城市生活垃圾破碎机的研制及粒径对垃圾热解气化特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高城市生活垃圾资源化处理的效率,需要对垃圾进行破碎预处理,我国对垃圾的破碎都主要是针对垃圾中的硬质和脆性物料,破碎设备以锤式破碎机和冲击式破碎机为主,但由于有机生活垃圾中高韧性、低硬度的固体废弃物如修剪下来的树枝、旧橡胶轮胎、塑料和纸等含量较大,而冲击破碎的方式对含水率要求高和对韧性物料破碎效果差的缺点远远满足不了对有机垃圾破碎的要求。
     本文针对有机城市生活垃圾密度小、间隙大、低硬度和韧性物质含量高的特点,提出了垃圾压缩剪切破碎的新方法并设计制造了一台实验型垃圾破碎机,通过破碎实验对这种破碎方法的可行性以及影响破碎机性能的因素进行了分析和探讨。并对破碎后粒径对城市生活垃圾热解和水蒸汽气化特性的影响进行了研究。
     (1)采用某一组分的城市生活垃圾(厨余57.6wt.%,纸板6.9wt.%,织物7.2wt.%,木竹19.7wt.%,塑料8.6wt.%)作为实验原料,在实验型破碎机上进行垃圾破碎实验,以破碎产品粒径分布和破碎单位功耗作为衡量指标,探讨破碎机工作参数如压缩室压力、转子转速、刀片间距、工作负荷和进料方式对破碎机性能的影响。结果表明:实验型破碎机能够有效地对有机生活垃圾进行破碎处理,在最佳工况下,破碎产品中粒径达到设计要求(粒径小于10mm)的颗粒重量百分含量为85.7%,破碎单位功耗为13.2J/g;垃圾在破碎前受到压力越大,破碎效果越好,单位能耗越低;增加转速虽然能降低破碎能耗,但是影响破碎产品质量;减小刀片间隙可以提高产品中小粒径颗粒的比重,但能耗较高,对于韧性高的物料如塑料的破碎,刀片间隙应相应地减小,使破碎空间等于或稍小于破碎要求粒;为了保证生产过程的稳定性和安全性,需严格控制垃圾破碎机工作负荷,在负荷允许的范围内进行生产操作;与单向进料的破碎方式相比,双向进料提高了破碎机的工作效率,降低了破碎单位能耗,对破碎产品的粒径分布影响不明显。
     (2)通过改变垃圾组分、含水率和原料尺寸,探讨原料自身特性对破碎机性能的影响。结果表明:新型破碎机能够用于不同类固体废弃物的破碎处理,但对于低硬度物料的破碎更有效;物料中含水率的增加不利于垃圾的破碎,且在低工作压力下,含水率对破碎产品质量和单位能耗的影响更显著;垃圾原料尺寸对破碎产品粒径分布的影响不明显,原料尺寸越小破碎能耗越低。
     (3)将破碎后的产品进行筛分,采用自行设计的管式炉热解反应器和上吸式固定床气化反应器作为小试平台,探讨粒径在不同的温度下对垃圾热解和水蒸气气化特性的影响。结果表明:增加反应温度可以降低焦油和焦炭产率,提高气体产量;粒径越小气体产量越高,焦油和焦炭量越低;粒径的影响随着温度的升高逐渐减小;热解和气化燃气中H2和CO的含量随着粒径的减小而增加,CO2降低;热解和气化温度越高,原料粒径越小,反应进行的越完全,残留的焦炭中C和H元素含量越低,灰分的含量相对增加。
     (4)以自行研制的垃圾压缩装置作为实验平台,探讨垃圾粒径和压力对垃圾体积压缩比的影响。在自制的连续性进料的固定床催化热解炉中进行了中试研究,探讨粒径和进料压力对垃圾催化热解产气特性的影响,得出了以下结论:减小原料粒径和增加进料压力能够增加垃圾体积压缩比,减小垃圾粒径都能够减低垃圾催化热解燃气中氧气和氮气的含量,提高燃气质量。
The breakage pretreatment of municipal solid waste (MSW) is necessary to increase the uniformity and ratio of surface area and of MSW to improve the efficiency of the subsequent processing step, while the breakage of MSW mainly concentrates on the hard and brittle materials of MSW in china. The ductile solid waste which makes the hammer crusher difficult to meet the requirements of the breakage of MSW, however, accounts for a large proportion of MSW. It is powerless for the hammer crusher to crush the moisture and ductile material.
     Based on the composition and volume-mass properties of MSW (i.e., unit weight, void ratio, and water content), a novel shear shredder for organic MSW was presented. The reliability of the shredder was investigated and the influencing factors were studied.
     (1) Some certain composition MSW (kitchen garbage 57.6 wt.%, paper 6.9 wt.%, textile 7.2 wt.%, wood 19.7 wt.%, plastic 8.6 wt.%.) was chosen as testing materials, and the product size distribution and specific energy were taken as measurement index. The breakage tests were carried out in the lab-scale shear shredder to evaluate the effects of working parameters:hydraulic pressure, rotor speed, distances between rotating blades, working load and feeding mode. The results show that the shredder is suitable for the pulverization of MSW with specific energy and fine particles proportion being 13.2 J/g and 85.7%, respectively, under optimal operating conductions. With increasing hydraulic pressure the specific energy is reduced, and size distribution of product is finer. When hydraulic pressure is constant, the specific energy decreases with increasing rotor velocity, while the products size distribution is coarser; the fines proportion (particles below 10mm) shows increasing trend with decreased distances between rotating blades, however, the specific shows opposite trend. For the breakage of plastic, the distance should be smaller than the desired particle size. The specific energy is the lowest when the shredder is operated at the designed working load. Compared with single-course shredder, the two-inlet operation mode improves shredding efficiency and reduces energy consumption to a great extent. With the double-inlet operation, about 73%as much energy is used per gram as with the single-course shredder;
     (2) The effects of raw materials characteristics such as feed composition, feed moisture and raw materials size are investigate in the paper. The shredder is much more effective for the pulverization of soft, ductile and fibrous materials (kitchen garbage and leaves in the test), but it is not good at the brittle material (branch). There is a tendency for the fine production in products to decrease with the increasing amounts of water content in the feed; with the increasing feed moisture, specific energy shows an increasing trend; under lower hydraulic pressure, the specific energy and product size distribution are more sensitive to the feed moisture than under higher hydraulic pressure. The effect of raw materials size on product size distribution is not evident, while smaller size would result in lower specific energy.
     (3) Pyrolysis and steam gasification of MSW were carried out in a small-scale fixed bed reactor in order to evaluate the effects of particle size at different bed temperatures on product yield and composition. Particle size and temperature had integrated effects on product yield and composition:higher temperature resulted in higher gas yield with less tar and char, and, at the same temperature, dry gas yield increased with a decrease in particle size, and char and tar yield decreased. The differences due to particle sizes in pyrolysis and gasification performance practically disappeared at the highest temperatures tested. Smaller particle sizes resulted in higher H2 and CO contents for both pyrolysis and gasification of MSW. Smaller particle size leaded to lower C and H contents, as well as higher ash content in the char.
     (4) The MSW compaction tests were carried out in the self-designed compaction facility in order to evaluate the effect of feeding pressure and material size on volume compression ratio. And MSW catalytic pyrolysis was conducted in the pilot-scale reactor to investigate the influences of particle size on fuel gas quality. The results show decreasing feed size and increasing feeding pressure could increase MSW volume compression ratio, resulting in the decreasing of O2 and N2 contents in the fuel gas. With the increase of feeding pressure, the effect of particle size becomes less pronounced.
引文
[1]吴文伟.城市生活垃圾资源化[M].北京:科学出版社,2003:66-73
    [2]中华人民共和国国家统计局.中国统计年鉴2004[M].北京:中国统计出版社,2005:438-439
    [3]段世江.我国城市生活垃圾问题及管理对策探析[J].河北大学学报(哲学社会科学版),2006,26:83-87
    [4]杜吴鹏,高庆先,张恩琛等.中国城市生活垃圾排放现状及成分分析.环境科学研究,2006,199(5):85-90
    [5]Jin Y Q, Yan J H, Chi Y. Combustion characteristics of municipal solid wastes in China[J], Chinese Journal of Environmental Science,2002,23(3):107-110
    [6]杨先海.城市生活垃圾压缩和分选技术及机械设备研究[D].西安:西安理工大学图书馆,2004
    [7]Cheng HF, Zhang YG, Meng AH. Municipal Solid Waste Fueled Power Generation in China:A Case Study of Waste-to-Energy in Changchun City [J]. Environ. Sci. Technol,2007,41:7509-7515
    [8]Daskalopoulos E, Badr O, Probert S D. Economic and Environmental Evaluations of Waste Treatment and Disposal Technologies for Municipal Solid Waste [J]. Applied Energy,1997,4:209-255
    [9]李国刚.我国城市生活垃圾处理处置的现状与问题[J].环境保护,2000,4:35-38
    [10]杨国清.固体废物处理工程[M].北京:科学出版社,2000:191-216
    [11]李晓东.中国部分城市生活垃圾热值的分析[J].中国环境科学,2001,21(2):156-159
    [12]唐伟,何平,张新学.城市生活垃圾焚烧处理技术的比选[J].应用能源技术,2009,8:8-10
    [13]Artenstein H H, Horvay M. Overview of Municipal Waste Incineration Industry in West Europe (based on the German experience) [J], Journal of Hazardous Materials,1996,42(2):15-18
    [14]Hunsicker M D, Crocket T R., Labode Bode M A. An Overview of the Municipal Waste Incineration Industry in Asia and the Former Soviet Union [J]. Journal of Hazardous Materials,1997,36(12):425-431
    [15]Daskaopoulos E.. Badr O, Probert S D. Economic and environment evaluations of waste treatment and disposal technologies for municipal solidwaste [J]. Applied Energy,1998,58(4):209-255
    [16]Gupta, A. K. Thermal destruction of solid waste [J]. Journal of Energy Resources Technology,1996,118:187-192
    [17]成西.城市垃圾处理方法论述[J].工业炉,1996(2):50-52
    [18]刘京媛.我国城市垃圾处理政策、趋向及市场化分析[J].中国环保产业,1999(12):14-15
    [19]爱军,田洪海.城市生活垃圾焚烧处理初探[J].环境科学研究,2000,13(3):27-39
    [20]Buah WK, Cunliffe A M, Williams PT. Characterization of production from the ptrolysis of municipal solid waste[J]. Process Safety and Environmental Protection, 2007,85:450-457
    [21]朱能武.固体废弃物处理与利用[M].北京:京大学出版社,2006:66-71
    [22]张瑞芹,张长森,尹辅印.流化床反应器中生物质空气气化试验研究[J].郑州大学学报,2006,38:76-80
    [23]赵先国,常杰,吕鹏梅等.生物质流化床富氧气化的实验研究[J].燃料化学学报,2005,33:199-203
    [24]戢绪国,步学朋,应幼菊等.地下气化煤种固定床空气和纯氧气化试验研究[J].煤气与热力,2003,23:67-69
    [25]闻望,魏敦松,庄永茂.城市垃圾气化制气的研究[J].煤气与热力,1992,12(4):4-10
    [26]王华,何方,马文会等.二恶英零排放化生活垃圾直接气化熔融焚烧技术[J].工业加热,2001(2):6-10
    [27]李美玉,李爱民,王志等.城市垃圾热解技术探讨[J].劳动安全与健康, 2001(3):33-36
    [28]易仁金.城市生活垃圾催化热解的实验研究[D].武汉:华中科技大学图书馆,2007
    [29]李新禹.城市固体垃圾热解设备与特性研究[D].天津:天津大学环境科学与工程学院,2006
    [30]Corella J, Radlein D, Piskorz J, Orio A, Aznar P. Biomass Gasfication with Air in Fluidized Bed:Reforniing of the Gas Composition with Commercial Steam Reforming Catalysts, Ind Eng Chem Res,1998,37:4617-4624
    [31]Mark D. Hunsicker, Timothy R. Crockett, Bode M. A. Labode. An overview of the municipal waste incineration industry in Asia and the former Soviet Union [J]. Journal of Hazardous Materials,1996,47:31-42
    [32]姜科文,谢建中,卿燕玲等.城市袋装生活垃圾破袋破碎分选设备的开发与研制[J].矿山机械,2004(1):14-16.
    [33]高忠爱.固体废物处理与处置[M].北京:高等教育出版社,1993:78-84
    [34]Yashima S, Kanda Y, Sane S. Relationship between particle Size and Fracture Energy or impact Velocity Required to Fracture as Estimated from Single Particle Crushing [J]. Power technology,1987(51):277-282
    [35]孙永宁,葛继,关航健.现代破碎理论与国内破碎设备的发展[J].江苏冶金,2007,35:5-8
    [36]孙成林.破碎机的最新发展[J].中国粉体技术,2000(2):32-39
    [37]黄东明.挤压类破碎机工作机理和工作性能优化研究[D].上海:上海交通大学图书馆,2006
    [38]黄金屏.CJ/T3051-95锤式垃圾破碎机[J].环境卫生工程,1996(2):33-35
    [39]康继尧.剪切式破碎机在生活垃圾预处理中的试验研究[J].2004,4:24-25
    [40]Austin L G A preliminary simulation model for fine grinding in high speed hammer mills [J]. Powder Technology,2004,143-144:240-252
    [41]Garrett C, Fitzgerald, Nickolas J, Themelis. Technical and economic impacts of pre-shredding the MSW feed to moving grate wet boilers [J]. Proceedings of the 17th Annual North American Waste-to-Energy Conference. Chantilly, Virginia, USA,2009
    [42]Nikolov S. Modelling and simulation of particle breakage in impact crushers [J]. International Journal of Mineral Processing.2004,74:219-225
    [43]丁昌安.辊式破碎机的结构特点及应用[J].砖瓦,2006(10):81-83
    [44]陈博,周三爱.辊式破碎机的选择与使用[J].砖瓦,2008(10):16-19
    [45]Luo SY, Xiao B, Hu Z Q, et al. An experimental study on a novel shredder for municipal solid waste (MSW) [J]. International Journal of Hydrogen Energy,2009, 34:1270-1274
    [46]Kirchner J, Timmel G, Schubert G. Comminution of metals in shredders with horizontally and vertically mounted rotors - microprocesses and parameters [J]. Powder Technology,1999,105:274-281
    [47]Woldt D, Schubert G, Jackel HG Size reduction by means of low-speed rotary shears [J]. International Journal of Mineral Processing,2004,74:405-415
    [48]Hason S, Patrick JW, Walker A. The effect of coal particle size on pyrolysis and gasification [J]. Fuel,2002(81):531-537
    [49]Kok MV, Ozbas E, Karacan O, et al. Effect of particle size on coal pyrolysis [J]. Journal of Analytical and Applied Pyrolysis,1998,45:103-110
    [50]Hwang I H, Yokonoa S, Matsuto T. Pretreatment of automobile shredder residue (ASR) for fuel utilization [J]. Chemosphere,2008,71:879-885
    [51]罗思义,肖波,郭献军.压缩式生活垃圾剪切破碎机设计[J].矿山机械,2008,36:86-89
    [52]唐敬麟.破碎与筛分机械设计选用手册[M].北京:化学工业出版社,2001:108-117
    [53]单辉祖.材料力学教程[M].北京:国防工业出版社,1997:77-84
    [54]Pelkey S, Valsangkar A., Landva A. Shear displacement dependent strength of municipal solid waste and its major constituent[J]. ASTM Geo-technical Testing, 2001,24(4):381-390
    [55]陈晓勇,沈玲珑.防止袋装生活垃圾破碎机缠绕的结构措施[J].矿山机械,2007,7:35-36
    [56]陈晓勇.城市袋装生活垃圾选择性破碎研究[J].机械传动,2006.1:67-68
    [57]邱惠清,陈春华,李本仁.简谐排列多齿剪切破碎机设计[J].矿山机械,2002,1:10-13
    [58]黎启柏.液压元件设计手册[M].北京:机械工业出版社,2000:78-86
    [59]成大先.机械设计手册第三版第3卷[M].北京:北京化学工业出版社,1994:122-130
    [60]杨家军,张卫国,杨开秀等,机械设计基础[M].武汉:华中科技大学出版社,2002:178-183
    [61]李祖裕,黄美发,黄江泰等.生活垃圾破碎刀具破损机理分析与安装结构改进[J].中国电子学会电子机械工程分会,年机械电子学学术会议论文集,2009:115-120
    [62]唐敬麟,破碎与筛分设计选用手册[M].北京:化学工业出版社,2001:213-220
    [63]张禄文.城市生活垃圾破碎和筛分设备工艺研究[D].昆明:昆明理工大学图书馆,2004
    [64]Nikolov S. Modeling and simulation of particle breakage in impact crushers [J]. International Journal of Mineral Processing,2004,74:219-225
    [65]Kirchner J, Timmel G, Schubert G. Comminution of metals in shredders with horizontally and vertically mounted rotors - micro processes and parameters [J]. Powder Technology,1999:274-281
    [66]Timmel G, Sander S, Schubert G. Comminution of scrap and metals in shredders with horizontally and vertically mounted rotor [J]. Developments in Mineral Processing,2000,13:C12a-1-C12a-8
    [67]Drobny NL, Hull HE, Testin RF. Recovery and utilization of MSW [M]. U. S. Public Health Service Publication,1971
    [68]孟海波.秸秆切割破碎与揉切机刀片耐用性试验研究[D].北京:中国农业大学图书馆,2005
    [69]Luo SY, Xiao B, Xiao L, et al. A novel shredder for MSW:influence of feed moisture [J]. Bioresource Technology. Available online,2010
    [70]Fuerstenau DW, Abouzeid A Z M. Role of feed moisture in high-pressure roll mill comminution [J]. International Journal of mineral processing.2007,82:203-210
    [71]Endoh H. Estimation of maximum crushing capacity of hammer mills [J]. Advanced Powder Technology,1992,3:235-245
    [72]Fuerstenau D W, Shukla A, Kapur PC. Energy consumption and product size distributions in choke-fed, high-compression roll mills [J]. International Journal of Mineral Processing,1991,32:59-79
    [73]S(?)rum L, Gr(?)nli M G, Hustad J E. Pyrolysis characteristics and kinetics of municipal solid wastes [J]. Fuel,2001,80:1217-1227
    [74]Wu C H, Chang C Y, Hor J, et al. On the thermal treatment of plastic mixtures of MSW:Pyrolysis kinetics [J]. Waste Management,1993,13:221-235
    [75]Malkow T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal [J]. Waste Management, 2004,24:53-79
    [76]He M Y, Xiao B, Liu S M, et al. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts [J]. Journal of Analytical and Applied Pyrolysis,2010,87:181-187
    [77]He M Y, Xiao B, Liu S M, et al. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW):Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition [J]. International Journal of Hydrogen Energy,2009,34:2174-2183
    [78]Wu C H, Chang C Y, Hor J, et al. Thermal treatment of coated printing and writing paper in MSW:pyrolysis kinetics[J]. Fuel,1997,76:1151-1157
    [79]Li J F, Xiao B, Yan R, et al. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification [J]. Bioresource Technology,2009,100:5295-5300
    [80]王艳.城市生活垃圾中低温热解特性研究[M].天津:天津大学图书馆,2005
    [81]He M Y, Xiao B, Liu S M, et al. Syngas production from catalytic gasification of waste polyethylene:Influence of temperature on gas yield and composition [J]. International Journal of Hydrogen Energy,2009,34:1342-1348
    [82]Lv PM, Chang J, Xiong Z H. MSW air-steam gasification in a fluidized bed to produce hydrogen-rich gas [J]. Energy & fuels,2003,17:677-682
    [83]Lv PM, Xiong ZH, Chang J. An experimental study on biomass air-steam gasification in a fluidized bed [J]. Bioresource technology,2004,95:95-101
    [84]Blasi DC. Kinetic and heat transfer control in the slow and flash pyrolysis of solids [J]. Ind Eng Chem Res,1996,35:37-46
    [85]吕鹏梅,常杰,熊祖鸿等.生物质在流化床中的空气水蒸气气化研究[J].燃料化学学报,2003,32:305-310
    [86]江建方.城市生活垃圾外热式热解技术的研究[D].武汉:华中科技大学图书馆,2006
    [87]Li S Q, Chi Y, Li RD, et al. Axial transport and residence time of MSW in rotary kilns:Part Ⅱ. Theoretical and optimal analyses [J]. Powder Technology,2002,126: 228-240
    [88]Cui LJ, Lin WG, Yao JZ. Influences of Temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed [J]. Chemical Research in Chinese Universities.2006,22:103-110
    [89]Veronika S, Josef P, Gernot S. Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis [J]. Fuel,1997, 76:1277-1282
    [90]Williams P T, Besler S, Taylor D T. The pyrolysis of scrap automotive tyres:The influence of temperature and heating rate on product compostition [J]. Fuel,1990, 69:1474-1482
    [91]Kyong-Hwan Lee. Pyrolysis of municipal plastic wastes separated by difference of specific gravity [J]. Journal of Analytical and Applied Pyrolysis,2007,79:362-367
    [92]Teo K C, Watkinson A P. Characterization of pyrolysis tars from Canadian coals [J]. Fuel,1987,66:1123-1132
    [93]Morris R M. Effect of particle size and temperature on evolution rate of volatiles from coal [J]. Journal of Analytical and Applied Pyrolysis,1993,27:97-107
    [94]Luo SY, Xiao B, Hu Z Q, et al. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor [J]. International Journal of Hydrogen Energy,2010,35:93-97
    [95]Hanson S, Patrick JW, Walker A. The effect of coal particle size on pyrolysis and steam gasification [J]. Fuel,2002,81:531-537
    [96]赵凯峰.城市生活垃圾热解炭化工艺及炭化物特性研究[D].南京:南京林业大学图书馆,2009
    [97]Altun N E, Hicyilmaz C, Kok M V. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite [J]. Journal of Analytical and Applied Pyrolysis,2003, 67:369-379
    [98]Christiansen J V, Feldthus A, Carlsen L. Flash pyrolysis of coals. Temperature-dependent product distribution [J]. Journal of Analytical and Applied Pyrolysis,1995,32:51-63
    [99]Zhang R, Ren H, Sun D K. Pyrolysis of a high-ash peat in supercritical water [J]. Journal of Fuel Chemistry and Technology,2008,36:129-133
    [100]贺茂云.纳米镍基催化剂的制备及其对城市生活垃圾裂解气化制氢的催化性能研究[D].武汉:华中科技大学图书馆,2009
    [101]Luo SY, Xiao B, Hu Z Q, et al. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in fixed bed reactor [J]. Bioresource technology, Available online,2010
    [102]Lv PM, Xiong ZH, Chang J, et al. An experimental study on biomass air-steam gasification in a fluidized bed [J]. Bioresource Technology,2004,95(1):95-101
    [103]Luo SY, Xiao B, Hu Z Q, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor:Influence of particle size on gasification performance [J]. International Journal of Hydrogen Energy,2009,34: 1260-1264
    [104]He M Y, Xiao B, Liu S M, et al. Syngas production from catalytic gasification of waste polyethylene:Influence of temperature on gas yield and composition [J]. International Journal of Hydrogen Energy,2009,34:1342-1348
    [105]Guan YW, Luo, S Y, Liu S M, et al. Steam catalytic gasification of municipal solid waste for producing tar-free fuel gas[J]. International Journal of Hydrogen Energy, 2009,34:9341-9346
    [106]李建芬 生物质催化热解和气化的应用基础研究[D].武汉:华中科技大学图书馆,2007
    [107]贺茂云,胡智泉,肖波等.城市生活垃圾催化气化制取富氢气体的研究[J].环境工程,2009,27:97-101
    [108]张振营.城市生活垃圾的压缩性及填埋场的沉降研究[D].杭州:浙江大学图书馆,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700