耐药相关蛋白和糖调节蛋白联合检测肺癌化疗耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     肺癌是常见的恶性肿瘤之一,其发病率和致死率都居各种肿瘤之首。化疗耐药是影响肺癌疗效的主要因素之一。肺癌的耐药主要分为原发性耐药和继发性耐药,前者表现为肿瘤细胞对化疗药物的天然不敏感,后者是肿瘤细胞因抗癌药物诱导或其他因素的激活而产生的耐药性。肺癌对化疗药物的耐药是一个多因素参与的复杂过程,主要与化疗药物的药代动力学、肿瘤细胞特异性、肿瘤细胞生存的微环境三大因素密切相关。而且各种因素之间相互依赖、相互制约、相互调节。
     化疗药物种类繁多,目前常用于肺癌临床治疗的主要有VP-16、顺铂等。VP-16属于鬼臼乙叉甙类,是细胞周期特异性药物。以顺铂为代表的铂类药物是临床治疗各种类型肺癌的常规用药,通过形成链内或者链间交联影响DNA的复制、合成,引起细胞的凋亡。
     细胞特异性因素与细胞内一系列耐药相关蛋白的表达及其介导的耐药密切相关。目前研究较多的与肺癌有关的耐药相关蛋白主要有P-糖蛋白(P-glycoprotein,P-gp),多药耐药相关蛋白(multidrug resistance-associated protein,MRP),肺耐药相关蛋白(lung resistance-related protein,LRP),谷胱甘肽-S-转移酶-π(Glutathione-s-transferase-π,GST-π)和拓扑异构酶Ⅱα(TopoisomeraseⅡα, TopoⅡα).研究表明P-gp、MRP、LRP.GST-π和TopoⅡα在肺癌的原发性和继发性耐药中都起着重要的作用。但是国内外的相关研究大多集中于其中的一种或几种,将五种耐药相关蛋白联合检测以及关于它们与肺癌耐药相关性的报道甚少。
     除了细胞特异性因素可以引起化疗耐药之外,耐药还与肿瘤生存的微环境密切相关。由于血供不足,实体瘤通常处于一种低氧、低糖、酸中毒的微环境中。这种特殊的微环境通常会导致肿瘤细胞的葡萄糖调节应激反应,诱导糖调节蛋白(glucose-regulated proteins,GRPs)的表达。目前研究最多的是糖调节蛋白78(GRP78)和94(GRP94)。我们以前通过分别对四种细胞系进行研究发现,肺癌细胞中GRP78和GRP94的表达与VP-16的耐药有关,但不同细胞系之间的差异以及机制尚不清楚。
     众所周知,肺癌化疗耐药是一个复杂的过程,并非单一因素,单一蛋白作用的结果。耐药相关蛋白和糖调节蛋白可能共同参与了肺癌对化疗药物的耐药,但两者之间的关系尚不清楚,深入研究两组蛋白的相互关系以及在肺癌耐药中的作用,有利于提高化疗疗效。
     为了全面的了解多种耐药相关蛋白在肺癌化疗耐药中的作用、糖调节蛋白对不同肺癌细胞系耐药的影响和机制以及耐药相关蛋白与糖调节蛋白之间的关系,本课题开展以下研究。
     研究内容:
     1.耐药相关蛋白在肺癌原发性耐药中的作用
     采用RT-PCR、Western blot和免疫荧光的方法对耐药相关蛋白P-gp、MRP、LRP、GST-π和TOPOⅡα在四种不同类型肺癌细胞系(SK-MES-1、SPCA-1、NCI-H-460和NCI-H-446)中进行定性定量检测,并用MTT法检测各细胞系对顺铂、阿霉素和VP-16的耐药性。分析耐药相关蛋白在肺癌对顺铂、阿霉素和VP-16耐药中的作用。
     2.耐药相关蛋白在肺癌继发性耐药中的作用
     采用RT-PCR、Western blot和免疫荧光的方法对五种耐药相关蛋白在肺腺癌顺铂耐药细胞株A549/DDP和亲代细胞株A549的表达进行检测,分析耐药相关蛋白在肺腺癌顺铂继发性耐药中的作用。
     3.P-gp的下调对肺癌耐药的影响
     采用RT-PCR和免疫荧光的方法检测不同类型肺癌细胞系维拉帕米处理前后P-gp的表达,MTT法检测维拉帕米处理前后不同类型肺癌细胞系对顺铂和VP-16耐药性。分析P-gp在不同细胞系对顺铂和VP-16耐药中的影响。
     4.糖调节蛋白对肺癌耐药的影响
     采用RT-PCR、Western blot和免疫荧光的方法检测A23187作用下四种不同类型肺癌细胞系GRP78和GRP94的表达以及不同细胞系对VP-16的耐药性,并在此基础上,进一步探讨GRP78和GRP94的表达与肺癌对VP-16耐药的关系。
     5耐药相关蛋白和糖调节蛋白在肺癌耐药中的相互作用研究
     采用RT-PCR、Western blot和免疫荧光的方法检测耐药相关蛋白和糖调节蛋白在四种肺癌细胞系的基础表达。分析两组蛋白之间的相关性和对肺癌化疗耐药的影响。
     研究结果:
     1.耐药相关蛋白对肺癌原发性耐药的影响
     RT-PCR.Western blot和免疫荧光的实验结果表明:P-gp.MRP.LRP.GST-π和TOPOⅡα五种耐药相关蛋白的蛋白及mRNA水平在四种不同类型肺癌细胞系中皆有表达,但表达水平有差异。比如GST-π在肺鳞癌细胞系SK-MES-1表达水平最高,但是TOPOⅡα在SK-MES-1表达水平却最低。
     MTT结果显示:四种不同类型细胞系对阿霉素、顺铂及VP-16的化疗敏感性不同。肺腺癌SPCA-1细胞系对阿霉素和顺铂最敏感,但是肺鳞癌SK-MES-1对VP-16最敏感。
     GST-π和TOPOⅡα与肺癌对阿霉素、顺铂及VP-16的原发性耐药有相关性。GST-π蛋白水平的表达与肺癌对顺铂耐药成正相关(P<0.05),TOPOⅡα蛋白水平的表达与肺癌对VP-16的耐药成正相关(P<0.05),但其表达与肺癌对阿霉素的耐药成负相关(P<0.05)。
     2.耐药相关蛋白对肺癌继发性耐药的影响
     RT-PCR.Western blot和免疫荧光的实验结果表明:与亲代细胞株相比,肺腺癌顺铂耐药株A549/DDP中P-gp和MRP表达显著增高(P<0.05),TOPOⅡα表达明显降低(P<0.05)。
     3.P-gp的下调对肺癌耐药的影响
     RT-PCR.免疫荧光的实验结果显示:维拉帕米能够明显抑制四种肺癌细胞系P-gp核酸和蛋白水平的表达(P<0.05)。
     MTT结果表明:P-gp表达水平的下调增加了小细胞肺癌NCI-H-446对顺铂的敏感性(P<0.05),也增加了肺腺癌SPCA-1,大细胞NCI-H-460及小细胞肺癌NCI-H-446对VP-16的敏感性(P<0.05)
     4.糖调节蛋白对肺癌原发性耐药的影响
     RT-PCR-Western blot和免疫荧光的实验结果表明:GRP78和GRP94在四种细胞系中都有表达,但是各细胞系GRP78基础表达在蛋白和核酸水平均存在差异(P<0.05,在NCI-H-460细胞系中表达最高);而GRP94没有显著性差异。在诱导剂A23187作用下,四种细胞系中GRP78蛋白和核酸水平的表达显著增加(P<0.05),而GRP94仅在蛋白水平显著增加。
     MTT结果显示:在A23187作用下,GRP78和GRP94高表达组的细胞对VP-16的IC50值明显高于低表达组(P<0.05)。
     GRP78蛋白和核酸基础表达与肺癌对VP-16耐药成正相关(P<0.05)。在A23187作用下,四种细胞系中GRP78和GRP94蛋白水平表达都与VP-16耐药成正相关(P<0.05):GRP78核酸水平表达与SK-MES-1.SPCA-1和NCI-H-446细胞系对VP-16的耐药明显相关(P<0.05) GRP94核酸水平表达与四种细胞系对VP-16无明显相关。
     5.耐药相关蛋白和糖调节蛋白在肺癌耐药中的相互作用
     RT-PCR.Western blot和免疫荧光的实验结果表明:耐药相关蛋白P-gp.MRP.LRP.GST-π和TopoⅡα与糖调节蛋白GRP78和GRP94在四种不同类型肺癌细胞系中均有表达,并且GRP78和GRP94的表达与除P-gp以外的耐药相关蛋白表达趋势基本一致。
     GRP78与LRP蛋白水平的表达成正相关(r=0.773,P<0.05)。二者协同参与肺癌的化疗耐药。
     结论:
     1.P-gp.MRP.LRP.GST-π和TOPOⅡα五种耐药相关蛋白在四种肺癌细胞系中的共表达可能是肺癌对化疗药物产生原发性耐药的主要原因之一。细胞间耐药相关蛋白表达的差异性可能是造成其化疗疗效不同的重要因素之一。其中,GST-π蛋白水平的表达与肺癌对顺铂原发性耐药明显相关,TOPOβα蛋白水平的表达与肺癌对阿霉素的化疗敏感性相关同时也与肺癌对VP-16原发性耐药相关。
     2.P-gp.MRP和TOPOⅡα的表达与肺腺癌对顺铂继发性耐药相关,三种耐药相关蛋白可能共同参与了肺腺癌对顺铂的继发性耐药。
     3.维拉帕米能够显著抑制四种细胞系P-gp核酸和蛋白水平的表达,P-gp表达水平的下调与小细胞肺癌对顺铂耐药相关,与肺腺癌、大细胞癌和小细胞癌对VP-16耐药相关。
     4.GRP78的基础表达与肺癌对VP-16的耐药成正相关,细胞间GRP78表达的差异可能是不同类型肺癌对VP-16化疗敏感性差异的原因之一。GRP78和GRP94蛋白水平的表达与四种肺癌细胞系对VP-16的耐药都有显著相关性,GRP78核酸水平的表达与SK-MES-1.SPCA-1和NCI-H-446三种细胞系对VP-16耐药相关。
     5.耐药相关蛋白和糖调节蛋白之间具有一定的相互影响,它们共同在肺癌的耐药中起着重要作用。联合检测耐药相关蛋白和糖调节蛋白及探讨两者之间的关系一方面揭示肺癌耐药的机制,判断化疗疗效和预后,另一方面可以根据肺癌耐药相关蛋白的表达合理选择化疗药物,正确配伍,减少化疗药物引起的副作用,还可以根据其产生耐药的机制选择相应的逆转剂,有利于提高临床化疗疗效。
Background and Aim:
     As one of the most frequent malignancies, Lung cancer is the leading cause of cancer death in the world. Drug resistance remains a major problem for successful chemotherapy in lung cancer. Chemoresistance can be primary(intrinsic) where tumor cells do not respond to anticancer drugs from the beginning of the treatment or secondary (acquired) where tumor cells develop resistance during chemotherapy. As is well known, Drug resistance is a complex process mainly involving with pharmacokinetics, cancer-cell-specific issues and the tumor microenvironment. Various factors are mutually dependent and inter-acting in development of dug resistance。
     There are varieties of anticancer drugs for the treatment of lung cancer, such as VP-16, cisplatin. VP-16, one member of epiopodophyllotoxin, is the cell cycle specific drugs. Platium characterized by cisplatin can be used to treat all types of lung cancer. Through formation of cross-link, cisplatin affect the replication and synthesis of DNA and cause cell apoptosis.
     Cancer-cell-specific issues can be mediated by changes of a series of intracellular drug resistance-related protein. Among which, P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), Glutathione-s-transferase-π(GST-π) and Topoiso-meraseⅡα(TopoⅡα) has drew more attention. Many reports showed that P-gp, MRP, LRP, GST-π, and TopoⅡαplayed important roles in the intrinsic or acquired resistance in lung cancer. However, most of them only focused on one or two of these drug resistance related proteins, little information is known referring to all of these five mediators.
     In addition to cancer-cell-specific factors, mocroenviroment may also a crucial factor influencing chemoresistance in lung cancer. Because of poor vascularization, solid tumors usually contain hypoxic regions where glucolysis is the main means of ATP synthesis, and glucose deprivation often occurs, which trigger the glucose-regulated stress response of cancer cells, leading to the dramatically increased expression of glucose-regulated proteins(GRPs). GRP78 and GRP94 are the best studied GRPs. Our previous research showed that A23187 can induced the expression of GRP78 in multiple lung cancer cell lines, and its expression is related to the resistance to VP-16. Meanwhile, A23187 induced GRP94 expression is associated with the resistance to VP-16 as well in lung cancer. However, these results are all about the sigle cell line. In this work, we investigated the expression of GRP78 and GRP94 and evaluate whether their different expression can result in resistance discrepancy to VP-16 in mutiple lung cancer cell lines.
     Mutiple factors are suggested to be involved in drug resistance in lung cancer. Both drug resistance related proteins and GRPs can be important related contibutors. However, little is known about the correlationship between these factors.
     This work aimed at clarifying the effect of several drug resisitance related factors in lung cancer including P-gp, MRP, LRP, GST-πand TopoIIa on intrinsic and acquired drug resistance, the relationship between expression of GRPs and chemoresistance. Further more, correlation among them was well analyzed according to comprehensive factors mentioned above.
     Methods:
     1. The expression of P-gp, MRP, LRP, GST-πand TopoⅡwas examed by RT-PCR, Western blot and/or immunofluorescence in four histopa-thological subtypes of lung cancer cell lines (SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446) and the resistance to cisplatin, doxorubicin and VP-16 was detected by MTT assay. Analysis the relationship between the drug resistance-related protein and the resistance to cispaltin, doxorubicin and VP-16 in lung cancer.
     2. The expression of the drug resistance-related proteins in cisplatin- resistance lung adenocarcinoma cell line A549/DDP and the parental cell line A549 was detected by RT-PCR, Western blot or immunofluorescence
     3. The expression of P-gp with and without the pretreatment of verapamil was examed by RT-PCR and immunofluorescence in four histopa-thological subtypes of lung cancer cell lines. Cell survival to cisplatin and VP-16 was determined by MTT assay.
     4. The expression of GRP78 and GRP94 pretreated with A23187 was detected by RT-PCR, Western blot and immunofluorescence. MTT assay was used to determined cell survival to VP-16.
     5.Pearson correlation analysis was emplored to determine the relation-ship between drug resistance related proteins and GRPs so as to supply benefit indicator for individual treatment of lung cancer.
     Results:
     1. We found that the endogenous levels of P-gp, MRP, LRP, GST-πand TOPOⅡαin four cell lines vary. The level of GST-πin SK-MES-1was the highest, whereas the level of P-gp in SPCA-lwas the lowest. The chemosensitivity to cisplatin, doxorubicine and VP-16 in four cell lines were different. Both doxorubicin and Cisplatin were the most sensitive compounds to SPCA-1; VP-16 was the most sensitive compound to SK-MES-1. There was a positive correlation, between GST-πexpression and resistance to cisplatin, between TOPOⅡαexpression and resistance to VP-16; and a negative correlation between TOPOⅡαexpression and resistance to doxorubicin. Conclusively, different endogenous levels of P-gp, MRP, LRP, GST-πand TOPOⅡαin human lung cancer cell lines may suggest various chemosensitivity to cisplatin, doxorubicine and VP-16.
     2.Compared to parental cell line A549, the expression of P-gp and MRP enhanced and TOPO II a level decreased in cisplatin resistance cell line A549/DDP.
     3. The expression of P-gp at both mRNA and protein level can be obviously inhibited by verapamil in all the four cell lines. With the pretreat-ment of verapamil, NCI-H-446 was more sensitive to cisplatin; SPCA-1, NCI-H-460 and NCI-H-446 were more sensitive to VP-16 as well compared to the control group.
     4. We found that the endogenous levels of GRP78 in four cell lines vary, with NCI-H-460 was the highest. Compared to the control group, the expression of GRP78 and GRP94 at protein and GRP78 mRNA level with the A23187 pretreated was significantly increased in the four cell lines. The IC50 of VP-16 also showed significant elevation for the cells induced by A23187. There was a positive correlation, between endogenous levels of GRP78 and resistance to VP-16. With the pretreatment of A23187, the protein level of GRP78 and GRP94 was related to the resistance to VP-16 in four cell lines. And mRNA level of GRP78 was associated with the resistance to VP-16 in SK-MES-1, SPCA-1 and NCI-H-446 cell lines.
     5. Both drug resistance-related proteins and GRPs showed obviously basal expression in all four types of lung cancer cell lines. Except for P-gp,the other four drug resisitance-related protein exhibited similar expression tendency to GRP78 and GRP94 in all the fours cell lines.. There was a positive correlation between GRP78 and LRP(r=0.773, P<0.05).
     Conclusions:
     1. Co-expression of P-gp, MRP, LRP, GST-πand TOPOⅡa may play an important role on the intrinsic resistance in lung cancer, meanwhile the different expression in four histopathological subtypes of lung cancer cell lines may cause the various resistance to anticancer drugs. GST-πmay be significant for prediction of the intrinsic resistance to cisplatin, whereas TOPO II a may be a valuable protein for estimating the intrinsic resistance to doxorubicine and VP-16.
     2. P-gp, MRP and TOPOⅡαmay be important factors for the acquired resistance to cisplatin in lung cancer
     3. Down-regulation of P-gp is associated with the intrinsic resistance to cisplatin in NCI-H-446 cell line and to VP-16 in SPCA-1, NCI-H-460 and NCI-H-446 cell lines.
     4. Various chemosensitivity to VP-16 may be resulted from their different endogenous levels of GRP78 in human lung cancer cell lines. Expression of GRP78 and GRP94 at protein level is associated with the intrinsic resistance to VP-16 in all four cell lines, while mRNA expression of GRP78 is related to the resistance to VP16 in SK-MES-1, SPCA-1, NCI-H-446 cell lines.
     5. Both drug resistance-related proteins and GRPs are interacting important factors involving in lung cancer chemoresistance. Therefore, combined detection of two groups proteins can not only contibute to confir-ming chemoresistance mechanism and evaluating therapeutic effect, but also offer effective and rational guidelines in lung cancer chemo-treatment.
引文
1. Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol 2005;206(3):173-185.
    2. Booth CL, Pulaski L, Gottesman MM, Pastan I. Analysis of the properties of the N-terminal nucleotide-binding domain of human P-glycoprotein. Bioche-mistry 2000;39(18):5518-5526.
    3. Ozben T. Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 2006;580(12):2903-2909.
    4. Ueda K, Taguchi Y, Morishima M. How does P-glycoprotein recognize its substrates? Semin Cancer Biol 1997;8(3):151-159.
    5. Sauna ZE, Ambudkar SV. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci U S A 2000;97(6):2515-2520.
    6. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987;84(21):7735-7738.
    7. Ieiri I, Takane H, Otsubo K. The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 2004;43(9):553-576.
    8. Arceci RJ, Croop JM, Horwitz SB, Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A 1988;85(12): 4350-4354.
    9. Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol 2010;30(1):63-70.
    10. Bansal T, Jaggi M, Khar RK,Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci 2009;12(1):46-78.
    11. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987;84(1):265-269.
    12. Drach D, Zhao S, Drach J, Andreeff M. Low incidence of MDR1 expression in acute promyelocytic leukaemia. Br J Haematol 1995;90(2):369-374.
    13. Abolhoda A, Wilson AE, Ross H, Danenberg PV, Burt M, Scotto KW. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 1999;5(11):3352-3356.
    14. Bogman K, Peyer AK, Torok M, Kusters E, Drewe J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol 2001;132(6): 1183-1192.
    15. Li Y, Yuan H, Yang K, Xu W, Tang W, Li X. The structure and functions of P-glycoprotein. Curr Med Chem 2010;17(8):786-800.
    16. Lukyanova NY. Characteristics of homocysteine-induced multidrug resistance of human MCF-7 breast cancer cells and human A2780 ovarian cancer cells. Exp Oncol 2010;32(1):10-14.
    17. Xu HW, Xu L, Hao JH, Qin CY, Liu H. Expression of P-glycoprotein and multidrug resistance-associated protein is associated with multidrug resis-tance in gastric cancer. J Int Med Res 2010;38(1):34-42.
    18. Kang MR, Lee K, Kang JS, Lee CW, Lee KH, Kim JH, Yang JW, Kim BG, Han G, Kang JS, Park SK, Kim HM. KBH-A42, a histone deacetylase inhibitor, inhibits the growth of doxorubicin-resistant leukemia cells expressing P-glycoprotein. Oncol Rep 2010;23(3):801-809.
    19. Liu R, Zhang Y, Chen Y, Qi J, Ren S, Xushi MY, Yang C, Zhu H, Xiong D. A novel calmodulin antagonist O-(4-ethoxyl-butyl)-berbamine overcomes multidrug resistance in drug-resistant MCF-7/ADR breast carcinoma cells. J Pharm Sci 2010;99(7):3266-3275.
    20. Zhao L, Wang Z, Fan S, Meng Q, Li B, Shao S, Wang Q. Chemotherapy resistance research of lung cancer based on micro-fluidic chip system with flow medium. Biomed Microdevices 2010; 12(2):325-332.
    21. Murphy L, Henry M, Meleady P, Clynes M, Keenan J. Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim Biophys Acta 2008;1784(9):1184-1191.
    22. Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan PW, Fang B, Zhang B, Yan B. Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem 2008;51(5): 1242-1251.
    23. Ushijima R, Takayama K, Izumi M, Harada T, Horiuchi Y, Uchino J, Hara N, Nakanishi Y. Immunohistochemical expression of MRP2 and clinical resis-tance to platinum-based chemotherapy in small cell lung cancer. Anticancer Res 2007;27(6C):4351-4358.
    24. Thomas H, Coley HM. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003; 10(2):159-165.
    25. McGrath T, Center MS. Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem Biophys Res Commun 1987; 145(3): 1171-1176.
    26. McGrath T, Latoud C, Arnold ST, Safa AR, Felsted RL, Center MS. Mechan-isms of multidrug resistance in HL60 cells. Analysis of resistance associated membrane proteins and levels of mdr gene expression. Biochem Pharmacol 1989;38(20):3611-3619.
    27. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG. Overexpression of a tran-sporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258(5088):1650-1654.
    28. Benyahia B, Huguet S, Decleves X, Mokhtari K, Criniere E, Bernaudin JF, Scherrmann JM, Delattre JY. Multidrug resistance-associated protein MRP1 expression in human gliomas:chemosensitization to vincristine and etoposide by indomethacin in human glioma cell lines overexpressing MRP1. J Neuroo-ncol 2004;66(1-2):65-70.
    29. Kalamaras A, Kalamaras E, Serulovski V. [Cytological diagnosis of membrane rupture using nile-blue chloride]. God Zb Med Fak Skopje 1977;23:349-353.
    30. Flens MJ, Scheffer GL, van der Valk P, Broxterman HJ, Eijdems EW, Huys-mans AC, Izquierdo MA, Scheper RJ. Identification of novel drug resistance-associated proteins by a panel of rat monoclonal antibodies. Int J Cancer 1997;73(2):249-257.
    31. Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer:correlation with chemothe-rapeutic response. Clin Cancer Res 2003;9(2):827-836.
    32. Hinoshita E, Uchiumi T, Taguchi K, Kinukawa N, Tsuneyoshi M, Maehara Y, Sugimachi K, Kuwano M. Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res 2000;6(6):2401-2407.
    33. Nies AT, Konig J, Pfannschmidt M, Klar E, Hofmann WJ, Keppler D. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int J Cancer 2001;94(4):492-499.
    34. Steinbach D, Wittig S, Cario G, Viehmann S, Mueller A, Gruhn B, Haefer R, Zintl F, Sauerbrey A. The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood 2003;102(13):4493-4498.
    35. Chen ZS, Furukawa T, Sumizawa T, Ono K, Ueda K, Seto K, Akiyama SI. ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol Pharmacol 1999;55(5): 921-928.
    36. Ishikawa Y, Nagai J, Okada Y, Sato K, Yumoto R, Takano M. Function and expression of ATP-binding cassette transporters in cultured human Y79 retinoblastoma cells. Biol Pharm Bull 2010;33(3):504-511.
    37. Gruber BM, Bubko I, Krzyszton-Russjan J, Anuszewska EL. Synergistic action of doxorubicin and sulindac in human cervix carcinoma cells-studies on possible mechanisms. Med Sci Monit 2010;16(1):BR45-51.
    38. Xu M, Sheng LH, Zhu XH, Zeng SB, Zhang GJ. Reversal effect of stephania tetrandra-containing Chinese herb formula SENL on multidrug resistance in lung cancer cell line SW1573/2R120. Am J Chin Med 2010;38(2):401-413.
    39. Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol 2010.
    40. Khodadadian M, Leroux ME, Auzenne E, Ghosh SC, Farquhar D, Evans R, Spohn W, Zou Y, Klostergaard J. MRP-and BCL-2-mediated drug resistance in human SCLC:effects of apoptotic sphingolipids in vitro. Lung Cancer 2009;66(1):48-57.
    41. Xu M, Zhu XH, Sheng LH. [Effect of supplement energy and nourish lung herbs on drug-resistance lung cancer with mechanisms of mitochondrial and caspase signal]. Zhong Yao Cai 2008;31 (9):1396-1399.
    42. Ikuta K, Takemura K, Sasaki K, Kihara M, Nishimura M, Ueda N, Naito S, Lee E, Shimizu E, Yamauchi A. Expression of multidrug resistance proteins and accumulation of cisplatin in human non-small cell lung cancer cells. Biol Pharm Bull 2005;28(4):707-712.
    43. Breen L, Murphy L, Keenan J, Clynes M. Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In Vitro 2008;22(5): 1234-1241.
    44. Narasaki F, Oka M, Fukuda M, Nakano R, Ikeda K, Takatani H, Terashi K, Soda H, Yano O, Nakamura T, Doyle LA, Tsuruo T, Kohno S. A novel quinoline derivative, MS-209, overcomes drug resistance of human lung cancer cells expressing the multidrug resistance-associated protein (MRP) gene. Cancer Chemother Pharmacol 1997;40(5):425-432.
    45. Roe M, Folkes A, Ashworth P, Brumwell J, Chima L, Hunjan S, Pretswell I, Dangerfield W, Ryder H, Charlton P. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 1999;9(4):595-600.
    46. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA, Anastasi J, Powell BL, Kolitz JE, Schiffer CA, Bloomfield CD, Larson RA. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia:Cancer and Leukemia Group B Study 9720. Blood 2002;100(4): 1224-1232.
    47. Starling JJ, Shepard RL, Cao J, Law KL, Norman BH, Kroin JS, Ehlhardt WJ, Baughman TM, Winter MA, Bell MG, Shih C, Gruber J, Elmquist WF, Dantzig AH. Pharmacological characterization of LY335979:a potent cyclopro-pyldibenzosuberane modulator of P-glycoprotein. Adv Enzyme Regul 1997;37: 335-347.
    48. Norman BH, Gruber JM, Hollinshead SP, Wilson JW, Starling JJ, Law KL, Self TD, Tabas LB, Williams DC, Paul DC, Wagner MM, Dantzig AH. Tricyclic isoxazoles are novel inhibitors of the multidrug resistance protein (MRP1). Bioorg Med Chem Lett 2002;12(6):883-886.
    49. Norman BH, Dantzig AH, Kroin JS, Law KL, Tabas LB, Shepard RL, Palkowitz AD, Hauser KL, Winter MA, Sluka JP, Starling JJ. Reversal of resistance in multidrug resistance protein (MRP1)-overexpressing cells by LY329146. Bioorg Med Chem Lett 1999;9(23):3381-3386.
    50. Scheper RJ, Broxterman HJ, Scheffer GL, Kaaijk P, Dalton WS, van Heijningen TH, van Kalken CK, Slovak ML, de Vries EG, van der Valk P, et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 1993;53(7):1475-1479.
    51. Kedersha NL, Miquel MC, Bittner D, Rome LH. Vaults. Ⅱ. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol 1990;110(4):895-901.
    52. Kedersha NL, Rome LH. Isolation and characterization of a novel ribonucleoprotein particle:large structures contain a single species of small RNA. J Cell Biol 1986;103(3):699-709.
    53. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clevers HC, Scheper RJ. The drug resistance-related protein LRP is the human major vault protein. Nat Med 1995;1(6):578-582.
    54. Slovak ML, Ho JP, Cole SP, Deeley RG, Greenberger L, de Vries EG, Broxterman HJ, Scheffer GL, Scheper RJ. The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16:evidence that chromosome breakage plays a key role in MRP or LRP gene amplification. Cancer Res 1995;55(19):4214-4219.
    55. Lange C, Walther W, Schwabe H, Stein U. Cloning and initial analysis of the human multidrug resistance-related MVP/LRP gene promoter. Biochem Biophys Res Commun 2000;278(1):125-133.
    56. Holzmann K, Ambrosch I, Elbling L, Micksche M, Berger W. A small upstream open reading frame causes inhibition of human major vault protein expression from a ubiquitous mRNA splice variant. FEBS Lett 2001;494(1-2): 99-104.
    57. Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EA, Scheper RJ. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol 2000;12(6):550-556.
    58. Izquierdo MA, Scheffer GL, Flens MJ, Schroeijers AB, van der Valk P, Scheper RJ. Major vault protein LRP-related multidrug resistance. Eur J Cancer 1996;32A(6):979-984.
    59. Schroeijers AB, Siva AC, Scheffer GL, de Jong MC, Bolick SC, Dukers DF, Slootstra JW, Meloen RH, Wiemer E, Kickhoefer VA, Rome LH, Scheper RJ. The Mr 193,000 vault protein is up-regulated in multidrug-resistant cancer cell lines. Cancer Res 2000;60(4):1104-1110.
    60. Dingemans AM, van Ark-Otte J, van der Valk P, Apolinario RM, Scheper RJ, Postmus PE, Giaccone G. Expression of the human major vault protein LRP in human lung cancer samples and normal lung tissues. Ann Oncol 1996;7(6): 625-630.
    61. Uozaki H, Horiuchi H, Ishida T, Iijima T, Imamura T, Machinami R. Over-expression of resistance-related proteins (metallothioneins, glutathione-S-transferase pi, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Relationship with poor prognosis. Cancer 1997;79(12):2336-2344.
    62. Schadendorf D, Makki A, Stahr C, van Dyck A, Wanner R, Scheffer GL, Flens MJ, Scheper R, Henz BM. Membrane transport proteins associated with drug resistance expressed in human melanoma. Am J Pathol 1995;147(6):1545-1552.
    63. Suprenant KA. Vault ribonucleoprotein particles:sarcophagi, gondolas, or safety deposit boxes? Biochemistry 2002;41(49):14447-14454.
    64. Kitazono M, Okumura H, Ikeda R, Sumizawa T, Furukawa T, Nagayama S, Seto K, Aikou T, Akiyama S. Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer 2001;91(1):126-131.
    65. Mossink MH, van Zon A, Franzel-Luiten E, Schoester M, Kickhoefer VA, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EA. Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics. Cancer Res 2002;62(24):7298-7304.
    66. van Zon A, Mossink MH, Schoester M, Scheper RJ, Sonneveld P, Wiemer EA. Efflux kinetics and intracellular distribution of daunorubicin are not affected by major vault protein/lung resistance-related protein (vault) expression. Cancer Res 2004;64(14):4887-4892.
    67. Berger W, Elbling L, Micksche M. Expression of the major vault protein LRP in human non-small-cell lung cancer cells:activation by short-term exposure to antineoplastic drugs. Int J Cancer 2000;88(2):293-300.
    68. Lee E, Lim SJ. The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Arch Pharm Res 2006;29(11):1018-1023.
    69. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22(47):7369-7375.
    70. Howie AF, Douglas JG, Fergusson RJ, Beckett GJ. Measurement of glutathione S-transferase pi isoenzyme in plasma, a possible marker for adenocarcinoma of the lung. Clin Chem 1990;36(3):453-456.
    71. Hao XY, Castro VM, Bergh J, Sundstrom B, Mannervik B. Isoenzyme-specific quantitative immunoassays for cytosolic glutathione transferases and measurement of the enzymes in blood plasma from cancer patients and in tumor cell lines. Biochim Biophys Acta 1994; 1225(2):223-230.
    72. Shiratori Y, Soma Y, Maruyama H, Sato S, Takano A, Sato K. Immuno-histochemical detection of the placental form of glutathione S-transferase in dysplastic and neoplastic human uterine cervix lesions. Cancer Res 1987;47 (24 Pt 1):6806-6809.
    73. Hirata S, Odajima T, Kohama G, Ishigaki S, Niitsu Y. Significance of gluta-thione S-transferase-pi as a tumor marker in patients with oral cancer. Cancer 1992;70(10):2381-2387.
    74. Cowan KH, Batist G, Tulpule A, Sinha BK, Myers CE. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc Natl Acad Sci U S A 1986;83(24):9328-9332.
    75. Gao GL, Wan HY, Zou XS, Chen WX, Chen YQ, Huang XZ. [Relationship between the expression of P-glycoprotein, glutathione S-transferase-pi and thymidylate synthase proteins and adenosine triphosphate tumor chemo-sensitivity assay in cervical cancer]. Zhonghua Fu Chan Ke Za Zhi 2007;42(3): 201-205.
    76. Volm M, Koomagi R, Mattern J, Efferth T. Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br J Cancer 2002;87(3):251-257.
    77. Goto S, Kamada K, Soh Y, Ihara Y, Kondo T. Significance of nuclear glutathione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 2002;93(9):1047-1056.
    78. Huang G, Mills L, Worth LL. Expression of human glutathione S-transferase PI mediates the chemosensitivity of osteosarcoma cells. Mol Cancer Ther 2007;6(5):1610-1619.
    79. Wang W, Liu G, Zheng J. Human renal UOK130 tumor cells:a drug resistant cell line with highly selective over-expression of glutathione S-transferase-pi isozyme. Eur J Pharmacol 2007;568(1-3):61-67.
    80. Yan XD, Li M, Yuan Y, Mao N, Pan LY. Biological comparison of ovarian cancer resistant cell lines to cisplatin and Taxol by two different administrations. Oncol Rep 2007;17(5):1163-1169.
    81. Leng WD, Wang DZ, Feng G, He J. Effect of hyperthermia on multidrug resistance of tongue squamous cell carcinoma cell line (Tca8113) and its multidrug resistance cell line Tca8113/CBDEA. Hua Xi Kou Qiang Yi Xue Za Zhi 2006;24(5):447-450.
    82. Wei L, Song XR, Wang XW, Li M, WS Zu. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi 2006;28(6):445-448.
    83. Kalinina EV, Chernov NN, Saprin AN, Kotova YN, Remizov Ⅵ, Shcherbak NP. Expression of genes for redox-dependent glutathione S-transferase isoforms GSTP1-1 and GSTA4-4 in tumor cell during the development doxorubicin resistance. Bull Exp Biol Med 2007;143(3):328-330.
    84. Mattern J, Koomagi R, Volm M. Expression of drug resistance gene products during progression of lung carcinomas. Oncol Rep 2002;9(6):1181-1184.
    85. Nakagawa K, Yokota J, Wada M, Sasaki Y, Fujiwara Y, Sakai M, Muramatsu M, Terasaki T, Tsunokawa Y, Terada M, et al. Levels of glutathione S transferase pi mRNA in human lung cancer cell lines correlate with the resistance to cisplatin and carboplatin. Jpn J Cancer Res 1988;79(3):301-304.
    86. Hirano T, Kato H, Maeda M, Gong Y, Shou Y, Nakamura M, Maeda J, Yashima K, Kato Y, Akimoto S, Ohira T, Tsuboi M, Ikeda N. Identification of postoperative adjuvant chemotherapy responders in non-small cell lung cancer by novel biomarker. Int J Cancer 2005; 117(3):460-468.
    87. Tew KD, Bomber AM, Hoffman SJ. Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res 1988;48(13):3622-3625.
    88. Clapper ML, Hoffman SJ, Tew KD. Glutathione S-transferases in normal and malignant human colon tissue. Biochim Biophys Acta 1991;1096(3):209-216.
    89. Lyttle MH, Satyam A, Hocker MD, Bauer KE, Caldwell CG, Hui HC, Morgan AS, Mergia A, Kauvar LM. Glutathione-S-transferase activates novel alky-lating agents. J Med Chem 1994;37(10):1501-1507.
    90. Lyttle MH, Hocker MD, Hui HC, Caldwell CG, Aaron DT, Engqvist-Goldstein A, Flatgaard JE, Bauer KE. Isozyme-specific glutathione-S-transferase inhibitors:design and synthesis. J Med Chem 1994;37(1):189-194.
    91. Morgan AS, Ciaccio PJ, Tew KD, Kauvar LM. Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines. Cancer Chemother Pharmacol 1996;37(4):363-370.
    92. Wyckoff E, Natalie D, Nolan JM, Lee M, Hsieh T. Structure of the Drosophila DNA topoisomerase Ⅱ gene. Nucleotide sequence and homology among topoisomerases Ⅱ. J Mol Biol 1989;205(1):1-13.
    93. Beck WT, Morgan SE, Mo YY, Bhat UG. Tumor cell resistance to DNA topoisomerase Ⅱ inhibitors:new developments. Drug Resist Updat 1999;2 (6):382-389.
    94. Matsumoto Y, Takano H, Nagao S, Fojo T. Altered topoisomerase IIalpha and multidrug resistance-associated protein levels during drug selection:adapta-tions to increasing drug pressure. Jpn J Cancer Res 2001;92(9):968-974.
    95. Koshiyama M, Fujii H, Kinezaki M, Morita Y, Nanno H, Yoshida M. Immunohistochemical expression of topoisomerase IIalpha (Topo IIalpha) and multidrug resistance-associated protein (MRP), plus chemosensitivity testing, as chemotherapeutic indices of ovarian and endometrial carcinomas. Anticancer Res 2001;21(4B):2925-2932.
    96. Ganapathi R, Constantinou A, Kamath N, Dubyak G, Grabowski D, Krivacic K. Resistance to etoposide in human leukemia HL-60 cells:reduction in drug-induced DNA cleavage associated with hypophosphorylation of topoisomerase Ⅱ phosphopeptides. Mol Pharmacol 1996;50(2):243-248.
    97. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs:a cautionary note. Cancer Res 1989;49(21):5870-5878.
    98. Kaufmann SH. Cell death induced by topoisomerase-targeted drugs:more questions than answers. Biochim Biophys Acta 1998; 1400(1-3):195-211.
    99. Nielsen D, Maare C, Eriksen J, Litman T, Friche E, Skovsgaard T. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide. Biochem Pharmacol 2000;60(3):353-361.
    100. Lage H, Helmbach H, Dietel M, Schadendorf D. Modulation of DNA topoisomerase Ⅱ activity and expression in melanoma cells with acquired drug resistance. Br J Cancer 2000;82(2):488-491.
    101. Kobayashi M, Adachi N, Aratani Y, Kikuchi A, Koyama H. Decreased topoisomerase Ilalpha expression confers increased resistance to ICRF-193 as well as VP-16 in mouse embryonic stem cells. Cancer Lett 2001;166(1):71-77.
    102. Schneider E, Horton JK, Yang CH, Nakagawa M, Cowan KH. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase Ⅱ in a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res 1994;54(1):152-158.
    103. Pesic M, Andjelkovic T, Bankovic J, Markovic ID, Rakic L, Ruzdijic S. Sulfinosine enhances doxorubicin efficacy through synergism and by reversing multidrug resistance in the human non-small cell lung carcinoma cell line (NCI-H460/R). Invest New Drugs 2009;27(2):99-110.
    104. Liang CH, Shiu LY, Chang LC, Sheu HM, Tsai EM, Kuo KW. Solamargine enhances HER2 expression and increases the susceptibility of human lung cancer H661 and H69 cells to trastuzumab and epirubicin. Chem Res Toxicol 2008;21(2):393-399.
    105. Cole SP, Chanda ER, Dicke FP, Gerlach JH, Mirski SE. Non-P-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line:evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase Ⅱ. Cancer Res 1991;51(13):3345-3352.
    106. de Jong S, Zijlstra JG, de Vries EG, Mulder NH. Reduced DNA topoisomerase Ⅱ activity and drug-induced DNA cleavage activity in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res 1990;50(2):304-309.
    107. Dingemans AC, van Ark-Otte J, Span S, Scagliotti GV, van der Valk P, Postmus PE, Giaccone G. Topoisomerase Ⅱalpha and other drug resistance markers in advanced non-small cell lung cancer. Lung Cancer 2001;32(2): 117-128.
    108. Turner JG, Marchion DC, Dawson JL, Emmons MF, Hazlehurst LA, Washausen P, Sullivan DM. Human multiple myeloma cells are sensitized to topoisomerase Ⅱ inhibitors by CRM1 inhibition. Cancer Res 2009;69(17): 6899-6905.
    109. Orta ML, Mateos S, Cortes F. DNA demethylation protects from cleavable complex stabilization and DNA strand breakage induced by the topoisomerase type Ⅰ inhibitor camptothecin. Mutagenesis 2009;24(3):237-244.
    1. Stinchcombe TE, Lee CB, Socinski MA. Current approaches to advanced-stage non-small-cell lung cancer:first-line therapy in patients with a good functional status. Clin Lung Cancer 2006;7 Suppl 4:S111-117.
    2. Ihde DC, Minna JD. Non-small cell lung cancer. Part Ⅱ:Treatment. Curr Probl Cancer 1991; 15(3):105-154.
    3. Nishio K, Nakamura T, Koh Y, Suzuki T, Fukumoto H, Saijo N. Drug resistance in lung cancer. Curr Opin Oncol 1999;11(2):109-115.
    4. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol 2005;205(2):275-292.
    5. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters:the multidrug resistance-associated proteins. J Natl Cancer Inst 2000;92(16): 1295-1302.
    6. Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EA, Scheper RJ. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr Opin Oncol 2000;12(6):550-556.
    7. Meijer C, Mulder NH, Timmer-Bosscha H, Sluiter WJ, Meersma GJ, de Vries EG. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res 1992;52(24):6885-6889.
    8. Sakamoto M, Kondo A, Kawasaki K, Goto T, Sakamoto H, Miyake K, Koyamatsu Y, Akiya T, Iwabuchi H, Muroya T, Ochiai K, Tanaka T, Kikuchi Y, Tenjin Y. Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell 2001; 14(4):305-315.
    9. Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR. Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 2003;63(23):8097-8102.
    10. Liu LF. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 1989;58:351-375.
    11. Friche E, Danks MK, Schmidt CA, Beck WT. Decreased DNA topoisomerase Ⅱ in daunorubicin-resistant Ehrlich ascites tumor cells. Cancer Res 1991;51(16):4213-4218.
    12. Uggla B, Tina E, Nahi H, Paul C, Hoglund M, Sirsjo A, Tidefelt U. Topoi-somerase IIalpha mRNA and protein expression vs. in vitro drug resistance and clinical outcome in acute leukaemia. Int J Oncol 2007;31(1):153-160.
    13. Guinee DG, Jr., Holden JA, Benfield JR, Woodward ML, Przygodzki RM, Fishback NF, Koss MN, Travis WD. Comparison of DNA topoisomerase Ⅱ alpha expression in small cell and nonsmall cell carcinoma of the lung. In search of a mechanism of chemotherapeutic response. Cancer 1996;78(4): 729-735.
    14. Arai T, Yasuda Y, Takaya T, Hayakawa K, Toshima S, Shibuya C, Kashiki Y, Yoshimi N, Shibayama M. Immunohistochemical expression of glutathione transferase-pi in untreated primary non-small-cell lung cancer. Cancer Detect Prev 2000;24(3):252-257.
    15. Lee E, Lim SJ. The association of increased lung resistance protein expression with acquired etoposide resistance in human H460 lung cancer cell lines. Arch Pharm Res 2006,29(11):1018-1023.
    16. Xiao H, Wu Z, Shen H, Luo AL, Yang YF, Li XB, Zhu DY. In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic Clin Pharmacol Toxicol 2008;103(4):342-348.
    17. Valera ET, Scrideli CA, Queiroz RG, Mori BM, Tone LG. Multiple drug resistance protein (MDR-1), muitidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lympho-blastic leukemia. Sao Paulo Med J 2004;122(4):166-171.
    18. Bethel CR, Chaudhary J, Anway MD, Brown TR. Gene expression changes are age-dependent and lobe-specific in the brown Norway rat model of prostatic hyperplasia. Prostate 2009;69(8):838-850.
    19. Washiro M, Ohtsuka M, Kimura F, Shimizu H, Yoshidome H, Sugimoto T, Seki N, Miyazaki M. Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma:a potential chemotherapeutic target. J Cancer Res Clin Oncol 2008;134(7):793-801.
    20. Wang Q, Wang T, Wang Y, Wang W, Wang Y, Hu X, Shao S, Zhang J, Suo Z. VP-16 resistance in the NCI-H460 human lung cancer cell line is significantly associated with glucose-regulated protein78 (GRP78) induction. Anticancer Res 2007;27(4B):2359-2364.
    21. Ikuta K, Takemura K, Sasaki K, Kihara M, Nishimura M, Ueda N, Naito S, Lee E, Shimizu E, Yamauchi A. Expression of multidrug resistance proteins and accumulation of cisplatin in human non-small cell lung cancer cells. Biol Pharm Bull 2005;28(4):707-712.
    22. Berger W, Elbling L, Hauptmann E, Micksche M. Expression of the multidrug resistance-associated protein (MRP) and chemoresistance of human non-small-cell lung cancer cells. Int J Cancer 1997;73(1):84-93.
    23. den Boer ML, Pieters R, Kazemier KM, Rottier MM, Zwaan CM, Kaspers GJ, Janka-Schaub G, Henze G, Creutzig U, Scheper RJ, Veerman AJ. Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in child-hood leukemia. Blood 1998;91(6):2092-2098.
    24. Siddik ZH. Cisplatin:mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22(47):7265-7279.
    25. Kasahara K, Fujiwara Y, Sugimoto Y, Nishio K, Tamura T, Matsuda T, Saijo N. Determinants of response to the DNA topoisomerase Ⅱ inhibitors doxorubicin and etoposide in human lung cancer cell lines. J Natl Cancer Inst 1992;84(2): 113-118.
    26. Coss A, Tosetto M, Fox EJ, Sapetto-Rebow B, Gorman S, Kennedy BN, Lloyd AT, Hyland JM, O'Donoghue DP, Sheahan K, Leahy DT, Mulcahy HE, O'Sullivan JN. Increased topoisomerase Ilalpha expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis. Cancer Lett 2009;276(2):228-238.
    27. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995;30(6): 445-600.
    28. Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T, Kondo T. Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transfe-rase pi. Faseb J 2001; 15(14):2702-2714.
    29. Kellner U, Sehested M, Jensen PB, Gieseler F, Rudolph P. Culprit and victim DNA topoisomerase Ⅱ. Lancet Oncol 2002;3(4):235-243.
    1. Hansen HH. Management of small-cell cancer of the lung. Lancet 1992;339(8797):846-849.
    2. Abe Y, Ohnishi Y, Yoshimura M, Ota E, Ozeki Y, Oshika Y, Tokunaga T, Yamazaki H, Ueyema Y, Ogata T, Tamaoki N, Nakamura M. P-glycoprotein-mediated acquired multidrug resistance of human lung cancer cells in vivo. Br J Cancer 1996;74(12):1929-1934.
    3. Piulats JM, Jimenez L, Garcia del Muro X, Villanueva A, Vinals F, Germa-Lluch JR. Molecular mechanisms behind the resistance of cisplatin in germ cell tumours. Clin Transl Oncol 2009;11(12):780-786.
    4. Iwata M, McGinity JW. Preparation of multi-phase microspheres of poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) containing a W/O emulsion by a multiple emulsion solvent evaporation technique. J Microen-capsul 1992;9(2):201-214.
    5. Fuertes MA, Alonso C, Perez JM. Biochemical modulation of Cisplatin mechanisms of action:enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003;103(3):645-662.
    6. Snow K, Judd W. Characterisation of adriamycin-and amsacrine-resistant human leukaemic T cell lines. Br J Cancer 1991;63(1):17-28.
    7. Nakatani K, Nakamura M, Uzawa K, Wada T, Seki N, Tanzawa H, Fujita S. Establishment and gene analysis of a cisplatin-resistant cell line, Sa-3R, derived from oral squamous cell carcinoma. Oncol Rep 2005;13(4):709-714.
    8. Horowitz NS, Hua J, Gibb RK, Mutch DG, Herzog TJ. The role of topotecan for extending the platinum-free interval in recurrent ovarian cancer:an in vitro model. Gynecol Oncol 2004;94(1):67-73.
    9. Yang H, Zou W, Li Y, Chen B, Xin X. Bridge linkage role played by CD98hc of anti-tumor drug resistance and cancer metastasis on cisplatin-resistant ovarian cancer cells. Cancer Biol Ther 2007;6(6):942-947.
    10. Tohda H, Takao M, Kikuchi A, Yasumoto T, Yasui A. Unstable expression of the multi-drug-resistant phenotype in Chinese hamster ovary cells resistant to okadaic acid. Biochem Biophys Res Commun 1997;232(2):398-402.
    11. Koshiyama M, Fujii H, Kinezaki M, Morita Y, Nanno H, Yoshida M. Immunohistochemical expression of topoisomerase IIalpha (Topo IIalpha) and multidrug resistance-associated protein (MRP), plus chemosensitivity testing, as chemotherapeutic indices of ovarian and endometrial carcinomas. Anticancer Res 2001;21(4B):2925-2932.
    12. Tomida A, Tsuruo T. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anticancer Drug Des 1999; 14(2): 169-177.
    13. Son YS, Suh JM, Ahn SH, Kim JC, Yi JY, Hur KC, Hong WS, Muller MT, Chung IK. Reduced activity of topoisomerase Ⅱ in an Adriamycin-resistant human stomach-adenocarcinoma cell line. Cancer Chemother Pharmacol 1998; 41(5):353-360.
    14. Shafee N, Smith CR, Wei S, Kim Y, Mills GB, Hortobagyi GN, Stanbridge EJ, Lee EY. Cancer stem cells contribute to cisplatin resistance in Brcal/p53-mediated mouse mammary tumors. Cancer Res 2008;68(9):3243-3250.
    15. Cheng G, Li Y, Tian F. [Comparison of stepwise and pulse induced cisplatin-resistant ovarian cancer cell sublines]. Zhonghua Zhong Liu Za Zhi 2001;23 (4):305-308.
    16. Hasinoff BB, Wu X, Krokhin OV, Ens W, Standing KG, Nitiss JL, Sivaram T, Giorgianni A, Yang S, Jiang Y, Yalowich JC. Biochemical and proteomics approaches to characterize topoisomerase IIalpha cysteines and DNA as targets responsible for cisplatin-induced inhibition of topoisomerase IIalpha. Mol Pharmacol 2005;67(3):937-947.
    1. Ihde DC, Minna JD. Non-small cell lung cancer. Part II:Treatment. Curr Probl Cancer 1991; 15(3):105-154.
    2. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615-627.
    3. Wang Q, Wang T, Wang Y, Wang W, Wang Y, Hu X, Shao S, Zhang J, Suo Z. VP-16 resistance in the NCI-H460 human lung cancer cell line is significantly associated with glucose-regulated protein78 (GRP78) induction. Anticancer Res 2007;27(4B):2359-2364.
    4. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003;22(47):7468-7485.
    5. Fuqua SA, Moretti-Rojas IM, Schneider SL, McGuire WL. P-glycoprotein expression in human breast cancer cells. Cancer Res 1987;47(8):2103-2106.
    6. Hamada H, Tsuruo T. Functional role for the 170-to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci U S A 1986;83(20):7785-7789.
    7. Tsuruo T. Molecular cancer therapeutics:recent progress and targets in drug resistance. Intern Med 2003;42(3):237-243.
    8. Muller C, Goubin F, Ferrandis E, Cornil-Scharwtz I, Bailly JD, Bordier C, Benard J, Sikic BI, Laurent G. Evidence for transcriptional control of human mdrl gene expression by verapamil in multidrug-resistant leukemic cells. Mol Pharmacol 1995;47(1):51-56.
    9. Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, Komada F, Ohnishi N, Yokoyama T, Okumura K. Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci 2002; 16(3):159-165.
    10. Sulova Z, Macejova D, Seres M, Sedlak J, Brtko J, Breier A. Combined treatment of P-gp-positive L1210/VCR cells by verapamil and all-trans retinoic acid induces down-regulation of P-glycoprotein expression and transport activity. Toxicol In Vitro 2008;22(1):96-105.
    11. Chen LM, Liang YJ, Zhang X, Su XD, Dai CL, Wang FP, Yan YY, Tao LY, Fu LW. Reversal of P-gp-mediated multidrug resistance by Bromotetrandrine in vivo is associated with enhanced accumulation of chemotherapeutical drug in tumor tissue. Anticancer Res 2009;29(11):4597-4604.
    12. Pastan Ⅰ, Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med 1987;316(22):1388-1393.
    13. Hosey MM, Lazdunski M. Calcium channels:molecular pharmacology, structure and regulation. J Membr Biol 1988; 104(2):81-105.
    14. Lagas JS, Fan L, Wagenaar E, Vlaming ML, van Tellingen O, Beijnen JH, Schinkel AH. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin Cancer Res;16(1):130-140.
    15. Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 2004;3(5):633-639.
    16. Breier A, Barancik M, Sulova Z, Uhrik B. P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy. Curr Cancer Drug Targets 2005;5(6):457-468.
    17. Triller N, Korosec P, Kern I, Kosnik M, Debeljak A. Multidrug resistance in small cell lung cancer:expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease. Lung Cancer 2006;54(2):235-240.
    18. Murphy L, Henry M, Meleady P, Clynes M, Keenan J. Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim Biophys Acta 2008; 1784(9):1184-1191.
    19. Johnstone RW, Cretney E, Smyth MJ. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 1999;93(3):1075-1085.
    1. Tomida A, Tsuruo T. Drug resistance mediated by cellular stress response to the microenvironment of solid tumors. Anticancer Drug Des 1999;14(2): 169-177.
    2. Lee AS. The glucose-regulated proteins:stress induction and clinical applications. Trends Biochem Sci 2001;26(8):504-510.
    3. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005;35(4):373-381.
    4. Hendershot LM. The ER function BiP is a master regulator of ER function. Mt Sinai J Med 2004;71(5):289-297.
    5. Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells 2005;20(2):173-182.
    6. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94):functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 1994;4(1):1-18.
    7. Lee AS. Mammalian stress response:induction of the glucose-regulated protein family. Curr Opin Cell Biol 1992;4(2):267-273.
    8. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med 2006;6(1):45-54.
    9. Wang Q, He Z, Zhang J, Wang Y, Wang T, Tong S, Wang L, Wang S, Chen Y. Overexpression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev 2005;29(6):544-551.
    10. Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R. Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 2005;37(6):1254-1268.
    11. Mintz PJ, Kim J, Do KA, Wang X, Zinner RG, Cristofanilli M, Arap MA, Hong WK, Troncoso P, Logothetis CJ, Pasqualini R, Arap W. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat Biotechnol 2003;21(1):57-63.
    12. Fu Y, Lee AS. Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther 2006;5(7):741-744.
    13. Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L. Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer 2009; 101 (10):1692-1698.
    14. Hsu JL, Chiang PC, Guh JH. Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells:role of cell-cycle arrest and GRP78. Naunyn Schmiedebergs Arch Pharmacol 2009;380(5): 373-382.
    15. Tanimoto R, Sakaguchi M, Abarzua F, Kataoka K, Kurose K, Murata H, Nasu Y, Kumon H, Huh NH. Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3. Int J Cancer 2010:126(7):1562-1569.
    16. Mhaidat NM, Alali FQ, Matalqah SM, Matalka, Ⅱ, Jaradat SA, Al-Sawalha NA, Thorne RF. Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anticancer Drugs 2009;20(7):601-606.
    17. Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007;581(19):3641-3651.
    18. Reddy RK, Lu J, Lee AS. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J Biol Chem 1999;274(40):28476-28483.
    19. Kubota H, Suzuki T, Lu J, Takahashi S, Sugita K, Sekiya S, Suzuki N. Increased expression of GRP94 protein is associated with decreased sensitivity to X-rays in cervical cancer cell lines. Int J Radiat Biol 2005;81 (9):701-709.
    20. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Feakins R, Bustin SA, Dorudi S. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immuno-genicity. Mol Cancer 2004;3:21.
    21. Gazit G, Lu J, Lee AS. De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 1999;54(2):135-146.
    22. Li LJ, Li X, Ferrario A, Rucker N, Liu ES; Wong S, Gomer CJ, Lee AS. Establishment of a Chinese hamster ovary cell line that expresses grp78 antisense transcripts and suppresses A23187 induction of both GRP78 and GRP94. J Cell Physiol 1992; 153(3):575-582.
    23. Zhang LY, Zhang XC, Wang LD, Zhang ZF, Li PL. Increased expression of GRP94 protein is associated with decreased sensitivity to adriamycin in ovarian carcinoma cell lines. Clin Exp Obstet Gynecol 2008;35(4):257-263.
    24. Pan Z, Erkan M, Streit S, Friess H, Kleeff J. Silencing of GRP94 expression promotes apoptosis in pancreatic cancer cells. Int J Oncol 2009;35 (4): 823-828.
    25. Yun J, Tomida A, Nagata K, Tsuruo T. Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase Ⅱ. Oncol Res 1995;7(12):583-590.
    26. Zhang L, Wang S, Wangtao, Wang Y, Wang J, Jiang L, Li S, Hu X, Wang Q. Upregulation of GRP78 and GRP94 and its function in chemotherapy resistance to VP-16 in human lung cancer cell line SK-MES-1. Cancer Invest 2009;27(4):453-458.
    27. Siyan W, Feng Y, Lichuan Z, Jiarui W, Yingyan W, Li J, Bingcheng L, Qi W. Application of microfluidic gradient chip in the analysis of lung cancer chemotherapy resistance. J Pharm Biomed Anal 2009;49(3):806-810.
    28. Wang Y, Wang W, Wang S, Wang J, Shao S, Wang Q. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells. BMC Cancer 2008;8:372.
    29. Wang Q, Wang T, Wang Y, Wang W, Wang Y, Hu X, Shao S, Zhang J, Suo Z. VP-16 resistance in the NCI-H460 human lung cancer cell line is significantly associated with glucose-regulated protein78 (GRP78) induction. Anticancer Res 2007;27(4B):2359-2364.
    30. Natsume Y, Ito S, Satsu H, Shimizu M. Protective effect of quercetin on ER stress caused by calcium dynamics dysregulation in intestinal epithelial cells. Toxicology 2009;258(2-3):164-175.
    31. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res 2006;66(16):7849-7853.
    32. Pootrakul L, Datar RH, Shi SR, Cai J, Hawes D, Groshen SG, Lee AS, Cote RJ. Expression of stress response protein Grp78 is associated with the develop-pment of castration-resistant prostate cancer. Clin Cancer Res 2006;12(20 Pt 1):5987-5993.
    33. Lee HK, Xiang C, Cazacu S, Finniss S, Kazimirsky G, Lemke N, Lehman NL, Rempel SA, Mikkelsen T, Brodie C. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol 2008; 10(3): 236-243.
    34. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. Endo-plasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors:role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 2003;278(23):20915-20924.
    35. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78. FEBS Lett 2002;514(2-3):122-128.
    36. Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 2006;66(3):1702-1711.
    37. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, Tsuruo T, Shin-ya K. Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 2004;96(17):1300-1310.
    38. Virrey JJ, Dong D, Stiles C, Patterson JB, Pen L, Ni M, Schonthal AH, Chen TC, Hofman FM, Lee AS. Stress chaperone GRP78/BiP confers chemo-resistance to tumor-associated endothelial cells. Mol Cancer Res 2008;6(8): 1268-1275.
    1. Koomagi R, Mattern J, Volm M. Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res 1999;19 (5B):4333-4336.
    2. Molnar J, Kars MD, Gunduz U, Engi H, Schumacher U, Van Damme EJ, Peumans WJ, Makovitzky J, Gyemant N, Molnar P. Interaction of tomato lectin with ABC transporter in cancer cells:glycosylation confers functional conformation of P-gp. Acta Histochem 2009;111(4):329-333.
    3. Bogman K, Peyer AK, Torok M, Kusters E, Drewe J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol 2001;132 (6): 1183-1192.
    4. Chen ZS, Furukawa T, Sumizawa T, Ono K, Ueda K, Seto K, Akiyama SI. ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol Pharmacol 1999;55 (5): 921-928.
    5. Suprenant KA. Vault ribonucleoprotein particles:sarcophagi, gondolas, or safety deposit boxes? Biochemistry 2002;41(49):14447-14454.
    6. Cowan KH, Batist G, Tulpule A, Sinha BK, Myers CE. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc Natl Acad Sci U S A 1986;83(24):9328-9332.
    7. Gao GL, Wan HY, Zou XS, Chen WX, Chen YQ, Huang XZ. [Relationship between the expression of P-glycoprotein, glutathione S-transferase-pi and thymidylate synthase proteins and adenosine triphosphate tumor chemosen-sitivity assay in cervical cancer]. Zhonghua Fu Chan Ke Za Zhi 2007;42(3): 201-205.
    8. Volm M, Koomagi R, Mattern J, Efferth T. Protein expression profiles indicative for drug resistance of non-small cell lung cancer. Br J Cancer 2002; 87(3):251-257.
    9. Goto S, Kamada K, Soh Y, Ihara Y, Kondo T. Significance of nuclear gluta-thione S-transferase pi in resistance to anti-cancer drugs. Jpn J Cancer Res 2002;93(9):1047-1056.
    10. Beck WT, Morgan SE, Mo YY, Bhat UG. Tumor cell resistance to DNA topoisomerase Ⅱ inhibitors:new developments. Drug Resist Updat 1999;2 (6): 382-389.
    11. Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L. Activation and clinical significance of the unfolded protein response in breast cancer. Br J Cancer 2009;101(10):1692-1698.
    12. Hsu JL, Chiang PC, Guh JH. Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells:role of cell-cycle arrest and GRP78. Naunyn Schmiedebergs Arch Pharmacol 2009;380 (5): 373-382.
    13. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Feakins R, Bustin SA, Dorudi S. Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immuno-genicity. Mol Cancer 2004;3:21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700