metagenomics and industrial applications [J]. Nat Rev Microbiol, 2005, 3(6): 510-516.
    [101] Daniel R. The metagenomics of soil [J]. Nat Rev Microbiol, 2005,3(6): 470-478.
    [102] Steele H L, Streit W R. Metagenomics: Advances in ecology and biotechnology [J]. FEMS Microbiol Lett, 2005,247(2): 105-111.
    [103] Pettit R K. Soil DNA libraries for anticancer drug discovery [J]. Cancer Chemother Pharmacol, 2004, 54(1): 1-6.
    [104] Bertrand H, Poly F, Van V T, et al. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction [J]. J Microbiol Methods, 2005,62(1): 1-11.
    [105] Lee S Y, Bollinger J, Bezdicek D, et al. Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method [J]. Appl Environ Microbiol, 1996, 62(10): 3787-3793.
    [106]Nocker A, Camper A K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide [J]. Appl Environ Microbiol, 2006, 72(3): 1997-2004.
    [107] Green B D, Keller M. Capturing the uncultivated majority [J]. Current Opinion in Biotechnology, 2006,17(3): 236-240.
    [108] Wintzingerode F, Gobel U B, Stackebrandt E. Determination if microbial diversity in environmental samples: pitfalls of PCR~based analysis [J]. FEMS Microbiol Rev, 1997, 21(3): 213-229.
    [109] Johnston A W B, Li Y G, Ogilvie L. Metagenomic marine nitrogen fixation~~feast or famine? [J]. Trends Microbiol, 2005,13(9): 416-420.
    [110] Seow K T, Meurer G, Gerlitz M, et al. A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms [J]. J Bacteriol, 1997,179(23): 7360-7368.
    [111] Martinez A, Kolvek S J, Yip C L T, et al. Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts [J]. Appl Environ Microbiol, 2004, 70(4): 2452-2463.
    [112] Li Y, Wexler M, Richardson D J, et al. Screening a wide host~range, waste~water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes [J]. Environ Microbiol, 2005, 7 (12): 1927-1936.
    [113]LammIe K, Zipper H, Breuer M, et al. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning [J]. J Biotechnol, 2007, 127(4): 575-592.
    [114] Wilkinson D E, Jeanicke T, Cowan D A, et al. Efficient molecular cloning of environmental DNA From geothermal sediments [J]. Biotechnol Lett, 2002, 24(2): 155-161.
    [115] Tringe S G, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities [J]. Science, 2005,308(5721): 554-557.
    [116] Markowitz V M, Ivanova N, Palaniappan K, et al. An experimental metagenome data management and analysis system [J]. Bioinformatics, 2006, 22 (20): 2580-2580.
    [117] Krause L, Diaz N N, Bartels D, et al. Finding novel genes in bacterial communities isolated from the environment [J]. Bioinformatics, 2006,22(14): 281-289.
    [118] Huson D H, Auch A F, Qi J, et al. MEGAN analysis of metagenomic data [J]. Genome Res, 2007,17(3): 377-386.
    [119] Hall N. Advanced sequencing technologies and their wider impact in microbiology [J]. J Exp Biol, 2007, 210(9): 1518-1525.
    [120] Mahenthiralingam E, Baldwin A, Drevinek P, et al. Multilocus sequence typing breathes life into a microbial metagenome [J]. PLoS ONE, 2006,1(1): 1-8.
    [121]Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences [J]. Nucleic Acids Res, 2006,34(19): 5623~5630.
    [122] Boubakri H, Beuf M, Simonet P, et al. Development of metagenomic DNA shuffling for the construction of a xenobiotic gene [J]. Gene, 2006,375(6): 87-94.
    [123] Warren Rene L, Sutton Granger G, Jones Steven J M, et al. Assembling millions of short DNA sequences using SSAKE [J]. Bioinformatics, 2007, 23(4): 500-501.
    [124] Havre S L, Webb~Robertson B J, Shah A, et al. Bioinformatic insights from metagenomics through visualization [A]. In Proc IEEE Comput Syst Bioinform Conf[C]. Los Alamitos, CA: IEEE Computer Society, 2005, 341-350.
    [125] Rodriguez~Brito B, Rohwer F, Edwards R A. An application of statistics to comparative metagenomics [J]. BMC Bioinformatics, 2006, 7: 162.
    [126] Sebat J L, Colwell F S, Crawford R L. Metagenomic profiling: microarray analysis of an environmental genomic library [J]. Appl Environ Microbiol, 2003,69(8): 4927-4934.
    [127] Galbraith E A, Antonopoulos D A, White B A. Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model [J]. Environ Microbiol, 2004, 6(9): 928-937.
    [128] Leggewie C, Henning H, Schmeisser C, et al. A novel transposon for functional expression of DNA libraries [J]. Journal of Biotechnology., 2006,123 (3): 281-287.
    [129] Yun J, Ryu S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it [J]. Microb Cell Fact, 2005,4(8): 1-5.
    [130] Uchiyama T, Abe T, Ikemura T, et al. Substrate~induced gene~expression screening of environmental metagenomic libraries for isolation of catabolic genes [J]. Nat Biotechnol, 2005,23(1): 88-93.
    [131] Li X, Qin L. Metagenomics~based drug discovery and marine microbial diversity [J]. Trends Biotechnol, 2005, 23(11): 539-543.
    [132] Wenzel S C, Muller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways [J]. Curr Opin Biotechnol, 2005, 16(6): 594-606.
    [133]Crameri R,Suter M.Display of biologically active proteins on the surface of filamentous phages:a cDNA cloning system for the selection of functional gene products linked to the genetic information responsible for their production[J].Gene,1993,137(1):69-75.
    [134]Uchiyama T,Watanabe K.Improved inverse PCR scheme for metagenome walking[J].Biotechniques,2006,41(2):183-188.
    [135]Leveau J H J,Gerards S,de Boer W,et al.Phylogeny~function analysis of(meta)genomic libraries:screening for expression of ribosomal RNA genes by large~insert library fluorescent in situ hybridisation(LIL~FISH)[J].Environ Microbiol,2004,6(9):990-998.
    [136]Schwarz S,Waschkowitz T,Daniel R.Enhancement of gene detection frequencies by combining DNA~based stable~isotope probing with the construction of metagenomic DNA libraries[J].World J Microbiol Biotechnol,2005,22(4):363-368.
    [137]Rappe M S,Connon S A,Vergin K L,et al.Cultivation of the ubiquitous SAR11 marine bacterioplankton clade[J].Nature,2002,418(6898):630-633.
    [138]林鹏.中国红树林生态系[M].北京:科学出版社,1997.
    [139]林鹏,张瑜斌.九龙江口红树林土壤微生物的类群及抗菌活性[J].海洋学报,2005,27(3):133-141.
    [140]Takeuchi M,Hatano K.Gordonia rhizosphera sp.nov.isolated from the mangrove rhizosphere [J].Int J Syst Bacteriol,1998,48:907-912.
    [141]Lyimo T J,Pol A,den Camp H J M,et al.Methanosarcina semesiae sp.nov.,a dimethylsulfide~utilizing methanogen from mangrove sediment[J].Int J Syst Evol Microbiol,2000,50:171-178.
    [142]Takeuchi M,Hatano K.Agromyces rhizospherae sp.nov.and Agromyces bracchium sp.nov.,from the mangrove rhizosphere[J].Int J Syst Evol Microbiol,2001,51:1529-1537.
    [143]Arunasri K,Sasikala C,Raman C V,et al.Marichromatium indicum sp.nov.,a novel purple sulfur gammaproteobacterium from mangrove soil of Goa[J].Int J Syst Evol Microbiol,2005,55:673-679.
    [144]Tamura T,Sakane T.Asanoa iriomotensis sp.nov.,isolated from mangrove soil[J].Int J Syst Evol Microbiol,2005,55:725-727.
    [145]王岳坤,洪葵.红树林土壤细菌群落16S rDNA V3片段PCR产物的DGGE分析[J].微生物学报,2005,45(2):201-204.
    [146]王岳坤,洪葵.红树林土壤因子对土壤微生物的影响[J].热带作物学报,2005,26(3):109-114.
    [147]Al~Sayed H A,Ghanem E H,Saleh K M.Bacterial community and some physico~chemical characteristics in a subtropical mangrove environment in Bahrain[J].Mar Pollut Bull,2005,50(2):147-155.
    [148]Routray T K,Satapathy G G,Mishra A K.Seasonal fluctuation of soil nitrogen transforming microorganisms in Bhitarkanika mangrove forest[J].J Environ Bio,1996,17(4):325-330.
    [149]Karsten U,Maier J,Garcia-Pichel F.Seasonality in UV~absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat[J].Aquatic Microb Ecol,1998,16(1):37-44.
    [150]Mohanraju R,Natarajan R.Methanogenic bacteria in mangrove sediments[J].Hydrobiologia,1992,247(1-3):187-193
    [151]何斌,温远光.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    [152]庄铁诚,林鹏.红树林凋落物叶自然分解过程中土壤微生物的数量动态[J].厦门大学学报(自然科学版),1993,32(3):365-370.
    [153]Pointing S B,Buswell J A,Jones E B G,et al.Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi[J].Mycological Research,1999,103:696-700.
    [154]Raghukumar C,Raghukumar S,Chinnaraj A,et al.Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India[J].Bot Mar,1994,37(6):515-523.
    [155]郑志成,周美英,姚炳新.红树林根际放线菌的组成及生物活性[J].厦门大学学报(自然科学版),1989,28(3):306-310.
    [156]Yuan K P,Guan L P,Feng G M.Survey of coastal mangrove fungi for xylanase production and optimized culture and assay conditions[J].Acta Microbiol Sinic,2005,45(1):91-96.
    [157]Lin Y C,Wu X Y,Deng Z J,et al.The metabolites of the mangrove fungus.Verruculina enalia No.2606 from a salt lake in the Bahamas[J].Phytochemistry,2002,59(4):469-471.
    [158]廖文彬,鲍时翔.红树林放线菌产抗菌活性物质的分离纯化研究[J].药物生物技术,2004,11(6):376-380.
    [159]Yu K S H,Wong A H Y,Yau K W Y,et al.Natural attenuation,biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons(PAHs)in mangrove sediments[J].Mar Pollut Bull,2005,51(8-12):1071-1077.
    [160]Burns K A,Codi S,Swannell R J P,et al.Assessing the oil degradation potential of endogenous micro~organisms in tropical marine wetlands[J].Mangroves and Salt Marshes,1999,3(2):67-83.
    [161]庄铁城,林鹏.红树林下土壤微生物对柴油的降解[J].厦门大学学报(自然科学版),1995,34(3):442-446.
    [162]徐美珠,庄铁城,郑天凌.红树林区细菌对甲胺磷农药的降解[J].海洋学报,2000,22(Sup):300-3058.
    [163]Kathiresan K.Polythene and Plastics~degrading microbes from the mangrove soil[J].Rev Biol Trop,2003,51(3):629-634.
    [164]李魁晓,顾继东.红树林细菌Rhodococcus rubber 1K降解邻苯二甲酸二丁酯的研究[J].应用生态学报,2005,16(8):1566-1568.
    [165]Yin B,Gu J D,Wan N S.Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment[J].Int Biodeterior Biodegrad,2005,56(4):243-248.
    [166]Li J X,Gu J D,Yao J H.Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment[J].Int Biodeterior Biodegrad,2005,56(3):158-165.
    [167]Xu X R,Li H B,Gu J D.Biodegradation of an endocrine-disrupting chemical di~n~butyl phthalate ester by Pseudomonas uorescens B~1[J].Int Biodeterior Biodegrad,2005,55(1):9-15.
    [168]Boris P K,Jens H,Rube'n J L,et al.The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments[J].Org Geochem,2005,36(2):273-285.
    [169]Yoshihiro A,Mistsugi N.Initial fermentation of sea sludge using aerobic and thermophilic microorganisms in a mangrove soil[J].Bioresour.Technol,2001,80(1):83-85.
    [170]Tam N F Y.Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils[J].Environ Pollut,1998,102(2):233-242.
    [171]Bandaranayake W M.Traditional and medicinal uses of mangroves[J].Mangroves and Salt Marshes, 1998,2(3): 133-148.
    [172]Tsai Y L and Olson B H. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction [J]. Appl. Environ. Microbiol. 1992, 58 (7):2292~2295.
    [173] Rochelle P. Extraction of nucleic acids from environmental samples [M]. In Environmental Molecular Microbiology: Protocols and Applications. Edited by Rochelle P A, Wymondham. U K: Horizon Scientific Press, 2001.
    [174] Santosa D A. Rapid extraction and purification of environmental DNA for molecular cloning applications and molecular diversity studies [J]. Mol Biotechnol 2001,17(1): 59-64.
    [175] Patrick R, Renaud N, Carmela C, et al. Extraction of DNA from soil [J]. Eur J Soil Biol, 2003, 39(4):183~190.
    [176] Bachoon DS, Otero E, Hodson RE. Effects of humic substances on fluorometric DNA quantification and DNA hybridization [J]. J Microbiol Methods., 2001, 47(1):73~82.
    [177] Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods [J]. Applied and Environmental Microbiology, 2001, 67 (5):2354~2359.
    [178] Luna G M, Dell'Anno A, Danovaro R. DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments [J]. Environ Microbiol, 2006, 8(2):308~320.
    [179] DeLong E F. Archaea in coastal marine environments [J]. Proc Natl Acad Sci USA, 1992, 89(12):5685~5689.
    [180] Collins G, Kavanagh S, McHugh S, et al. Accessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments [J]. Journal of Environmental Science and Health, 2006, 41(5): 897-922.
    [181] Stahl D A, Amann R. Development and application of nucleic Acid probe bacterial systematics [A]. Nucleic acid techniques in bacterial systematics, edited by Stackebrandt E, Goodfellow M, England: John Wiley Sons Ltd, 1991. 205-248.
    [182] Smit E, Leeflang P, Glandorf B, et al. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis [J]. Appl Environ Microbiol, 1999, 65 (6):2614~2621.
    
    
    [183] White T J, Bruns T D, Lee S, et al. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes.In PCR Protocols:a Guide to Methods and Applications[M].Edited by Innis M A,Gelfand D H,Sninsky J J,et al.New York:Academic Press,1990.
    [184]Gardes M,Bruns T D.ITS primers with enhanced specificity for basidiomycetes:application to the identification of mycorrhiza and rusts[J].Mol Ecol,1993,2(2):113-118.
    [185]Roller C,Ludwig W,Schleifer K H.Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes[J].J Gen Microbiol,1992,138(6):1167-1175.
    [186]Volossiouk T,Robb E J,Nazar R N.Direct DNA extraction for PCR-mediated assays of soil organisms[J].Appl Microbiol Biotechnol,1995,64(11):3972-3976.
    [187]Murray M G,Thompson W F.Rapid isolation of high molecular weight plant DNA[J].Nucleic Acids Research,1980,8(19):4321-4325.
    [188]Porteous L A,Seidler R J,Watrud L S.An improved method for purifying DNA from soil for polymerase chain reaction amplification and molecular ecology applications[J].Mol Ecol,1997,6(8):787-791.
    [189]Clegg C D,Ritz K,Griffiths B S.Direct extraction of microbial community DNA from humified upland soils[J].Lett Appl Microbiol,1997,25(1):30-33
    [190]Steffan R J,Goksoyr J,Bej A K,et al.Recovery of DNA from soils and sediments[J].Appl Environ Microbiol,1988,54(12):2908-2915.
    [191]Fortin N,Beaumier D,Lee K,et al.Soil washing improves the recovery of total community DNA from polluted and high organic content sediments[J].J Microbiol Methods,2004,56(2):181-191
    [192]He J Z,Xu Z H,Hughes J.Pre-lysis washing improves DNA extraction from a forest soil[J].Soil Biology and Biochemistry,2005,37(12):2337-2341.
    [193]Kauffrnann I M,Schmitt J,Schmid R D.DNA isolation from soil samples for cloning in different hosts[J].Appl Microbiol Biotechnol,2004,64(5):665-670.
    [194]Hattori T.,Soil aggregates as microhabitats of microorganisms[J].Biol Fertil Soils,1988,6:189-203.
    [195]Tsai Y L,Olson B H.Rapid method for direct extraction of DNA from soil and sediments[J].Appl Environ Microbiol,1991,57(4):1070-1074.
    [196] Picard C, Ponsonnet C, Paget E, et al. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction [J]. Appl Environ Microbiol, 1992, 58(9): 2717-2722.
    [197] More M I, Herrick J B, Silva M C, et al. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment [J]. Appl Environ Microbiol, 1994, 60(5): 1572-1580.
    [198] La Montagne M G, Michel F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis [J]. J Microbiol Methods, 2002,49(3): 255-264.
    [199] Porteous L A, Armstrong J L, Seidler R J, et al. An effective method to extract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis [J]. Curr Microbiol, 1994, 29(5): 301-307.
    [200] Nazar R N, Robb E J, Volossiouk T. Molecular Microbial Ecology Manual [A]. Edited by Akkermans A D L, van Elsas J D, de Bruijn, F J, et al. Kluwer, Dordrecht, 1996.1-8.
    [201] Kuske C R, Kaysie L B, Dante L A, et al. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil [J]. Appl Environ Microbiol, 1998, 64(7): 2463-2472.
    [202] van Elsas J D, Duarte G F, Keijzer-Wolters A, et al. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis [J]. Journal of Microbiological Methods, 2000, 43(2):133~151.
    [203] Anderson I C, Campbell C D, Prosser J I. Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient [J]. Environmental Microbiology, 2003, 5 (11): 1121-1132.
    [204] Schussler A, Schwarzott D, Walker C. A new phylum, the Glomeromycota: phylogeny and evolution [J]. Mycol Res, 2001,105(12): 1413-1421.
    [205] Hugenholtz P and Pace N R. Identifying microbial diversity in the natural environment: a molecular phyloge-netic approach [J]. Trends Biotechnol, 1996,14: 190-197.
    [206] Lord N S, Kaplan C W, Shank P, et al. Assessment of fungal diversity using, terminal restriction fragment (TRF). pattern analysis: comparison of 18S and ITS ribosomal. Regions [J]. FEMS Microbial Ecol, 2002,42(3):327~337.
    [207]Anderson I C,Cairney J W G.Diversity and ecology of soil fungal communities:increased understanding through the application of molecular techniques[J].Environ.Microbiol,2004,6(8):769-779.
    [208]Hopfl P,Ludwig W,Schleifer K H,et al.The 23S ribosomal rRNA higher order structure of Pseudomonas cepacia and other prokaryotes[J].Eur J Biochem,1989,155(2):355-364.
    [209]徐平,李文均,徐丽华,等.PCR快速鉴定Actinobacteria三种模板制备方法的比较[J].中国抗生素杂志,2003,28(7):388-390.
    [210]钟文辉 蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5):899-904.
    [211]Muyzer G,de Waal E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Appl Environ Microbiol,1993,59(3):695-700.
    [212]Gomes N C O,Fagbola R,Costa N G,et al.Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J].Appl Environ Microbiol,2003,69(7):3758-3766.
    [213]Heuer H M,Krsek P,Baker K,et al.Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J].Appl Environ Microbiol,1997,63(8):3233-3241.
    [214]Anderson I C,Campbell C D,Prosser J I.Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil [J].Environ Microbiol,2003,5(1):36-47.
    [215]Watanabe K,Teramoto M,Futamata H,et al.Molecular detection,isolation,and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge[J].Appl Environ Microbiol,1998,64(11):4396-402.
    [216]Ferris M J,Muyzer G,Ward D M.Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community[J].Appl Environ Microbiol,1996,62(2):340-346.
    [217]Smalla K G,Wieland A,Buchner A,et al.Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed[J].Appl Environ Microbiol,2001,67(10):4742-4751.
    [218]刘峰,洪葵.红树林土壤宏基因组文库构建和生物活性筛选[A].全国海洋生物技术与海洋药物学术会议论文集[C].2006,667-669.
    [219]Sambrook J,Fritsch E F,Maniatis T.Molecular Cloning:A Laboratory Manual(2nd)[M].New York:Cold Spring Harbor Laboratory Press,1989.
    [220]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [221]赵晶,张锐,林念炜,等.深海沉积物中微量DNA的提取及应用[J].海洋与湖沼,2003,34(3):313-321.
    [222]黄婷婷,曹慧,王兴祥,等.一种土壤微生物总DNA的高效提取方法[J].土壤,2004,36(6):662-666.
    [223]饶志明,赵有玺,李辉,等.太湖流域土壤微生物基因组总DNA分离纯化及其质粒文库的初步构建[J].应用与环境生物学报,2004,10(6):774-777.
    [224]Rheims H,Rainey F A,Stackebrandt E.A molecular approach to search for diversity among bacteria in the environment[J].J Ind Microbiol,1996,17(3-4):159-169.
    [225]Boehr D D,Draker K,Koteva K,et al.Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes[J].Chem Biol,2003,10(2):189-196.
    [226]Sarno R,Ha H,Weinsetel N,et al.Inhibition of aminoglycoside 6-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynu-cleotides[J].Antimicrob Agents and Chemother,2003,47(10):3296-3304.
    [227]Anderson A S,Clark D J,Gibbons P H,et al.The detection of diverse aminoglycoside phos-photransferases within natural populations of actino- mycetes[J].J Ind Microbiol Biotechnol,2002,29(2):60-69.
    [228]蒋云霞,郑天凌,田蕴.红树林土壤微生物的研究:过去、现在、未来[J].微生物学报,2006,46(5):848-851.
    [229]Culley A I,Lang A S,Suttle C A.Metagenomic Analysis of Coastal RNA Virus Communities [J].Science,2006,312(5781):1795-1798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700