聚乙烯基无机纳米复合电介质的陷阱特性与电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合改性是提高电力设备绝缘材料电性能的有效途径,聚合物基无机纳米复合电介质的研究具有十分重要的工程意义和理论价值。陷阱对聚合物电导、老化和击穿等电性能有显著影响,对聚合物及其纳米复合物陷阱特性及陷阱对电性能影响的研究,有助于揭示聚合物基纳米复合电介质电性能的机理。本论文以低密度聚乙烯(LDPE)为聚合物基体材料,重点研究了ZnO、ZnxMg1-xO(x=0.5)、 ZnO+MMT(montmorillonite)掺杂及纳米颗粒表面偶联剂处理对LDPE陷阱特性和电性能的影响,并以陷阱特性作为切入点,研究了纳米电介质电性能的微观和介观机理。论文主要工作如下:
     (1)采用熔融共混法制备了不同掺杂量的LDPE/ZnO、LDPE/ZnxMg1-xO、 LDPE/ZnO+MMT纳米复合电介质,并采用扫描电镜、红外光谱、X射线衍射、紫外-可见吸收光谱等技术手段对其进行了结构表征,研究了不同种类纳米颗粒在LDPE基体中的分散性和其与基体的相容性、纳米颗粒与基体的界面物理化学作用、纳米掺杂引起的LDPE结晶度及微晶尺寸变化和纳米复合物的紫外-可见光吸收特性,并研究了纳米颗粒偶联剂处理对上述特性的影响。研究表明,复合物中ZnO和ZnxMg1-xO纳米颗粒的粒径基本上都在50-200nm之间;偶联剂与纳米颗粒之间产生了化学键合作用,并且降低了纳米颗粒团聚物的尺度;表面处理的ZnO纳米颗粒与MMT混合掺杂增大了MMT的层间距,促进了二者在LDPE中的分散,ZnO与MMT片层形成了一定的交织结构;ZnO和ZnxMg1-xO掺杂提高了LDPE的结晶度;LDPE/ZnO和LDPE/ZnxMg1-xO纳米复合物对250-400nm之间的紫外光有很强的吸收作用。
     (2)针对传统的热刺激电流方法在定量研究聚合物陷阱特性方面存在的缺陷,提出了适用于研究能级连续分布的聚合物陷阱特性的改进的等温放电电流和热刺激电流分析方法,通过实验分析证实了该方法的有效性,并以此得到了LDPE及其纳米复合物的陷阱特性。研究得出,纳米掺杂能够使LDPE的陷阱能级密度增加2-6倍,陷阱深度基本不变;陷阱均来自于界面区高分子链的空间构象缺陷,其物理本质是空腔;陷阱能级密度的变化与纳米颗粒本身的性质和形状、掺杂量、偶联剂处理有密切关系。
     (3)研究了纳米掺杂引起LDPE陷阱能级密度变化的微观机制,提出并证实了纳米掺杂改性的界面陷阱机理理论模型。研究得出,纳米复合物中陷阱能级密度的增加源于两个方面:一是纳米颗粒促进了聚乙烯的异相成核过程,提高了成核速率而降低了球晶生长速率,从而减小了球晶尺寸,生成了大量均匀的小球晶,在晶区与非晶区之间产生了更多的界面,该界面能够形成大量空腔陷阱;另一方面纳米颗粒与聚合物之间的界面区由于分子可动性、形态结构、自由体积等不同于聚合物基体而存在大量空腔陷阱。这两种界面产生的陷阱效应是导致纳米复合物中陷阱能级密度增加的主要原因。
     (4)研究了不同纳米掺杂对LDPE电性能特别是电荷输运特性的影响,并基于界面陷阱理论给出了纳米复合物电导降低、击穿场强和耐电树枝老化寿命增加的物理机制。研究表明,通过ZnO、ZnxMg1-xO和ZnO+MMT掺杂,大幅度提高了LDPE的电性能。其中,纳米复合物的载流子迁移率是LDPE的1/4~1/20,体积电阻率是LDPE的2-20倍,高场电导电流最小是LDPE的1/8~1/2;积累的同极性和异极性空间电荷密度和电荷量最小是LDPE的1/8~1/3,偶联剂处理有助于空间电荷的抑制;耐电树枝老化寿命最大是LDPE的30倍,ZnO纳米颗粒与MMT片层混合掺杂的纳米复合物的耐电树枝老化能力最好,其次分别是ZnxMg1-xO和ZnO掺杂;纳米复合物的击穿场强最大比LDPE提高了10%~20%。研究表明纳米掺杂的界面陷阱效应及其本身特性是引起纳米复合物电性能改善的关键因素。
     (5)为了深入理解纳米复合物中的空间电荷行为及其机理,通过对电极电荷注入和输运过程中界面陷阱调制作用的实验和理论分析,提出了LDPE/ZnO纳米复合电介质中空间电荷抑制的陷阱机理理论模型。研究得出,纳米颗粒掺杂的界面陷阱效应有效降低了注入电荷积累的深度,促进了注入电荷在电极界面附近的入陷,降低了界面电场,弱化了界面附近的杂质电离,从而抑制了电极界面附近异极性空间电荷的形成;另一方面,界面电场的降低导致电极注入电荷的减少,体电导能够及时将注入的少量电荷导出,因而抑制了材料体内同极性空间电荷的积累。这对高压和超高压直流电缆绝缘材料的开发具有指导意义。
Nanocomposite is an effective way to enhance the electrical properties of insulation materials used in the electrical equipments. The investigation of polymer based inorganic nanocomposite is of great practical significance and theoretical value. Traps have prominent effects on the electrical conduction, ageing and breakdown of polymers. The investigations on the trap characteristics of the polymer and its based nanocomposites and on the role of traps in determining their electrical properties are helpful to reveal the mechanism of electrical properties of polymer based nanocomposites. In this thesis, the low density polyethylene (LDPE) is chosen as the matrix. The main effort is devoted to the investigations on the effects of ZnO, ZnxMg1-xO(x=0.5) and ZnO+MMT (montmorillonite) nanoparticle fillers and their surface treatment on the trap characteristics and electrical properties of LDPE. By taking the trap characteristics as the entry point, the mechanisms corresponding to the electrical properties of nanodielectrics are studied. The main work is shown as follows:
     (1) LDPE/ZnO, LDPE/ZnxMg1-xO and LDPE/ZnO+MMT nanocomposites are prepared by melt bending method and the physical and chemical structures have been investigated by scanning electron microscope (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The dispersion of nanoparticles in the LDPE matrix, the compatibility of nanoparticles with the matrix, the physical and chemical action between the nanoparticles and the matrix at the interface, the LDPE crystallinity and the crystallize, the UV-vis characteristics of the nanocomposites and the coupling agent treatment on these properties are investigated. Results show that the diameter of the nanoparticles in the nanocomposites is in the range50-200nm. Coupling agents are chemically bonded to the nanoparticles and have decreased the aggregate size of the nanoparticles. The mixed fillers of ZnO and MMT have increased the layer space of MMT and promoted their dispersion. ZnO and MMT have formed pilotaxitic structures. The ZnO and ZnxMg1-xO fillers have increased the crystallinity of LDPE. The LDPE/ZnO and LDPE/ZnxMg1-xO nanocomposites exhibit strong absorption for the ultraviolet light in the range250-400nm.
     (2) Considering the drawback of the traditional thermally stimulated current (TSC) method in the quantitative investigation of trap characteristics of polymers, the modified analysis methods of isothermal discharge current (MIDC) and thermally stimulated current suitable for the study of the trap characteristics in polymers with continuous energy levels are proposed. The effectiveness of the methods has been verified by experiments and analysis. The trap characteristics of the nanocomposites are obtained by the proposed methods. Research indicates that the trap level density in LDPE is increased about2-6times by nanofillers and the trap level depths are basically unchanged. The interface traps are cavities essentially and come from the space configuration defects of polymer chains. The change of the trap level density is closely related to the property and shapes of the nanoparticles, nanofiller loadings and treatment by coupling agent.
     (3) The micro mechanism of the trap level density changes in LDPE by nanofillers are investigate and the theoretical mechanism model of trapping effect at the interface for the property improvement of the nanocomposite is proposed and confirmed. The trap density increase in the nanocomposite is derived from two aspects. Firstly, the nanofillers have promoted the heterogeneous nucleation process of LDPE, leading to the formation of uniformly distributed small spherulites and increase of the interface areas between the crystallites and amorphous domains. These interfaces can generate large amounts of cavity traps. Secondly, the interface areas between the nanoparticles and the LDPE matrix are different in molecular mobility, morphology structures and free volume, in which cavity traps can also be generated. The two kinds of trapping effects at the interface are the main cause for the trap level density increase in the nanocomposite.
     (4) The effect of different nanofillers on the electrical properties, especially charge transportation characteristics of LDPE is investigated and the physical mechanisms of the decrease in electrical conduction and increase in electrical breakdown strength and electrical treeing life in the nanocomposites are given based on the trapping mechanism at the interface. Results show that the carrier mobility of the nanocomposites is about1/4~1/20times that of LDPE and the volume resistivity is about2to20times that of LDPE. The high field conductivity of the nanocomposites is about1/8to1/2that of LDPE at least. The accumulated heterocharge and homocharge are about1/8to1/3that of LDPE at least. Coupling agent treatment is helpful to space charge inhibition. The electrical treeing-resistant life is30times that of LDPE at most. The nanocomposites filled with ZnO and MMT mixtures have the best treeing resistant ability and then are those filled with ZnxMg1-xO and ZnO fillers. The electrical breakdown strength is enhanced by10%to20%than LDPE at most. It has been concluded that the trapping effect at the interface by nanofillers and the properties of nanofillers are the key factors leading to the electrical property improvement of nanocomposites.
     (5) In order to go deep into the space charge behavior and its mechanism, the theoretical model of trapping mechanism for space charge inhibition in LDPE/ZnO nanocomposite is proposed via the experimental and theoretical analysis of the modulating action of interface trap on the charge injection process from electrodes and transportation process. Research concludes that the trapping effect at the interface caused by nanofillers has effectively decreased the accumulation depth of the injected charge and is helpful to promote trapping of injected charge at the interface around the electrodes, leading to the reduction of interface electric field. This can weaken the impurity ionization and inhibit the hetero space charge accumulation around the electrodes. On the other hand, the reduction of interface electric field decreases the charge injection from electrodes. The small amount of injected charge can be easily conducted out of the bulk. Thus it can suppress the homo space charge accumulation in the material. This is meaningful for the development of electrical insulation materials for high voltage and extra high voltage cables.
引文
[1]Wang S., Fujita M., Tanimoto G., et al. Development of insulation material for DC cables-space charge properties of metallocene catalyzed polyethylene[C]. IEEE International Symposium on Electrical Insulation, Canada,1996:657-660.
    [2]应启良.500kV交联聚乙烯绝缘电缆绝缘结构研究[J].电线电缆,2003,(4):3-8.
    [3]Thue W.A. Electrical power cable engineering[M]. NewYork:Marcel Dekker Incorporation Press, 2003.
    [4]Mizutani T. Electrical properties of polymers:space-charge behaviour in insulating polymers under high-voltage direct current[J]. Polymer International,2002,51 (11):1164-1171.
    [5]李吉晓,张冶文,夏钟福等.空间电荷在聚合物老化和击穿过程中的作用[J].科学通报,2000,45(23):2469-2475.
    [6]Montanari G.C. Bringing an insulation to failure:the role of space charge [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(2):339-364.
    [7]Fabiani D., Montanari G.C., Laurent C., et al. Polymeric HVDC cable design and space charge accumulation. Part 1:Insulation/semicon interface[J]. IEEE Electrical Insulation Magazine,2007, 23(6):11-19.
    [8]Li Y., Takada T. Progress in space charge measurement of solid insulating materialsin Japan[J]. IEEE Electrical Insulation Magazine,1994,10(5):16-28.
    [9]Mizutani T. High-voltage DC insulation and space charge[C]. IEEE Conference on Properties and Applications of Dielectric Materials, Xi'an,2000:18-23.
    [10]Padgham F.K., Lawson W.G., Metra P., et al. The Effect of Polarity Reversals on the Dielectric Strength of Oil-Impregnated Paper Insulation for HVDC Cables[J]. IEEE Transactions on Power Apparatus and Systems,1978,97(3):884-892.
    [11]Kiyoji K. Effect of space charge on the breakdown strength under polarity reversal[J]. Electrical engineering in Japan,1986,106(3):25-33.
    [12]Murata Y., Kanaoka M. Development history of HVDC extruded cable with nanocomposite material[C]. International Conference on Properties and applications of Dielectric Materials, 2006:460-463.
    [13]Maruyama S., Ishii N., Shimada M., et al. Development of a 500kV DC XLPE cable system[J]. Furukawa review,2004,25(25):47-52.
    [14]Ditchi T., Alquie C., Lewiner J., et al. Electrical properties of electrode/polyethylene/electrode structures[J]. IEEE Transactions on Electrical Insulation,1989,24(3):403-408.
    [15]Lewis T.J. Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5):812-825.
    [16]Lau K.Y., Piah M. Polymer Nanocomposites in High Voltage Electrical Insulation Perspective:A Review[J]. Malaysian Polymer Journal,2011,6(1):58-69.
    [17]Tanaka T., Montanari G.C., Mulhaupt R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):763-784.
    [18]李景德,陈敏.物理学中的第二片大沙漠-电介质物理学[J].物理,1998,27(2):68-73.
    [19]屠德民.工程电介质进展[C].第九届全国工程电介质学术会议,2003:1-7.
    [20]Ieda M. Electrical conduction and carrier traps in polymeric materials[J]. IEEE Transactions on Electrical Insulation,1984,19(3):162-178.
    [21]Pope M., Swenberg C.E. Electronic processes in organic crystals and polymers[M]. Oxford University Press Oxford,1999.
    [22]Danikas M.G. On Two Nanocomposite Models:Differences, Similarities and Interpretational Possibilities Regarding Tsagaropoulos' Model and Tanaka's Model[J]. Journal of Electrical Engineering, 2010,61(4):241-246.
    [23]田付强,杨春,何丽娟等.聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J].电工技术学报,2011,26(3):1-12.
    [24]Fothergill J.C. Ageing, Space Charge and Nanodielectrics:Ten Things We Don't Know About Dielectrics[C]. IEEE International Conference on Solid Dielectrics,2007:1-10.
    [25]雷清泉,李盛涛,朱劲松等.纳米电介质的多层次结构及其宏观性能[C].香山科学会议第354次学术讨论会,北京,2009.
    [26]Johnston D.R., Markovitz M. Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors[P]. United States Patent:4760296.
    [27]Katz M., Theis R.J. New high temperature polyimide insulation for partial discharge resistance in harsh environments[J]. IEEE Electrical Insulation Magazine,1997,13(4):24-30.
    [28]张沛红.无机纳米-聚酰亚胺复合薄膜介电性及耐电晕老化机理研究[D].哈尔滨:哈尔滨理工大学,2006.
    [29]Henk P.O., Kortsen T.W., Kvarts T. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica[J]. High Performance Polymers,1999, 11(3):281-296.
    [30]Yin W., Barta D.J. Pulsed voltage surge resistant magnet wire[P]. United States Patent: 006180888B.
    [31]Nelson J.K., Fothergill J.C., Dissado L.A., et al. Towards an understanding of nanometric dielectrics[C]. Annual Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico,2002:295-298.
    [32]Dissado L.A., Fothergill J.C. Dielectrics and nanotechnology[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2004, 11(5):737-738.
    [33]Lewis T.J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):739-753.
    [34]Nelson J.K., Utracki L.A., MacCrone R.K., et al. Role of the interface in determining the dielectric properties of nanocomposites[C]. IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena, New York,2004:314-317.
    [35]Nelson J.K., Fothergill J.C. Internal charge behaviour of nanocomposites[J]. Nanotechnology,2004, 15(5):586-595.
    [36]Lewis T.J. Interfaces:nanometric dielectrics[J]. Journal of Physics D:Applied Physics,2005, 38:202-212.
    [37]Roy M., Nelson J.K., MacCrone R.K., et al. Polymer nanocomposite dielectrics-The role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):629-643.
    [38]Tanaka T. Dielectric nanocomposites with insulating properties [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):914-928.
    [39]雷清泉,范勇,王暄.纳米高聚物复合材料的结构特性,应用和发展趋势及其思考[J].电工技术学报,2006,21(2):1-7.
    [40]Li S., Yin G., Chen G., et al. Short-term breakdown and long-term failure in nanodielectrics:a review[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(5):1523-1535.
    [41]Cao Y., Irwin P.C., Younsi K., et al. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):797-807.
    [42]Frechette M.F., Reed C.W. The emerging field of nanodielectrics:an annotated appreciation[J].2006.
    [43]蒋子江.具有光电特性的共轭聚合物/ZnO纳米复合材料的制备及其光学性能研究[D].长春:东北师范大学,2009.
    [44]隋晓萌.聚合物—氧化锌纳米复合材料的制备和发光性质研究[D].长春:中国科学院长春光学精密机械与物理研究所,2006.
    [45]Smith R.C., Liang C., Landry M., et al. The mechanisms leading to the useful electrical properties of polymer nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008, 15(1):187-196.
    [46]Tanaka T., Kozako M., Fuse N., et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681.
    [47]Tanaka T. Interpretation of Several Key Phenomena Peculiar to Nano Dielectrics in Terms of a Multi-Core Model[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2006:298-301.
    [48]Takada T., Hayase Y., Tanaka Y., et al. Space Charge Trapping in Electrical Potential Well Caused by Permanent and Induced Dipoles for LDPE/MgO Nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160.
    [49]Montanari G.C., Teyssedre G., Laurent C., et al. Investigating charge trapping behaviour of nanocomposite isotactic and syndiotactic polypropylene matrix[C]. IEEE International Conference on Solid Dielectrics,2004:836-839.
    [50]Montanari G.C., Fabiani D., Palmieri F., et al. Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):754-762.
    [51]雷清泉,石林爽,田付强等.电晕老化前后100HN和100CR聚酰亚胺薄膜的电导电流特性实验研究[J].中国电机工程学报,2010,30(13):109-114.
    [52]Zheng F.H., Hao S.J., Wang W.Y., et al. Morphology-Related Packetlike Space-Charge Behavior in Linear Low-Density Polyethylene Doped with Al2O3 Nanoparticles[J]. Journal of Applied Polymer Science,2009,112(5):3103-3109.
    [53]Roy M., Nelson J.K., MacCrone R.K., et al. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics[J]. Journal of Materials Science,2007,42(11):3789-3799.
    [54]Han S.J., Gross L.H., Wasserman S.H. Polyolefin-Based High Dielectric Strength (HDS) Nanocomposites, Compositions Therefor, and Related Methods[P]. US 2010/0230131 A1.
    [55]Maezawa T., Taima J., Hayase Y., et al. Space charge formation in LDPE/MgO nano-composite under high electric field at high temperature[C]. IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, Canada,2007:271-274.
    [56]Murakami Y., Nemoto M., Okuzumi S., et al. DC Conduction and Electrical Breakdown of MgO/LDPE Nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008, 15(1):33-39.
    [57]Green C.D., Vaughan A.S., Mitchell G.R., et al. Structure property relationships in polyethylene/montmorillonite nanodielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):134-143.
    [58]Yin Y., Dong X., Wang Y., et al. Charge carrier transportation in the composite of Nano-MgO and cross-linking polyethylene[C]. International Conference on the Properties and Applications of Dielectric Materials,2009:761-764.
    [59]刘文辉,吴建东,王俏华等.纳米添加物的粒径对聚合物纳米复合电介质中空间电荷行为的影响[J].中国电机工程学报,2009,29(S1):61-66.
    [60]王霞,成霞,陈少卿等.纳米ZnO/低密度聚乙烯复合材料的介电特性[J].中国电机工程学报,2008,28(19):13-19.
    [61]张晓虹,高俊国,郭宁等.纳米蒙脱土对聚乙烯击穿和电导特性的影响[J].高电压技术,2009,35(1):129-134.
    [62]郭文敏.聚乙烯/无机填料复合材料非线性电导特性及机理研究[D].哈尔滨:哈尔滨理工大学,2010.
    [63]宫斌,张冶文,郑飞虎等.纳米TiO2掺杂对低密度聚乙烯空间电荷行为的影响[J].材料研究学报,2005,19(5):519-524.
    [64]章华中,李剑,梁勇等.低密度聚乙烯-蒙脱土纳米复合材料的电树枝生长特性[J].中国电机工程学报,2010,30(31):137-142.
    [65]王晓芳.纳米氧化锌的制备、表征及光学特性的研究[D].广州:中山大学,2007.
    [66]李菲,郝喜海,王振中,et al.纳米粉体的表面改性研究进展[J].广东化工,2010,37(5):13-18.
    [67]张丽霞,齐鲁.纳米粒子在聚合物中的分散研究进展[J].合成纤维,2008,37(8):11-19.
    [68]陈云华,林安,甘复兴.纳米颗粒的化学改性方法研究现状[J].中国表面工程,2005,18(2):5-11.
    [69]邬继荣,陈利民,许文东.新型硅烷偶联剂研究进展[J].化工生产与技术,2009,16(4):48-50.
    [70]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用[J].上海生物医学工程,2006,27(1):14-17.
    [71]邵玮,贺俊卿,邓超等.硅烷偶联剂对抗紫外纳米ZnO表面改性的研究(一)-不同硅烷偶联剂对纳米ZnO表面改性的影响[C].第八届全国颗粒制备与处理学术和应用研讨会,2007:118-121.
    [72]Samerjai T., Liewhiran C., Phanichphant S. Characterization of ZnO/MgO Nanocomposites Synthesized by Flame Spray Pyrolysis[J]. Journal of Microscopy Society of Thailand,2009,23(1):87-90.
    [73]Chawla S., Jayanthi K., Chander H., et al. Synthesis and optical properties of ZnO/MgO nanocomposite[J]. Journal of Alloys and Compounds,2008,459(1-2):457-460.
    [74]Wang Z., Hu L., Zhao J., et al. The fabrication of ZnO/MgO multilayer films on Si (111) by PLD[J]. Vacuum,2006,80(9):977-980.
    [75]Bhattacharya P., Das R.R., Katiyar R.S. Comparative study of Mg doped ZnO and multilayer ZnO/MgO thin films[J]. Thin Solid Films,2004,447:564-567.
    [76]Bhattacharya P., Das R.R., Katiyar R.S. Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films[J]. Applied Physics Letters,2003,83(10):2010.
    [77]周浩,余宇红.高能ZnO压敏电阻在发电机灭磁中的应用[J].功能材料,2004,35(z1):1458-1460.
    [78]Panin G.N., Baranov A.N., Oh Y.J., et al. Luminescence from ZnO/MgO nanoparticle structures prepared by solution techniques[J]. Current Applied Physics,2004,4(6):647-650.
    [79]许毓春,李慧峰.MgO对ZnO压敏电阻电性能的影响[J].压电与声光,1996,18(2):114-116.
    [80]Kim J.S., Lee H.J., Seog H.J., et al. Dielectric and Electrical Properties of Li-doped ZnO Films[J]. Journal of the Korean Physical Society,2011,58(3):640-644.
    [81]金国芬,梁军,吴惠桢,et al.立方相ZnMgO的电学特性研究[C].第十四届全国化合物半导体材料、微波器件和光电器件学术会议,广西,2006:398-402.
    [82]简中祥.直流反应磁控溅射法制备p型ZnMgO薄膜[D].浙江:浙江大学,2007.
    [83]孙磊.ZnO及ZnMgO量子点的可控生长和性能研究[D].浙江:浙江大学,2007.
    [84]黄芳.PLD方法制备ZnO、ZnMgO薄膜及ZnMgO/ZnO量子阱结构的研究[D].浙江:浙江大学,2007.
    [85]边楠ZnMgO薄膜及P型ZnMgO薄膜的制备[D].天津:河北工业大学,2008.
    [86]叶康.Ga-N共掺p型ZnMgO薄膜的研究[D].浙江:浙江大学,2008.
    [87]徐博.聚乙烯/蒙脱土纳米复合材料制备、结构与性能的研究[D].浙江:浙江大学,2004.
    [88]刘佳银.聚乙烯/蒙脱土纳米复合物树枝化性能与机理研究[D].哈尔滨:哈尔滨理工大学,2008.
    [89]周文英,齐暑华,吴有明等BN/HDPE导热塑料的热导率[J].高分子材料科学与工程,2008,24(2):83-86.
    [90]Sun D. Polymer Nanocomposites Including Dispersed Nanoparticles and Inorganic Nanoplatelets[P]. US 200910029167 A1.
    [91]张乾.聚乙烯结晶度测定及结晶机理的研究[D].西安:西北工业大学,2003.
    [92]Chen R., Kirsh Y. Analysis of thermally stimulated processes[M]. Oxford Pergamon Press,1981.
    [93]Braunlich P. Thermally stimulated relaxation in solids[M]. NewYork:Springer-Verlag,1979.
    [94]Randall J.T., Wilkins M.H.F. Phosphorescence and electron traps. I. The study of trap distributions [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1945, 184(999):365-389.
    [95]Randall J.T., Wilkins M.H.F. Phosphorescence and Electron Traps. II. The Interpretation of Long-Period Phosphorescence[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1945,184(999):390-407.
    [96]McKeever S.W.S. Thermoluminescence of solids[M]. Cambridge University Press,1988.
    [97]Frei H., Groetzinger G. The electrical energy released in melting waxes[J]. Physik. Z,1936, 37:720-724.
    [98]Turnhout J. Thermally stimulated discharge of polymer electrets[J]. Polymer Journal,1970, 2(2):173-191.
    [99]Sessler G.M. Electrets[M]. Springer-Verlag, Berlin,1979.
    [100]王立衡.介质的热刺激电流理论及其应用[M].北京:科学出版社,1988.
    [101]Bucci C., Fieschi R. Ionic thermoconductivity. Method for the investigation of polarization in insulators [J]. Physical Review Letters,1964,12(1):16-19.
    [102]Chen R. Methods for kinetic analysis of thermally stimulated processes[J]. Journal of Materials Science,1976,11:1521-1541.
    [103]Blake A.E., Charlesby A., Randle K.J. Simultaneous thermoluminescence and thermally stimulated current in polyethylene[J]. Journal of Physics D Applied Physics,1974,7(5):759-770.
    [104]Hino T., Yamashita K. Space Charge Limited Currents and Thermally Stimulated Currents in ZnTe and CdSe Films[J]. Japan. J. Appl. Physics,1974,13(6):1015-1016.
    [105]Shanfield Z. Thermally stimulated current measurements on irradiated MOS capacitors[J]. IEEE Transactions on Nuclear Science,1983,30(6):4064-4070.
    [106]Ieda M., Mizutani T., Suzuoki Y. TSC and TL studies of carrier trapping in insulating polymers[J]. Memoirs of the Faculty of Engineering in Nagoya University in Japan,1980,32(2):173-219.
    [107]Creswell R.A., Perlman M.M. Thermal currents from corona charged mylar[J]. Journal of Applied Physics,1970,41:2365.
    [108]Garlick G., Gibson A.F. Electron traps and dielectric changes in phosphorescent solids[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1947, 188(1015):485-509.
    [109]段宝兴.无机纳米复合聚酰亚胺热刺激电流研[D].哈尔滨:哈尔滨理工大学,2004.
    [110]Booth A.H. Calculation of electron trap depths from thermoluminescence maxima[J]. Canadian Journal of Chemistry,1954,32(2):214-215.
    [111]Fan Y., Wang X., Zhang W., et al. Improvement upon our previous method for auto-separating thermally stimulated current curves[J]. Journal of Physics-London-D Applied Physics,1999, 32(1999):2809-2813.
    [112]Lei Q., Wang X., Fan Y. A new method of auto-separating thermally stimulated current[J]. Journal of Applied Physics,1992,72(9):4254-4257.
    [113]Cowell T.A.T., Woods J. The evaluation of thermally stimulated current curves[J]. British Journal of Applied Physics,1967,18:1045-1051.
    [114]Bucci C., Fieschi R., Guidi G. Ionic Thermocurrents in Dielectrics[J]. Physical Review,1966, 148(2):816.
    [115]Ne P Rek S., Smejtek P. Space-charge limited currents in insulators with the Gaussian distribution of traps[J]. Czechoslovak Journal of Physics,1972,22(2):160-175.
    [116]Rizzo A., Micocci G., Tepore A. Space charge limited currents in insulators with two sets of traps distributed in energy:Theory and experiment J]. Journal of Applied physics,1977,48:3415.
    [117]Migahed M.D., Ahmed M.T., Kotp A.E. Thermally stimulated depolarization current studies of the alpha-relaxation in poly (methyl methacrylate)-poly (vinyl chloride) blends and its relation to compensation laws[J]. Journal of Physics-London-D Applied Physics,2000,33(17):2108-2116.
    [118]Burghate D.K., Deogaonkar V.S., Sawarkar S.B., et al. Thermally constant of stimulated discharge current (TSDC) and dielectric semiconducting glasses[J]. Bulletin of Materials Science,2003, 26(2):267-271.
    [119]Halpern V. Thermally stimulated currents in glassy systems[J]. Journal of Physics D-Applied Physics,2003,36(2):169-175.
    [120]Neagu R.M., Neagu E.R. The distribution of the relaxation times and the thermally stimulated depolarization currents[J]. Journal of Optoelectronics and Advanced Materials,2006,8(3):949-955.
    [121]田付强,卜文斌,杨春等.TSC测量技术中存在的若干问题的探讨[J].电工技术学报,2010,25(11):21-28.
    [122]Simmons J.G., Taylor G.W. Theory of non-steady-state interfacial thermal currents in MOS devices, and the direct determination of interfacial trap parameters[J]. Solid-State Electronics,1974, 17(2):125-130.
    [123]Simmons J.G., Tam M.C. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions [J]. Physical Review B, 1973,7(8):3706-3713.
    [124]Qingquan L., Fuqiang T., Chun Y., et al. Modified isothermal discharge current theory and its application in the determination of trap level distribution in polyimide films[J]. Journal of Electrostatics, 2010,68(3):243-248.
    [125]Furetta C. Handbook of thermoluminescence[M]. World Scientific,2003.
    [126]Tian F., Bu W., Yang C, et al. A new method for direct determination of trap level distribution from TSC measurement[C]. IEEE 9th International Conference on the Properties and Applications of Dielectric Materials, Harbin, China,2009:980-983.
    [127]Tian F., Bu W., Shi L., et al. Theory of modified thermally stimulated current and direct determination of trap level distribution[J]. Journal of Electrostatics,2010.
    [128]Mizutani T. Behavior of charge carriers in organic insulating materials[C]. IEEE Annual Conference on Electrical Insulation and Dielectric Phenomena, Kansas,2006:1-10.
    [129]Mizutani T., Suzuoki Y., Hanai M., et al. Determination of trapping parameters from TSC in polyethylene[J]. Japanese Journal of Applied Physics,1982,21(11):1639-1641.
    [130]Kao K.J., Bamji S.S., Perlman M.M. Thermally stimulated discharge current study of surface charge release in polyethylene by corona-generated excited molecules, and the crossover phenomenon[J]. Journal of Applied Physics,1979,50(12):8181-8185.
    [131]Toomer R., Lewis T.J. Charge trapping in corona-charged polyethylene films[J]. J. PHYS. D:APPL. PHYS.,1980,13(7):1343-1356.
    [132]殷之文,方俊鑫.电介质物理学[M].北京:科学出版社,2003.
    [133]雷德铭,李景德.电介质材料物理和应用[M].广州:中山大学出版社,1992.
    [134]Meunier M., Quirke N. Molecular modeling of electron trapping in polymer insulators[J]. Journal of Chemical Physics,2000,113(1):369-376.
    [135]Meunier M., Quirke N., Aslanides A. Molecular modeling of electron traps in polymer insulators: Chemical defects and impurities [J]. Journal of Chemical Physics,2001,115(6):2876-2881.
    [136]Takai Y., Mori K., Mizutani T., et al. Investigation of traps in gamma-irradiated polyethylene by photostimulated detrapping current analysis[J]. Japanese Journal of Applied Physics,1976, 15(12):2341-2347.
    [137]Serra S., Tosatti E., Iarlori S., et al. Interchain electron states in polyethylene[J]. Physical Review B, 2000,62(7):4389-4393.
    [138]Ueno N., Sugita K., Seki K., et al. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes[J]. Physical Review B,1986, 34(9):6386-6393.
    [139]Zakrevskii V.A., Sudar N.T., Zaopo A., et al. Mechanism of electrical degradation and breakdown of insulating polymers[J]. Journal of applied physics,2003,93(4):2135-2140.
    [140]Cubero D., Quirke N., Coker D.F. Electronic states for excess electrons in polyethylene compared to long-chain alkanes[J]. Chemical physics letters,2003,370(1):21-25.
    [141]Tian F.Q., Wang Y., Shi H.S., et al. Bipolar high-repetition-rate high-voltage nanosecond pulser[J]. Review of Scientific Instruments,2008,79(6):63503.
    [142]Nicolais L., Carotenuto G. Metal-polymer nanocomposites[M]. New Jersey:John Wiley & Sons, Inc.,2005.
    [143]Frechette M.F., Vijh A., Utracki L., et al. Nanodielectrics:A Panacea for Solving All Electrical Insulation Problems?[C]. IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 2010:1-29.
    [144]Gacitua W., Ballerini A., Zhang J. Polymer Nanocomposites:Synthetic and Natural Fillers a Review[J]. Maderas. Ciencia y tecnologia,2005,7(3):159-178.
    [145]Huang X., Jiang P., Yin Y. Nanoparticle surface modification induced space charge suppression in linear low density polyethylene[J]. Applied Physics Letters,2009,95:242905.
    [146]Chan C.M., Wu J., Li J.X., et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer, 2002,43(10):2981-2992.
    [147]陈炯,尹毅,李喆等.纳米SiOx/聚乙烯复合介质强场电导的预电应力效应研究[J].中国电机工程学报,2006,26(7):146-151.
    [148]周凯,吴广宁,邓桃等.纳米复合绝缘材料的热刺激电流测试研究[J].中国电机工程学报,2007,27(18):76-82.
    [149]Alison J.M., Mazzanti G., Montanari G.C., et al. Mobility estimation in polymeric insulation through space charge profiles derived by PEA measurements[C]. Annual Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico,2002:35-39.
    [150]Ziari Z., Sahli S., Bellel A. Mobility Dependence on Electric Field in Low Density Polyethylene (LDPE)[J]. M.J. Condensed Matter,2010,12(3):223-226.
    [151]Pope M., Swenberg C.E. Electronic processes in organic crystals[M]. Clarendon Press Oxford, 1982.
    [152]Kao K.C. Dielectric phenomena in solids:with emphasis on physical concepts of electronic processes[M]. Academic Pr,2004.
    [153]Damamme G., LeGressus C., DeReggi A.S. Space charge characterization for the 21st century[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(5):558-584.
    [154]Ahmed N.H., Srinivas N.N., Co D.E. Review of space charge measurements in dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(5):644-656.
    [155]Fleming R.J. Space charge profile measurement techniques:recent advances and future directions[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):967-978.
    [156]高田达雄.电声脉冲法测量空间电荷的原理和方法[M].西安交通大学出版社,1994.
    [157]Takada T., Sakai T. Measurement of Electric Fields at a Dielectric/Electrode Interface Using an Acoustic Transducer Technique[J]. IEEE Transactions on Electrical Insulation,1983,18(6):619-628.
    [158]Dissado L.A., Mazzanti G., Montanari G.C. The role of trapped space charges in the electrical aging of insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(5):496-506.
    [159]Mazzanti G., Montanari G.C., A D.L. Electrical aging and life models:the role of space charge[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):876-890.
    [160]Li J.X., Zhang Y.W., Xia Z.F., et al. Action of space charge on aging and breakdown of polymers [J]. Chinese Science Bulletin,2001,46(10):796-800.
    [161]Montanari G.C. Relation between space charge and polymeric insulation ageing:cause and effect[J]. IEE Proceedings-Science, Measurement and Technology,2003,150(2):53-57.
    [162]Blaise G., Sarjeant W.J. Space charge in dielectrics energy storage and transfer dynamics from atomistic to macroscopic scale [J]. IEEE Transactions on Dielectrics and Electrical Insulation,1998, 5(5):779-808.
    [163]Tanaka Y., Mastui K., Takada T., et al. Analysis of Packet-like Space Charge Behavior in Low-density Polyethylene[C]. IEEE International Conference on Solid Dielectrics, England, 2007:482-485.
    [164]Tanaka H., Ohki Y., Fukunaga K., et al. Space charge distributions in glass fibre/epoxy resin composites under dc lOkV mm(-1) electric field[J]. Journal of Physics D-Applied Physics,2007, 40(5):1489-1496.
    [165]Kao K.C. New theory of electrical discharge and breakdown in low(?)\mobility condensed insulators[J]. Journal of Applied Physics,1984,55(3):752-755.
    [166]屠德民,阚林.高氏聚合物击穿理论的验证及其在电缆上的应用[J].西安交通大学学报,1989,23(2):17-24.
    [167]Tanaka T. Space charge injected via interfaces and tree initiation in polymers[J]. IEEE Transactions on Dielectrics and Electrical Insula,2001,8(5):733-743.
    [168]Tanaka T., Greenwood A. Effects of charge injection and extraction on tree initiation in polyethylene[J]. IEEE Transactions on Power Apparatus and Systems,1978,97(5):1749-1759.
    [169]Mizutani T. Behavior of charge carriers in organic insulating materials[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena,2006:1-10.
    [170]Murakami Y., Okuzumi S., Nagao M., et al. Space Charge Measurement in MgO/LDPE Nanocomposite up to Breakdown under DC Ramp Voltage[J]. IEEJ Transactions on Electrical and Electronic Engineering,2010,5(4):395-399.
    [171]Kaneko K., Mizutani T., Suzuoki Y. Computer simulation on formation of space charge packets in XLPE films[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999,6(2):152-158.
    [172]Ueno N., Sugita K., Seki K., et al. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes[J]. Physical Review B,1986, 34(9):6386-6393.
    [173]Ieda M. Electrical conduction and carrier traps in polymeric materials[J]. Electrical Insulation, IEEE Transactions on,2007,(3):162-178.
    [174]Li X., Du Q., Kang J., et al. Influence of microstructure on space charges of polypropylene[J]. Journal of Polymer Science Part B:Polymer Physics,2002,40(4):365-374.
    [175]Simmons J.G. Conduction in thin dielectric films[J]. Journal of Physics D:Applied Physics,1971, 4:613-657.
    [176]Ikeda M., Shimizu Y. Electrical insulating resin material, electrical insulating material, and electric wire and cable using the same[P]. US 6479590B1.
    [177]Perego G., Albizzati E. Electrical cable for high voltage direct current transmission, and insulating composition[P]. US 2004/0029013Al.
    [178]Carstensen P., Gustafsson A., Farkas A., et al. An electric direct current cable[P]. EP 1057191.
    [179]Gadessaud R., Aladenize B., Tran P., et al. High and very high voltage DC power cable[P]. US 6509527B2.
    [180]Perego G., Albizzati E. Process for producing an electrical cable, particularly for high voltage direct current transmission or distribution[P]. US 6824815.
    [181]Smedberg A., Nilsson U., Campus A., et al. Process for producing a polymer and a polymer for wire and cable applications[P]. US 0168427A1.
    [182]Han S.J., Gross L.H., Wasserman S.H. Polyolefin-based high dielectric strength (HDS) nanocomposites, compositions therefor, and related methods[P]. US 20100230131.
    [183]陈季丹,刘子玉.电介质物理学[M].北京:机械工业出版社,1982.
    [184]雷清泉.高聚物的结构与电性能[M].武汉:华中理工大学出版社,1990.
    [185]雷清泉.工程电介质的最新进展[M].北京:科学出版社,1999.
    [186]Shi N., Ramprasad R. Local properties at interfaces in nanodielectrics:An ab initio computational study[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):170-177.
    [187]巫松桢,谢大荣,陈寿田.电气绝缘材料科学与工程[M].西安交通大学出版社,1996.
    [188]陈炯.聚合物纳米复合材料微观结构对其电荷输运的影响[D].上海:上海交通大学,2005.
    [189]Simamoto S., Sakata Y., Kojima J., et al. Lacquered polymer-ceramic composite dielectric film for capacitors[C]. IEEE International Symposium on Electrical Insulation,1992:140-143.
    [190]Green C, Vaughan A. Nanodielectrics-How much do we really understand?[J]. IEEE Electrical Insulation Magazine,2008,24(4):6-16.
    [191]Nelson J.K. Dielectric Polymer Nanocomposites[M]. NewYork:Springer Verlag Press,2010.
    [192]Tanaka T. Dielectric nanocomposites with insulating properties [J]. IEEE transactions on dielectrics and electrical insulation,2005,12(5):914-928.
    [193]Gordienko V.P., Dmitriev Y.A. The degradation and stability of polyethylene with small additions of metal oxides under UV-irradiation[J]. Polymer degradation and stability,1996,53(1):79-87.
    [194]Van Veldhoven J., Bethlem H.L., Meijer G. AC electric trap for ground-state molecules[J]. Physical review letters,2005,94(8):83001.
    [195]Durr S., Volz T., Marte A., et al. Observation of molecules produced from a Bose-Einstein condensate[J]. Physical review letters,2004,92(2):20406.
    [196]Junglen T., Rieger T., Rangwala S.A., et al. Two-dimensional trapping of dipolar molecules in time-varying electric fields[J]. Physical review letters,2004,92(22):223001.
    [197]Guastavino F., Dardano A., Montanari G.C., et al. Electrical tree growth in EVA-layered silicate nanocomposites[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena,2006:294-297.
    [198]Guastavino F., Dardano A., Squarcia S., et al. An experimental study about electrical treeing inside LDPE nanocomposites[C]. IEEE International Conference on Solid Dielectrics (ICSD),2010:1-4.
    [199]Maringer M.F., Barlow A. Electrical Tree and Water Tree Resistant Polymer Compositions[P]. US4299713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700