若干铁基超导体系电子态相图的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导电性自从1911年由卡默林·昂内斯发现到现在,一直是凝聚态物理研究的一个重要领域。铁基超导体是继20世纪80年代Alex Muller和George Bednoz发现的铜氧化合物超导体后的另一类高温超导体,它的发现是高温超导研究领域的突破,同时也为超导机理研究带来的机遇和挑战。迄今为发现的所有系列的高临界温度超导体都属于掺杂超导体。对于具有层状结构的铜氧化合物超导体,在长程序的反铁磁绝缘母体基础上,通过部分化学掺杂或者改变氧含量引入空穴型或者电子型载流子来实现的。经分析比较得出,各层组成元素的化学特性与超导电性紧密相关。从实验上积累有关的化学组成和结构与超导电性之间的知识,总结出规律性认识,这些对于寻找具有新的组成和机制,以至具有更高Tc的超导体都有着十分重要的意义。对于具有同样的层状结构的铁基超导体,自发现以来,掺杂研究就已经被广泛开展,并取得了重大进展。
     本论文主要着重于铁基化合物的两种体系进行掺杂工作,即“1111”体系和“122”体系。LaFeAsO具有ZrCuSiAs结构,在150 K左右发生SDW序和结构相变,在50 K以下电阻呈现出半导体行为。而EuFe2As2和BaFe2As2化合物属于另外一种称为ThCr2Si2结构的化合物,他们在不同的温度下发生SDW和结构相变。我们通过掺杂,对这几种化合物进行了研究,并且得出了重要结果:在发现了超导的同时,也描绘了磁相图或者掺杂的电子相图,对单晶样品的各向异性也进行了研究。全文共分四章,第一章为绪论部分,回顾了BCS理论,超导表征方法,超导和磁性共存以及量子相变;第二章到第四章是对上述两种体系进行的工作,包括:
     (1)我们在LaFeAsO体系的Fe位进行了Ni掺杂,合成了LaFe1-xNixAsO(0≤x<1)化合物。首次在很狭窄的0.03≤x≤0.06掺杂范围,我们发现了最高的超导转变温度Tc为6.5 K的超导区域。并且我们完成了Ni掺杂LaFeAsO体系的完整相图。我们观察到在超导前的电阻的类似半导体行为,随着Ni的掺杂量增加,超导消失,但是电阻的类似半导体行为依然存在。从相图中看到,在另一端LaNiAsO超导区域,Fe的掺杂是对超导起破坏作用的。
     (2)用自助熔剂法合成了EuFe2As2单晶,并对单晶物性做了表征。通过分析,我们得出了对于EuFe2As2化合物进行了详细的研究,并推论出Eu的磁结构是A型反铁磁的结论。这个结论在一年后被德国小组通过中子实验进一步证明。通过对EuFe2As2的Fe位进行Co掺杂,我们发现对于Co含量达到0.1 1的化合物Eu(Fe0.89Co0.11)2As2,在21 K存在超导转变,但是由于Co掺杂后Eu的磁结构形成了螺旋磁矩,在电阻率曲线中并没有看到零电阻,这是由于Eu2+的磁矩有序排列减少了自发磁通的数量引起的。
     (3)通过P掺杂,我们第一次实现了自旋密度波温度为140 K的BaFe2As2化合物等价掺杂的超导,最高超导转变温度为30 K。经过细致的掺杂工作,我们描绘出了BaFe2As2掺杂P的整体相图。由于P掺杂没有引入额外的载流子,并借助结构分析,我们认为是P掺杂导致的化学压力效应引起超导。通过电阻测量我们发现,伴随着自旋密度波行为的消失以及非费米液体行为的出现,磁量子临界点产生。这个结果与理论推测符合,说明了铁基超导机理很可能与反铁磁涨落有关。
As an important branch in condensed matter physics, superconductivity was firstly discovered by Heike Kamerlingh Onnes in 1911. However, advances in superconductivity continued to proceed slowly. at the same time, many theoretical physicists began to unlock the mysteries of superconductivity by various theories such as the famous BCS theory. In 1986, Georg Bednorz and Alex Muller, working at IBM in Zurich Switzerland, historically found superconductivity at 35 K in copper-oxide ceramics called perovskites beyond the BCS theory. By now, all the high temperature superconductors consist of layered structures, and are obtained by doping methods. Copper oxides, as antiferromagntic Mott insulators, have achieved the highest superconducting transition temperature by doping, which bring electron/hole type carriers. The crystal structure and chemical composition of layers are crucial and sensitive for the emerge of superconductivity. Containing the same layer struc-ture, iron arsenide superconductors have been researched by doping at the beginning of discovery, and many important results have been reported.
     My dissertation focuses on the doping effects on the system of iron arsenides, includ-ing so-called "1111" and "122" compounds. LaFeAsO with the ZrCuSiAs-type structure, shows the magnetic and structural transitions at approximate 150 K. The resistivity exhibits an upturn below 50 K. EuFe2As2 and BaFe2As2 possess the same ThCr2Si2-type structure, however, the magnetic and structural transitions happen at different temperature. By dop-ing methods, superconductivity was realized in the above three compounds, and electronic or magnetic phase diagrams are obtained. The anisotropic properties of single crystals are also investigated by us. A brief introduction of my works during Ph. D. is shown below:
     (1) Superconductivity was realized in LaFeAsO system by nickel doping. We found a narrow superconducting window of 0.03≤x≤0.06 in LaFe1-xNixAsO compounds with a maximum superconducting transition temperature of 6.5 K. The normal-state resistivity strikingly exhibits a semiconducting like behavior. And then, the electronic phase diagram has been established by systematical investigation on LaFe1-xNixAsO (0≤x≤1) in the whole range of x.We found that in the other superconducting range, Fe doping killed the superconductivity of LaNiAsO. And the upturn behavior of resistivity exhibited in the large-scale doping range.
     (2) We have proposed the A-type antiferromagnetic structure for Eu2+ spins in EuFe2As2 system, which has been recently proved by another group using single crystal neutron diffraction. At the same time, magnetic phase diagram of EuFe2As2 were established by us. And then, we have independently found coexistence of superconductivity and local moment ferromagnetism in cobalt doped EuFe2As2.
     (3) Bulk superconductivity induced by an isovalent doping of phosphorus in BaFe2As2 was first reported by us, the maximum transition temperature was 30 K. In the whole phase diagram, Superconductivity emerges at x= 0.32, coinciding with a magnetic quantum crit-ical point which is shown by the disappearance of SDW order and the linear temperature-dependent resistivity in the normal state. we argued that there existed a quantum critical point at x~1/3 in the BaFe2(As1-xPx)2 system.
引文
[1]H. K. Onnes, Leiden Comm.122b,122c (1911).
    [2]B. T. Matthias, T. H. Geballe, S. Geller and E. Corenzwit, Phys. Rev.95,1435 (1954).
    [3]B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit and G. W. Hull, Jr., Phys. Rev.139, A1501 (1965).
    [4]S. Foner, E. J. Macniff, Jr., B. T. Matthias and E. Corenzwit, Proc.11th Intern. Conf. Low Temp. Phys. P1025 (1968).
    [5]G. W. Webb, L. J. Vieland, R. E. Miller and A. Wicklund, Solid State Commun.9,1769 (1971).
    [6]W. L. McMillan, Phys. Rev.167,331 (1968).
    [7]J. G. Bednorz and K. A. Miiller, Z. Physik, B 64,189 (1986)
    [8]Y. Kamihara, T.Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc.130,3296 (2008).
    [9]X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453,761 (2008).
    [10]G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo and N. L. Wang, Phys. Rev. Lett.100,247002 (2008).
    [11]Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou and Z. X. Zhao, Chin. Phys. Lett.25,2215 (2008).
    [12]C. Wang, L. J. Li, S. Chi, Z. W. Zhu, Z. Ren, Y. K. Li, Y. T. Wang, X. Lin, Y. K. Luo, S. Jiang, X. F. Xu, G. H. Cao and Z. A. Xu, Europhys. Lett.83,67006 (2008).
    [13]W. Meissner and R. Ochsenfeld, Naturwissenschaften 21,787 (1933).
    [14]K. Tanigaki, T. Shimizu, K. M. Itoh, J. Teraoka, Y. Moritomo and S. Yamanaka, Nature Mater.2,653 (2003).
    [15]F. London and H. London, Proc. Roy. Soc. (London) A149,71 (1935).
    [16]L. N. Cooper, Phys. Rev.104,1189 (1956).
    [17]J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev.108,1175 (1957).
    [18]向涛,d波超导体,科学出版社(2007).
    [19]周午纵和梁维耀,高温超导基础研究,上海科学技术出版社(1999).
    [20]N. Nguyen, L. Er-Rakho and C. Michel, Mat. Res. Bull 15,891 (1980).
    [21]R. J. Cava, B. Batlogg, R. B. von Dover, J. J. Krajewski, J. V. Waszczak, R. M. Fleming, W. F. Peck, L. W. Rupp, P. Marsh, A. C. W. P. James, L. F. Schneemeyer, Nature 345,602 (1990).
    [22]R. J. Cava, A. Santoro, J. J. Krajewski, R. M. Fleming, J. V. Wasczak, W. F. Peck Jr and P. Marsh, Physica C 172,138 (1990).
    [23]Y. Tokura, H. Takagi and S. Uchida, Nature 337,345 (1989).
    [24]A. Damascelli, Z. Hussain and Z. X. Shen, Rev. Mod. Phys.75,473541 (2003).
    [25]J. M. Tarascon, L. H. Greene, P. Barboux, W. R. McKinnon, G. W. Hull, T. P. Orlando, K. A. Delin, S. Foner and E. J. McNiff, Jr. Phys. Rev. B 36,8393 (1987)
    [26]J. Sugiyama, S. Tokuono, S. Koriuama, H. Yamauchi, S. Tanaka, ibid.43,315 (1989).
    [27]G. Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai and C. L. Chien, Phys. Rev. Lett.60,1446 (1988).
    [28]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett.58,908 (1987).
    [29]Z. X. Zhao, L. Chen, Q. yang et al. Chin. Sci. Bull.32,661 (1987)
    [30]张其瑞,中国科学(A),23,409(1993).
    [31]V. L. Ginzburg, Sov. Phys. JETP 4,153(1957).
    [32]G. F. Zharkov, Zh. Eksperim. i Teor. Fiz.34,412(1959).
    [33]B. T. Matthias, H. Suhl and E. Corenzwit, Phys. Rev. Lett.1,449 (1958).
    [34]N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett.17,433 (1966).
    [35]U. Krey,Int. J. Magn.4,153 (1973).
    [36]W. A. Fertig, D. C. Johnston, L. E. Delong, R.W. McCallium, M. P. Maple and B. T. Matthias, Phys. Rev. Lett.38,987 (1977).
    [37]M. Ishikawa and φ Fischer, Solid State Commun.23,37 (1977).
    [38]L. Bauernfeind, W. Widder and H. F. Braun, Physica C 254,151(1995).
    [39]D. Aoki, A. Huxley, E. Rossouche, D. Braithwaite, J. Flouquet, J. P. Brison, E. Lhotel, C. Paulsen, Nature 413,613 (2001).
    [40]C. Domb, The Critical Point:a Historical Introduction to the Modern Theory of Crit-ical Phenomena (Taylor and Francis, London,1996).
    [41]P. Coleman, A. J. Schofield, 黄娆, 曹则贤物理34,336 (2005).
    [42]P. Coleman and A. J. Schofield, Nature 433,226 (2005).
    [43]J. Hertz, Phys. Rev. B 14,1165 (1976).
    [44]R. B. Laughlin, G. G. Lonzarich, P. Monthoux and D. Pines, Adv. Phys.50,361 (2001).
    [45]H. v. Lohneysen, T. Pietrus, G. Portisch, H. G. Schlager, A. Schroder, M. Sieck, and T. Trappmann, Rev. Mod. Phys.73,797 (2001).
    [46]G. R. Stewart, Rev. Mod. Phys.73,797 (2001).
    [47]S. R. Julian, C. Pfleiderer, F. M. Grosche, N. D. Mathur, G. J. McMullan, A. J. Diver, I. R. Walker and G. G. Lonzarich, J. Phys. Condens. Matt.8,9675 (1996).
    [48]S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich, S. I. Ikeda, Y. Maeno, A. J. Millis and A. P. Mackenzie, Science 294,329 (2001).
    [49]N. Doiron-Leyraud, I. R. Walker, L. Taillefer, M. J. Steiner, S. R. Julian and G. G. Lonzarich, Nature 425,595 (2003).
    [50]A. Schroder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H.v. Lohneysen, E. Bucher, R. Ramazashvili and P. Coleman, Nature 407,351 (2000).
    [51]S. A. Grigera, P. Gegenwart, R. A. Borzi, F. Weickert, A. J. Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A. G. Green, A. P. Mackenzie, Science 306,1154 (2004).
    [52]K. H. Kim, N. Harrison, M. Jaime, G. S. Boebinger, and J. A. Mydosh, Phys. Rev. Lett.91,256401 (2003).
    [53]V. Johnson and W. Jeitschko, J. Solid State Chem.11,161 (1974).
    [54]B. I. Zimmer, W. Jeitschko, J. H. Albering, R. Glaum and M. Reehuis, J. Alloys Comp. 229,238(1995).
    [55]H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano and Hideo Hosono, Nature, 453,376 (2008).
    [56]M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus,Y. Luan and V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean and G. J. Long, Phys. Rev. B 78,094517 (2008).
    [57]T. Nomura, S.W. Kim, Y. Kamihara, M. Hirano, P. V. Sushko, K. Kato, M. Takata, A. L. Shluger, and H. Hosono, Supercond. Sci. Technol.21,125028 (2008).
    [58]C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang and P. C. Dai, Nature,453,889 (2008).
    [59]D. J. Singh and M. H. Du, Phys. Rev. Lett.100,237003 (2008).
    [60]G. M. Zhang, Y. H. Su, Z. Y. Lu, Z. Y. Weng, D. H. Lee and T. Xiang, Europhys. Lett. 86,37006 (2009).
    [61]H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Y. Zhu, Europhys. Lett.82,17009 (2008).
    [62]F. J. Ma and Z. Y. Lu, Phys. Rev. B 78,033111 (2008).
    [63]V. Cvetkovic and Z. Tesanovic, Europhys. Lett.85,37002 (2009).
    [64]J. Wu, P. Phillips, and A. H. Castro Neto, Phys. Rev. Lett.101,126401 (2008).
    [65]G. Xu, W. Ming, Y. Yao, X. Dai, S.-C. Zhang, and Z. Fang, Europhys. Lett.82,67002 (2008).
    [66]A. S. Sefat, A. Huq, M. A. McGuire, R. Y. Jin, B. C. Sales, D. Mandrus, L. M. D. Cranswick, P. W. Stephens, and K. H. Stone, Phys. Rev. B 78,104505 (2008).
    [67]C. Wang, Y. K. Li, Z. W. Zhu, S. Jiang, X. Lin, Y. K. Luo, S. Chi, L. J. Li, Z. Ren, M. He, H. Chen, Y.T. Wang, Q. Tao, G. H. Cao, and Z. A. Xu,Phys. Rev. B 79,054521 (2009).
    [68]M. A. McGuire, A. D. Christianson, A. S. Sefat, B. C. Sales, M. D. Lumsden, R. Jin, E. A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J. W. Brill, R. P. Hermann, M. T. Sougrati, F. Grandjean, and G. J. Long, Phys. Rev. B 78,094517 (2008).
    [69]Z. Li, G. F. Chen, J. Dong, G. Li, W. Z. Hu, D. Wu, S. K. Su, P. Zheng, T. Xiang, N. L. Wang, and J. L. Luo, Phys. Rev. B 78,060504(R) (2008).
    [70]Y. Kohama, Y. Kamihara, M. Hirano, H. Kawaji, T. Atake, and H. Hosono, Phys. Rev. B 78,020512(R) (2008).
    [71]N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev.147,295 (1966).
    [72]A. M. Clogston, Phys. Rev. Lett.9,266 (1962)
    [73]B. S. Chandrasekhar, Appl. Phys. Lett.1,7 (1962).
    [74]F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Nature 453,903 (2008).
    [75]G. Fuchs, S. L. Drechsler, N. Kozlova, G. Behr, A. Koler, J. Werner, K. Nenkov, R. Klingeler, J. Hamann-Borrero, C. Hess, A. Kondrat, M. Grobosch, A. Narduzzo, M. Knupfer, J. Freudenberger, B. Buhner, and L. Schultz, Phys. Rev. Lett.101,237003 (2008).
    [76]R. Klingeler, N. Leps, I. Hellmann, A. Popa, U. Stockert, C. Hess, V. Kataev, H.-J. Grafe, F. Hammerath, G. Lang, G. Behr, L. Harnagea, S. Singh and B. Buechner, Phys. Rev.B 81,024506(2010)
    [77]G. A. Bain and J. F. Berry, J. Chem. Educ.85,532 (2008).
    [78]J. Zhao, Q. Huang, C. de la Cruz, S. L. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. C. Dai, Nature Mater.7,953 (2008).
    [79]Y. L. Chen, C. H. Cheng, Y. J. Cui, H. Zhang, Y. Zhang, Y. Yang and Y. Zhao, J. Am. Chem. Soc.131,10338 (2009).
    [80]J. H. Dai, Q. Si, J. X. Zhu, and E. Abrahams, Proc. Natl. Acad. Sci. U.S.A.106,4118 (2009).
    [81]Q. Tao, Z. W. Zhu, X. Lin, G. H. Cao, Z. A. Xu, G. F. Chen, J. L. Luo and N. L. Wang. J. Phys.:Condens. Matter 22,072201 (2010).
    [82]R. Marchand and W. Jeitschko, J. Solid State Chem.24,351 (1978).
    [83]H. Raffius, E. Morsen, B. D. Mosel, W. Muller Warmuth, W. Jeitschko, L. Terb-uchte, and T. Vomhof, J. Phys. Chem. Solids 54,135 (1993).
    [84]T. Kimura and Y. Tokura, Annu. Rev. Mater. Sci.30,451 (2000).
    [85]Z. Ren, Z. W. Zhu, S. Jiang, X. F. Xu, Q. Tao, C. Wang, C. M. Feng, G. H. Cao, and Z.-A. Xu, Phys. Rev. B 78,052501 (2008).
    [86]H. S. Jeevan, Z. Hossain, D. Kasinathan, H. Rosner, C. Geibel, and P. Gegenwart, Phys. Rev. B 78,052502 (2008).
    [87]H. S. Jeevan, Z. Hossain, Deepa Kasinathan, H. Rosner, C. Geibel, and P. Gegenwart, Phys. Rev. B 78,092406 (2008).
    [88]Y. P. Qi, Z. S. Gao, L. Wang, D. L. Wang, X. P. Zhang and Y. W. Ma, New J. Phys. 10,123003 (2008).
    [89]Z. Ren, Q. Tao, S. Jiang, C. M. Feng, C. Wang, J. H. Dai, G. H. Cao, and Z. A. Xu, Phys. Rev. Lett.102,137002 (2009).
    [90]C. F. Miclea, M. Nicklas, H. S. Jeevan, D. Kasinathan, Z. Hossain, H. Rosner, P. Gegenwart, C. Geibel, and F. Steglich, Phys. Rev. B 79,212509 (2009).
    [91]X. F. Wang, T. Wu, G. Wu, H. Chen, Y. L. Xie, J. J. Ying, Y. J. Yan, R. H. Liu, and X. H. Chen, Phys. Rev. Lett.102,117005 (2009).
    [92]Raffius H, Mosen E, Mosel B D, Muller Warmuth W, JeitschkoW, Terbuhte L and Vomhof T, J. Phys. Chem. Solids 54,135 (1993)
    [93]E.O. Wollan and W. C. Koehler Phys. Rev.100,545 (1955).
    [94]J. W. Lynn, S. Skanthakumar, Q. Huang, S. K. Sinha, Z. Hossain, L. C. Gupta, R. Nagarajan and C. Godart, Phys. Rev. B 55,6584 (1997).
    [95]C. Detlefs, F. Bourdarot, P. Burlet, P. Dervenagas, S. L. Bud' ko and P. C. Canfield, Phys. Rev. B 61, R14916 (2000).
    [96]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett.61,2472 (1988).
    [97]J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang and N. L. Wang, Europhys. Lett.83,27006 (2008).
    [98]D. Saint-James, G. Sarma, and E. J. Thomas, Type Ⅱ Superconductivity (Pergamon, New York,1969).
    [99]P. W. Anderson and H. Suhl, Phys. Rev.116,898 (1959).
    [100]Y. Xiao, Y. Su, M. Meven, R. Mitta C. M. N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S. K. Dhar, A. Thamizhave, and Th. Brueckel, Phys. Rev. B 80,174224 (2009).
    [101]S. Jiang, Y. K. Luo, Z. Ren, Z. W. Zhu, C. Wang, X. F. Xu, Q. Tao, G. H. Cao, and Z. A. Xu, New J. Phys.11,025007 (2009).
    [102]H. S. Greenside, E. I. Blount, and C. M. Varma, Phys. Rev. Lett.46,49 (1981).
    [103]M. Tachiki, H. Matsumoto, T. Koyama, and H. Umezawa, Solid State Commun.34, 19(1980).
    [104]L. N. Bulaevskii, A. I. Buzdin, M. L. Kulic, and S. V. Panjukov, Adv. Phys.34,175 (1985).
    [105]D. Wu, N. Barisic, N. Drichko, S. Kaiser, A. Faridian, M. Dressel, S. Jiang, Z. Ren, L. J. Li, G. H. Cao, Z. A. Xu, H. S. Jeevan, and P. Gegenwart, Phys. Rev. B 79,155103 (2009).
    [106]J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal,Y. Xiao, Th. Bruckel, N. Kumar, S. Dhar, A. Thamizhavel, and L. Paolasini, Phys. Rev. B 80,134411 (2009).
    [107]Q. Zheng, Y. He, T. Wu, G. Wu, H. Chen, J. Ying, R. Liu, X. Wang, Y. Xie, Y. Yan, Q. Li, and X. Chen, arXiv:0907.5547 (unpublished).
    [108]H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457,565 (2009).
    [109]A. Herpin, Acad. Sci., Paris, C. R.246,3170 (1958); 249,1334 (1959).
    [110]S. Blundell, Magnetism in Condensed Matter (Oxford University Press, New York, 2001).
    [111]T. K. Ng and C. M. Varma, Phys. Rev. Lett.78,330 (1997).
    [112]D. Dominguez, E. A. Jagla, and C. A. Balseiro, Phys. Rev. Lett.72,2773 (1994).
    [113]A. I. Buzdin, Rev. Mod. Phys.77,935 (2005).
    [114]M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pottgen, Phys. Rev. B 78,020503(R) (2008)
    [115]W. Assmus, M. Herrmann, U. Rauchschwalbe, S. Riegel, W. Lieke, H. Spille, S. Horn, G. Weber, F. Steglich and G. Cordier, Phys. Rev. Lett.52,469 (1984).
    [116]R. N. Shelton, H. F. Braun, and E. Musick, Solid State Commun.52,797 (1984).
    [117]M. Francois, G. Venturini, J. F. Mareche, B. Malaman, and B. Roques, J. Less-Common Met.113,231 (1985).
    [118]W. Jeitschko, R. Glaum, and L. Boonk, J. Solid State Chem.69,93 (1987).
    [119]M. Hirjak, P. Lejay, B. Chevalier, J. Etourneau, and P. Hagenmuller, J. Less-Common Met.105,139(1985).
    [120]T. Mine, H. Yanagi, T. Kamiya, Y. Kamihara, M. Hirano, and H. Hosono, Solid State Commun.147,111(2008).
    [121]N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud' ko, P. C. Canfield, Phys. Rev. B 78,014523 (2008).
    [122]K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y. Y. Xue, C. W. Chu, Phys. Rev. Lett.101,107007 (2008).
    [123]M. Pfisterer and G. Nagorsen, Z. Naturforsch. B:Chem. Sci.38,811 (1983).
    [124]R. Marchand, W. Jeitschko, J. Solid State Chem.24,351(1978).
    [125]Q. Huang, Y. Qiu, Wei Bao, M. A. Green, J.W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.101,257003 (2008).
    [126]G. Xu, H. J. Zhang, X. Dai and Z. Fang, Europhys. Lett.84,67015 (2008).
    [127]M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett.101,107006 (2008).
    [128]H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo and N. L. Wang, Europhys. Lett.83,47001 (2008).
    [129]A. S. Sefat, R. Y. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, Phys. Rev. Lett.101,117004 (2008).
    [130]L. J. Li, Y. K. Luo, Q. B. Wang, H. Chen, Z. Ren, Q. Tao, Y. K. Li, X. Lin, M. He, Z. W. Zhu, G. H. Cao, and Z. A. Xu, New J. Phys.11,025008 (2009).
    [131]P. L. Alireza, Y T. Chris Ko, J. Gillett, C. M. Petrone, J. M. Cole, G. G. Lonzarich and S. E. Sebastian, J. Phys.:Condens. Matter 21,012208 (2009).
    [132]F. Izumi and T. Ikeda, Mater. Sci. Forum 321,198 (2000).
    [133]Q. Huang, Y. Qiu, Wei Bao, M. A. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett.101,257003 (2008).
    [134]Q. M. Si and E. Abrahams, Phys. Rev. Lett.101,076401 (2008).
    [135]T. Yildirim, Phys. Rev. Lett.101,057010 (2008).
    [136]M. Gooch, L. Bing, B. Lorenz, A. M. Guloy and C. W. Chu, Phys. Rev. B 79,104504 (2009).
    [137]S. A. J. Kimber, A. Kreyssig, Y. Z. Zhang, H. O. Jeschke, R. Valenti, F. Yokaichiya, E. Colombier, J. Q. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Canfield, A. I. Goldman and D. N. Argyriou, Nature Mater.8,471, (2009).
    [138]T. Moriya and K. Ueda, Rep. Prog. Phys.66,1299 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700