p型透明氧化物CuCrO_2薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明氧化物半导体(TOS)是一种在可见光区域具有良好的透光性,并且导电性优异的光电材料,由于具备这两个特性,被广泛应用于电子工业领域。根据导电特性的不同分为n型与p型两类。目前n型TOS已经被广泛应用,而p型TOS相对缺乏。本文根据价带化学修饰理论,以p型铜铁矿结构的CuCrO2薄膜为研究对象,采用磁控溅射技术制备CuCrO2薄膜,摸索出薄膜制备工艺,通过二价离子受主掺杂改善薄膜的导电性,研究了厚度对CuCrO2:Mg(9mol%)薄膜透明导电性的影响,制备出p-CuCrO2:Mg(9mol%)/n-Si p-n结,具体归纳起来可以概括为以下几个部分。
     1.本文摸索CuCrO2薄膜的最佳制备工艺。通过对衬底温度的调制,500℃时获得最高室温电导率为27.1 S·cm-1的薄膜,在可见光区的透过率为15%-20%。由于750℃以内沉积的CuCrO2薄膜可见光透过率很低,通过调节异位退火温度成功制备了透过率与导电性良好的CuCrO2薄膜。薄膜透过率随退火温度升高而增大,电导率则随退火温度升高而降低。900℃时,综合性能最好,平均可见光达到50-60%;电导率为1.7×10-2 S·cm-1。变化溅射功率,随着溅射功率的增加,薄膜可见光透过率降低,电导率提高。100W溅射的薄膜综合透明导电性能最优,室温电导率为0.075 S·cm-1,可见光透过率为50%-60%。改变氧分压来调节薄膜中的氧浓度,在氧分压下沉积的薄膜电导率显著降低,透过率为10%-15%,900℃退火后,薄膜的透过率提高到60%-70%,但是薄膜不导电,没有氧分压的薄膜,室温电导率降低到1.5×10-3 S·cm-1。最佳溅射参数定为衬底温度为500℃,溅射功率为100W,氧分压为0%,溅射完成进行900℃异位退火。
     2.在CuCrO2薄膜制备工艺优化基础上,制备出结晶性较好的CuCrO2:Zn,CuCrO2:Mg薄膜,薄膜的平均可见光透过率在30%-50%之间。所有薄膜在200K以上均符合半导体热激活导电机制,对于所有掺杂系列的薄膜而言,当Mg掺杂量为0.09时,薄膜具有最好的导电性,室温电导率为0.062 S·cm-1,比CuCrO2的样品提高了400倍,且Hall测试表明,该样品为p型半导体。
     3.研究厚度对CuCrO2:Mg(9mol%)薄膜性能影响,随着厚度增加,薄膜晶粒尺寸增大,压应力减小,使得空穴载流子浓度与迁移率增加,电导率提高,但薄膜的可见光透过率降低。当厚度为310nm时,薄膜具有较好的综合透明导电性。
     4.从器件角度考虑,本文制备出p-CuCrO2:Mg(9mol%)/n-Si p-n结,室温下样品呈现出明显的整流特性,开启电压为1V。粗略计算电压为5V的正向电流与反向电流的比值,正反电流比值约为8.2。根据p-n+单边突变结理论进行了拟合,发现界面态效应和串联电阻效应是影响该异质结整流特性的重要因素。
Transparent Semiconductor Oxides(TOS) have the feature of optical transparency in the visible region and controllable electrical conductivity, and they are widely used as transparent electrode for solar cells, liquid crystal display, light emitting diodes in electronic industry. However, the application of TOS has been restricted to n-type semiconductor, the lack of p-type TOS has limited their applications. Based on the theory called the chemical modulation of the valence band(CMVB), we selected delafossite structure CuCrO2 as the subject to investigate. We prepared the CuCrO2 films by radio frequency magnetron sputtering technique. The main results we achieved are as following:
     1. The optimized parameters have been obtained successfully to deposited CuCrO2 films. The substrate temperature has been investigated. The maximum conductivity of CuCrO2 film is 27.1 S·cm-1 when the substrate temperature reaches at 500℃. The transmittance of CuCrO2 film is about 10%-15% in the visible light range. Since the transparency of deposited CuCrO2 films is very low, CuCrO2 films were annealed under high pure nitrogen atomosphere. The average transmittance increases with the increase of annealing temperature, but the conductivity decreased with the increasing of annealing temperature. The optimum properties for CuCrO2 films are obtained by annealing at 900℃. Moreover, the sputtering power influences the properties of CuCrO2 films. It is founded that the optical transmittance of the films decreases, but the conductivity of the films enhances when the sputtering power increases. The CuCrO2 films have optimum properties of transparent conductivity at 100W. Furthermore, by adjusting oxygen partial pressure on the properties of the films were studied. The conductivity of the films decreases notably when sputtering at oxygen partial pressure. The transmittance is 10%-15% in the visible range. After annealing at 900℃,the transmittance of the films increases to 60%-70% for the films deposited at oxygen partial pressure, but the films are not conductive. The conductivity of the films at 0% oxygen partial pressure is 1.5×10-3 Scm-1. Considering the optimum sputtering parameter, the substrates temperature is 500℃, the sputtering power is 100W, the partial oxygen pressure is 0%, and the annealing temperature is about 900℃.
     2. Zn, Mg doped CuCrO2 with delafossite structure were successfully prepared by radio frequency magnetron sputtering technique. The transmittance is about 30%-50% in the visible light range. The temperature dependence of conductivity can be described by the thermal activation theory when the temperature is above 200K. At the room temperature, the maximum electrical conductivity for all doped CuCrO2 film is 0.062 S·cm-1 for 9mol% Mg doped CuCrO2 which is 400 times higher than that of undoped sample. Hall effects measurements prove that the sample is p-type semiconductor.
     3. The thickness effect on the structure, optical and electrical properties of the 9mol% Mg doped CuCrO2 thin films were investigated. The grain size increases as the film thickness grows, while the compressive strain increases as the film thickness decreases. The average transmittance of the films decreases as film thickness grows in the visible range. The electrical conductivity decreases monotonously as the film thickness decreases mainly because of hole concentration and mobility declining. The hole concentration decreases when the lattice compressive strain enhances. The carrier mobility declining as the grain size becomes larger because of the stronger grain boundary scattering effect.
     4. As for the device applications, p-CuCrO2:Mg(9mol%)/n-Si p-n junction has been prepared on low resistance Si substrate. Based on the linear I-V characterization of Ni-Si-Ni, Ni-CuCrO2:Mg(9mol%)-Ni, the I-V characterization shows that the junction has the rectifying property with the cut-in voltage of 1V. The ratio of the forward current to the reverse current reached 8.2 at the bias voltage of 5V. Using the theory of p-n+ one-sided step junction to simulate I-V curves, it is found that the effects of the interfacial states and junction resistance should not be neglected to analyze the rectifying property of the heterojunctions.
引文
1 K. Badeker. Concerning the Electricity Conductibility and the Thermoelectric Energy of Several Heavy Metal Bonds. Ann. Phys. Leipzig. 1907, 22:749766
    2 B. Stjerna, E Olsson and C. G. Granqivst. Optical and electrical properties of radio-frequency sputtered tin oxide films doped with oxygen vacancies, F , Sb , or Mo. J. Appl. Phys. 1994, 76(6): 3797~3817
    3 S. Shanthi, C. Subramanian and P. Ramasamy. Investigations on the optical properties of undoped, fluorine doped and antimony doped tin oxide films. Cryst. Res. Technol. 1999, 34(8): 1037~1046
    4 M. Bender, J. Trube and J. Stollenwerk. Deposition of transparent and conducting indium-tin-oxide films by the RF-Sputtering DC sputtering technology. Thin Solid Film. 1999, 354(1-2):100~105
    5 H. Haitjema and J. Elich. Physical properties of pyrolytically sprayed tin-doped indium oxide coatings. Thin Solid Film. 1991, 205(1): 93~100
    6 G. Haacke, W. E. Mealmaker and L. A. Siegel. Sputter deposition and characterization of Cd2SnO4 films. Thin Solid Films. 1978, 55(1): 67~81
    7 E. Leja, T. Stapinski and K. Marzalek. Electrical and optical properties of conducting n-type Cd2SnO4 thin films. Thin Solid Films. 1985, 125(1-2): 119~122
    8 J. B. Webb, D. F. Williams and M. Buchanan. Transparent and highly conductive films of ZnO prepared by RF reactive magnetron sputtering. Appl. Phys. Lett. 1981, 39(8): 640~642
    9 A. Kuroyanagi. Crystallographic characteristics and electrical properties of Al-doped ZnO thin films prepared by ionized deposition. J. Appl. Phys. 1989, 66(11): 5492~5497
    10 K. Tominaga, T. Takao, A. Fukushima, T. Moriga and I. Nakabayashi. Amorphous ZnO–In O transparent conductive films by simultaneous sputtering method of ZnO and In O targets2 3 . Vacuum. 2002, 66(3-4): 505~509
    11 T. Minami, T. Kakumu, Y. Takeda and S. Takata. Highly transparent and conductive ZnO-In 2O 3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films. 1996, 290:1~5
    12 Y. Sato, J. Kiyohara, A. Hasegawa, T. Hattori, M. Ishida, N. Hamada, N. Oka and Y.CuCr1-xMgxO2 Films and Powders . J. Appl. Phys. 2001, 89(12):8022~8025
    50 S. Mahapatra and S. A. Shivashankar. Low-pressure metal-organic CVD of transparent and p-type conducting CuCrO2 thin films with high conductivity. Chem. Vapor. Depos. 2003, 9 (5): 238
    51 S. G?tzend?rfer, C. Polenzky, S. Ulrich and P. L?bmann. Preparation of CuAlO and CuCrO thin films by sol–gel processing
    22 . Thin Solid Films. 2009, 518(4): 1153~1156
    52 A. C. Rastogi, S. H. Lim and S. B. Desu. Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films. J. Appl. Phys. 2008, 104(2): 023712
    53 S. H. Lim, S. Desu and A. C. Rastogi. Chemical spray pyrolysis deposition and characterization of p-type CuCr1 -xM gx O 2 transparent oxide semiconductor thin films. J. Phys. Chem. Solids. 2008, 69(8): 2047~2056
    54 K. Tonooka and N. Kikuchi. Preparation of transparent CuCrO :Mg/ZnO p-n junctions by pulsed laser depositionThin Solid Films. 2006, 515(4): 2415~2418
    55 T. W. Chiu, K. Tonooka and N. Kikuchi. Fabrication of transparent CuCrO :Mg/ZnO p–n junctions prepared by pulsed laser deposition on glass substrateVacuum. 2008, 83(3): 614~617
    56 S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang and X. Zhu. Hydrothermal synthesis and characterization of CuCrO2 laminar nanocrystals. J. Cryst. Growth. 2008, 310(24): 5375~5379
    57 S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng and T. Wang. Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals. Sensor. Actuat. B: Chem. 2009, 143(1): 119~123
    58 Y. Wang, H. Gong, F. Zhu, L. Liu, L. Huang and A. C. H. Huan. Optical and Electrical Properties of p-Type Transparent Conducting Cu-Al-O Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition. Mater. Sci. Eng. B. 2001, 85(2):131~134
    59 E. Burstein. Anomalous optical absorption limit in InSb. Phys. Rev. 1954, 93: 632~633
    60 G. Dong, M. Zhang, X. Zhao, Y. Li and H. Yan. Influence of working gas pressure on structure and properties of CuAlO2 films. J. Cryst. Growth. 2009, 311(5): 1256~1259
    61 Y. M. Lu, W. S. Hwang, W.Y. Liu and J. S. Yang. Effect of RF power on optical andelectrical properties of ZnO thin film by magnetron sputtering. Mater. Chem. Phys. 2001, 72(2): 269~272
    62 W. Lan, M. Zhang, G. B. Dong, Y. Y. Wang and H. Yan, The Effect of Oxygen on the Properties of Transparent Conducting Oxide Cu-Al-O Films Deposited by RF Magnetron Sputtering. Mater. Sci. Eng. B. 2007, 139:155~159
    63 N. F. Mott. Conduction in non-crystalline materials. Phil. Mag. 1969, 19: 835~852
    64 G. Dong, M. Zhang, W. Lan, P. Dong and H. Yan. Effects of Doping Mg on the Structure and Physical Properties of CuAlO2 Thin Films. Vacuum. 2008, 82(11):1321~1324
    65 M. Liu, F. Huang and L. Chen. P-type electrical conduction and wide optical band gap in Mg-doped CuAlS2. Scripta Materialia. 2008, 58(11): 1002~1005
    66 M. S. Lee, T. Y. Kim and D. Kim. Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal. Appl. Phys. Lett. 2001, 79(13): 2028~2030
    67 H. Kim, J S Horwitz, G. Kushto, A. Pique, Z H Kafafi, C M Gilmore and D B Chrisey. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 2000, 88(10): 6021~6025
    68 D. Kim, M. Park, H. Lee and G. Lee. Thickness dependence of electrical properties of ITO film deposited on a plastic substrate by RF magnetron sputtering. Appl. Surf. Sci. 2006, 253(2): 409~411
    69 Z. Qiao, R. Latz and D. Mergel. Thickness dependence of In2 O3 : Sn film growth. Thin Solid Films. 2004, 466(1-2): 250~258
    70 H. Gu, D. Bao, S. Wang, D. Gao, A. Kuang and X. Li. Synthesis and optical properties of highly c-axis oriented Bi4 Ti3 O 1 2 thin films by sol-gel processing. Thin Solid Films. 1996, 283(1-2): 81~83
    71 A. N. Banerjee, C. K. Ghosh and K. K. Chattopadhyay. Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2 +x thin films. Sol. Energ. Mater. Sol. C. 2005, 89(1): 75~83
    72 A. K. Kulkarni, K. H. Schulz, T. S. Lim and M. Khan. Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films. 1999, 345(2): 273~277
    73 G. Haacke. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47(9):4086~4089
    74赵学平. p型铜铁矿结构透明氧化物半导体的制备与性能研究.北京工业大学硕士论文. 2009, 41~47
    75 S. K. Cheung and N. W. Cheung. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1996, 49:85~87
    76 H. Norde. A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 1979, 50:5052~5053
    77 V. Aubry and F. Meyer. Schottky diodes with high series resistance: Limitations of forward I-V methods. J. Appl. Phys. 1994, 76:7973~7984
    78甄汉生等.全国固体薄膜学术会议论文集. 1988
    79 K. L. Chopra. Thin Film Phenomenon. Mc Graw-Hill, 1969
    80 J. I. Pankove. Optical Processes in Semiconductors. Prentice-Hall, 1971

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700