MOCVD法制备氧化锌发光器件及薄膜晶体管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌材料是一种直接带隙宽禁带半导体材料,其在固体照明、信息存储以及显示领域具有巨大的应用潜力。然而,高质量、稳定、可重复的p-ZnO薄膜的制备一直存在较大困难,使得ZnO基高效率紫外发光器件的研究进展缓慢。本论文采用MOCVD技术,围绕高质量ZnO薄膜的制备、ZnO的p型掺杂和ZnO基同质结、异质结发光二极管的制备等方面开展了相关的一系列工作。同时,在制备ZnO薄膜晶体管方面也进行了初步的研究。
     本论文首先采用MOCVD生长技术在c面蓝宝石、GaN/Al2O3衬底上制备了ZnO薄膜,采用多种测试手段对制备的ZnO薄膜进行了表征分析,重点研究了生长温度以及锌氧比对薄膜结晶质量、形貌以及发光质量等方面的影响。通过实验得到了获得较高质量ZnO薄膜相对优化的生长条件。
     其次介绍了针对两种v族元素As和P的不同掺杂方法。对于As元素,采用了GaAs夹层的掺杂技术,通过热扩散工艺制备了As掺杂的p型ZnO薄膜。对于P元素,采用了升华的方法,制备出P掺杂的p-ZnO。通过优化生长条件,得到了载流子浓度在1017cm-3量级的p-ZnO薄膜。
     以前面As掺杂制备p型ZnO的研究为基础,在ITO玻璃衬底上制备出具有紫外电致发光特性的ZnO同质结LED;以P掺杂制备p型ZnO的研究为基础,在n-GaN/Al2O3衬底上制备了p-ZnO:P/n-GaN异质结构的ZnO基发光器件。此外,还在ITO玻璃衬底上制备了基于MIS结构的发光器件。三种器件结构均表现出明显的整流特性,实现了室温下的电致发光。其中,p-ZnO:P/n-GaN异质结构ZnO基发光器件,实现了室温电泵浦紫外光激射。
     最后,采用MOCVD方法在ITO玻璃衬底表面制备了以MgO为绝缘介质的ZnO薄膜晶体管,优化后器件的开关比达到了105量级。
As an II-VI group semiconductor, ZnO has attracted great interest for its wide band gap (3.37eV) and relatively large exciton binding energy (60meV) at room temperature. It has been regarded as one of the most promising candidates for the next generation of ultraviolet (UV) light-emitting diode (LED) and lasing diode (LD) operating at high temperatures and in hard environments.However, after years of research, the progress of ZnO-based light-emitting devices is very slow. One key problem is the lack of device-quality ZnO films, especially the stable and reproducible p-type ZnO films.
     In this thesis, many research works are conducted to fabricae high quality native ZnO films, p-ZnO films, ZnO-based homojunction and heterofunction short wavelength light-emitting devices. ZnO films and p-type doping of ZnO thin films are grown on many kinds of substrates by Metal-Organic Chemical Vapor Deposition (MOCVD) technique, and the effects of growth conditions on the structural, surface morphology and optical properties of the deposited ZnO films have been investigated.
     ZnO films are grown by MOCVD on c-plane sapphire and GaN/Al2O3 substrates. The effects of the growth temperature and source gas flow ratios on the properties of the films are analysed and the range of optimized growth conditions are obtained.
     MIS structure of light-emitting devices is fabricated on ITO-glass substrate by MOCVD, and the material of insulating layer is MgO. The turn-on voltage is about 2V and the reverse breakdown voltage higher than -6 V. Ultraviolet (Center wavelength 379nm) electroluminescence (EL) from ZnO layer are observed under forward bias at room temperature (RT).
     The p-type ZnO:As layer is formed using GaAs interlayer as the As precursor. The GaAs interlayer was pre-deposited on ITO substrate by sputtering method. The thickness of GaAs interlayer is the key to fabricate the p-ZnO films. When the thickness of GaAs interlayer is 20nm, the electrical properties of As-doped p-ZnO films show hole concentration of 1017/cm3. Based on the p-ZnO:As film, ZnO homojunction LED with is fabricated on ITO-glass by MOCVD. The device exhibits desirable rectifying behaviour. Ultraviolet and visible light electroluminescence are observed from ZnO homojunction device under forward bias at room temperature.
     P-doped ZnO films (p-ZnO:P) are grown by MOCVD techniques, and sublimate the red phosphorus as the doping source.On this basis, p-ZnO:P/n-GaN heterojunction light-emitting device is fabricated on n-GaN substrate by MOCVD.The device exhibits desirable rectifying behaviour. The electrical pump UV lasing (Centred at 375nm)is detected from this device at room temperature, and the threshold current density is only 1.2A/cm2.
     ZnO transparent thin-film transistors with MgO as a gate dielectric were fabricated on ITO substrate by all MOCVD technology. The drain current can be modulated by the voltage of gate. Experiment results show that the ZnO-TFTs operate in n-channel mode with an on/off ratio about 105.
引文
[1]凌玲,半导体材料的发展现状[J].新材料产业,2003,(6):6-10.
    [2]U. Ozgur, Y.I. Alivov, C. Liu, et al., A comprehensive review of ZnO materials and devices. [J].Journal of Applied Physics,2005,98(4):041301.
    [3]K. Meyer, A. Barz, and D. Stachel, A study of the structure of binary magnesium ultraphosphate glasses by vibrational spectroscopy. [J].Ceramics-Silikaty,1999,43(4):169-174.
    [4]D.C. Reynolds, D.C. Look, and B. Jogai, Optically pumped ultraviolet lasing from ZnO. [J].Solid State Communications,1996,99(12):873-875.
    [5]A. Nakamura, J. Ishihara, S. Shigemori, et al., Znl-xCdxO/ZnO heterostructures for visible light emitting devices. [J].Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2005,44(1-7):L4-L6.
    [6]W. Liu, S.L. Gu, S.M. Zhu. et al., The deposition and annealing study of MOCVD ZnMgO. [J].Journal of Crystal Growth,2005,277(1-4):416-421.
    [7]C. Thiandoume, A. Lusson, P. Galtier, et al., Temperature dependence of Znl-xMgxO films grown on c-plane sapphire by metal organic vapor phase epitaxy. [J].Journal of Crystal Growth,2010. 312(9):1529-1533.
    [8]A. Nakamura, J. Ishihara, S. Shigemori, et al., Characterization of wurtzite Zn1-xCdxO films using remote plasma-enhanced metalorganic chemical vapor deposition. [J].Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2004,43(11A):L1452-L1454.
    [9]孙景昌,p-ZnO薄膜和ZnO发光器件的制备与研究.[D].大连:大连理工大学,2009.
    [10]A.F. Kohan, G. Ceder, D. Morgan, et al., First-principles study of native point defects in ZnO. [J].Physical Review B,2000,61(22):15019-15027.
    [11]F. Oba, A. Togo, I. Tanaka, et al., Defect energetics in ZnO:A hybrid Hartree-Fock density functional study. [J].Physical Review B,2008,77(24):245202.
    [12]S.B. Zhang, S.H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. [J].Physical Review B,2001.6307(7):075205.
    [13]A. Janotti and C.G. Van de Walle, Native point defects in ZnO. [J].Physical Review B,2007.76(16): 165202.
    [14]C.G. Van de Walle. Defect analysis and engineering in ZnO. [J].Physica B-Condensed Matter,2001. 308:899-903.
    [15]C.G. Van de Walle, Hydrogen as a cause of doping in zinc oxide. [J].Physical Review Letters,2000. 85(5):1012-1015.
    [16]E.V. Lavrov, Infrared absorption spectroscopy of hydrogen-related defects in ZnO. [J].Physica B-Condensed Matter,2003.340:195-200.
    [17]L.Y. Chen. W.H. Chen, J.J. Wang, et al., Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. [J].Applied Physics Letters,2004.85(23):5628-5630.
    [18]D.C. Look and B. Claftin. P-type doping and devices based on ZnO. [J].Physica Status Solidi B-Basic Research,2004.241(3):624-630.
    [19]D.H. Zhang, Z.Y. Xue, and Q.P. Wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. [J].Journal of Physics D-Applied Physics,2002, 35(21):2837-2840.
    [20]J.S. Kang, H.S. Kang, S.S. Pang, et al., Investigation on the origin of green luminescence from laser-ablated ZnO thin film. [J].Thin Solid Films,2003,443(1-2):5-8.
    [21]B.X. Lin, Z.X. Fu, and Y.B. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. [J].Applied Physics Letters,2001,79(7):943-945.
    [22]H.S. Kang, J.S. Kang, J.W. Kim, et al., Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. [J].Journal of Applied Physics,2004,95(3):1246-1250.
    [23]沈学础,半导体光谱和光学性质.[M].科学出版社,2002.
    [24]B.K. Meyer, H. Alves, D.M. Hofmann, et al., Bound exciton and donor-acceptor pair recombinations in ZnO. [J].Physica Status Solidi B-Basic Research,2004,241(2):231-260.
    [25]F. Leiter, H. Alves, D. Pfisterer, et al., Oxygen vacancies in ZnO. [J].Physica B-Condensed Matter,2003, 340:201-204.
    [26]Z.B. Fang, Y.Y. Wang, D.Y. Xu, et al., Blue luminescent center in ZnO films deposited on silicon substrates. [J].Optical Materials,2004,26(3):239-242.
    [27]N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, et al., The influence of defect drift in external electric field on green luminescence of ZnO single crystals. [J].Journal of Luminescence,2003,102:733-736.
    [28]A. Janotti and C.G. Van de Walle, New insights into the role of native point defects in ZnO. [J].Journal of Crystal Growth,2006,287(1):58-65.
    [29]X.L. Wu, G.G. Siu, C.L. Fu, et al., Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. [J].Applied Physics Letters,2001,78(16):2285-2287.
    [30]W.T. Moon, Y.K. Jun, H.S. Kim, et al., CO gas sensing properties in Pd-added ZnO sensors. [J].Journal of Electroceramics,2009,23(2-4):196-199.
    [31]X.H. Wang, J. Zhang, Z.Q. Zhu, et al., Effect of Pd2+ doping on ZnO nanotetrapods ammonia sensor. [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,276(1-3):59-64.
    [32]E.M. El-Meliegy, H.I. Saleh, and M. Selim, Sintering and characterization of bismuth-oxide-containing zinc oxide varistors. [J].Materials Characterization,2004,52(4-5):371-378.
    [33]韦敏,邓宏,王培利,等,ZnO基紫外探测器的研究进展与关键技术.[J].材料导报,2007,(12).
    [34]L.W. Chang, M. McMillen, F.D. Morrison, et al., Size effects on thin film ferroelectrics:Experiments on isolated single crystal sheets. [J].Applied Physics Letters,2008,93(13):132904.
    [35]叶志镇,张银珠,陈汉鸿,等.ZnO光电导紫外探测器的制备和特性研究.[J].电子学报,2003,(11).
    [36]Z.-Q. Xu, H. Deng, J. Xie, et al., Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method. [J].Applied Surface Science,2006,253(2):476-479.
    [37]K.W. Liu, D.Z. Shen, C.X. Shan, et al., Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection. [J].Applied Physics Letters,2007,91(20):201106.
    [38]L.K. Wang, Z.G. Ju, J.Y. Zhang, et al., Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. [J].Applied Physics Letters,2009,95(13):131113.
    [39]吕建国.ZnO半导体光电材料的制备及其性能的研究.[D].浙江大学材料与化学工程学院,2005.
    [40]T.Z.K. Zu P. Wong G K L. et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. [J].Solid State Communications,1997,103(8):459-463.
    [41]R.F. Service. Will UV Lasers Beat the Blues? [J].Materials Science,1997.276(5314):895.
    [42]T. Aoki, Y. Hatanaka, and D.C. Look, ZnO diode fabricated by excimer-laser doping. [J].Applied Physics Letters,2000,76(22):3257-3258.
    [43]X.L. Guo, J.H. Choi, H. Tabata, et al., Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. [J].Japanese Journal of Applied Physics Part 2-Letters,2001, 40(3A):L177-L180.
    [44]H. Hosono, H. Ohta, K. Hayashi, et al., Near-UV emitting diodes based on a transparent p-n Junction composed of heteroepitaxially grown p-SrCu2O2 and n-Zno. [J].Journal of Crystal Growth,2002, 237:496-502.
    [45]Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, et al., Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. [J].Applied Physics Letters,2003, 83(23):4719-4721.
    [46]A. Tsukazaki, A. Ohtomo, T. Onuma, et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. [J].Nature Materials,2005,4(1):42-46.
    [47]S.J. Jiao, Z.Z. Zhang, Y.M. Lu, et al., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates. [J].Applied Physics Letters,2006,88(3):031911.
    [48]D.J. Rogers, F.H. Teherani, A. Yasan, et al., Electroluminescence at 375 nm from a ZnO/GaN Mg/c-Al2O3 heterojunction light emitting diode. [J].Applied Physics Letters,2006,88(14):141918.
    [49]W. Liu, S.L. Gu, J.D. Ye, et al.. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. [J].Applied Physics Letters,2006,88(9):092101.
    [50]P.L. Chen, X.Y. Ma, and D.R. Yang, Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. [J].Journal of Applied Physics,2007,101 (5):053103.
    [51]G. Du, Y.G. Cui, X.C. Xia, et al., Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. [J].Applied Physics Letters,2007, 90(24):243504.
    [52]J.C. Sun, H.W. Liang, J.Z. Zhao, et al., Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N2O plasma ambient. [J].Chemical Physics Letters,2008,460(4-6):548-551.
    [53]X.P. Li, B.L. Zhang. X. Dong, et al., Room temperature electroluminescence from ZnO/Si heterojunction devices grown by metal-organic chemical vapor deposition. [J].Journal of Luminescence, 2009,129(1):86-89.
    [54]M.T. Chen. M.P. Lu, Y.J. Wu. et al., Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays. [J].Nano Letters,2010,10(11):4387-4393.
    [55]Y.R. Ryu, J.A. Lubguban, T.S. Lee. et al., Excitonic ultraviolet lasing in ZnO-based light emitting devices. [J].Applied Physics Letters.2007,90(13):131115.
    [56]S. Chu, M. Olmedo, Z. Yang, et al., Electrically pumped ultraviolet ZnO diode lasers on Si. [J].Applied Physics Letters,2008,93(18):181106.
    [57]C.F. Zhang, F. Zhang, T. Xia, et al., Low-threshold two-photon pumped ZnO nanowire lasers. [J].Optics Express,2009.17(10):7893-7900.
    [58]Z. Guo. D.X. Zhao, Y.C. Liu. et al., Electrically Pumped Single-Mode Lasing Emission of Self-Assembled n-ZnO Microcrystalline Film/p-GaN Heterojunction Diode. [J].Journal of Physical Chemistry C.2010,114(36):15499-15503.
    [59]W.H. RYU Y R, ZnO-based LEDs begin to show full-color potential. [J].Compound Semiconductor, 2006,12(7):16-18.
    [60]Y.R. Ryu, T.S. Lee, J.A. Lubguban, et al., Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. [J].Applied Physics Letters,2006,88(24):241108.
    [61]H. Zhu, C.X. Shan, B. Yao, et al., Ultralow-Threshold Laser Realized in Zinc Oxide. [J].Advanced Materials,2009,21(16):1613.
    [62]K. Nomura, H. Ohta, K. Ueda, et al., Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. [J].Science,2003,300(5623):1269-1272.
    [63]F. Cao, Z.Y. Song, Y.P. An, et al., Highly transparent and conductive Tantalum-doped ZnO films prepared by radio frequency sputtering. [J].Oxide-Based Materials and Devices,2010,7603:340.
    [64]J.H. Kim, J.Y. Moon, H. Kim, et al., Transparent Multilayer Indium-Zinc-Oxide Films Deposited by DC Sputtering. [J].Journal of the Korean Physical Society,2009,55(5):1931-1935.
    [65]S. Singh, R. Kumar, T. Ganguli, et al., High optical quality ZnO epilayers grown on sapphire substrates by reactive magnetron sputtering of zinc target. [J]. Journal of Crystal Growth,2008,310(22):4640-4646.
    [66]A. Dadgar, N. Oleynik, J. Blasing, et al., Heteroepitaxy and nitrogen doping of high-quality ZnO. [J].Journal of Crystal Growth,2004,272(1-4):800-804.
    [67]J.M. Pierce, B.T. Adekore, R.F. Davis, et al., Growth of dense ZnO films via MOVPE on GaN(0001) epilayers using a low/high-temperature sequence. [J].Journal of Crystal Growth,2005,277(1-4):345-351.
    [68]X.L. Chen, X.H. Geng, J.M. Xue, et al., Two-step growth of ZnO films with high conductivity and high roughness. [J].Journal of Crystal Growth,2007,299(1):77-81.
    [69]H. Nishiyama, H. Miura, K. Yasui, et al., Fabrication of high-electron-mobility ZnO epilayers by chemical vapor deposition using catalytically produced excited water. [J].Journal of Crystal Growth, 2010,312(4):483-486.
    [70]T. Muranaka, T. Sakano, K. Mizuguchi, et al., XRD characterization of ZnO layers grown on GaAs(111)B, c-plane and a-plane sapphire substrates by plasma-assisted MBE. [J].Physica Status Solidi C:Current Topics in Solid State Physics, Vol 7 No 6,2010,7(6):1556-1558.
    [71]J.S. Park, S.K. Hong, T. Minegishi, et al., The high quality ZnO growth on c-Al2O3 substrate with Cr2O3 buffer layer using plasma-assisted molecular beam epitaxy. [J].Applied Surface Science,2008, 254(23):7786-7789.
    [72]S.C. Su, Y.M. Lu, Z.Z. Zhang, et al., Structural, optical, and hydrogenation properties of ZnO nanowall networks grown on a Si (111) substrate by plasma-assisted molecular beam epitaxy. [J].Physica B-Condensed Matter,2008,403(17):2590-2593.
    [73]S. Lemlikchi, S. Abdelli-Messaci, S. Lafane, et al., Study of structural and optical properties of ZnO films grown by pulsed laser deposition. [J].Applied Surface Science,2010,256(18):5650-5655.
    [74]H.C. Chen, M.J. Chen, T.C. Liu, et al., Structure and stimulated emission of a high-quality zinc oxide epilayer grown by atomic layer deposition on the sapphire substrate. [J].Thin Solid Films,2010, 519(1):536-540.
    [75]C.Y. Zhang. High-quality oriented ZnO films grown by sol-gel process assisted with ZnO seed layer. [J] Journal of Physics and Chemistry of Solids,2010.71(3):364-369.
    [76]李香萍.ZnO薄膜的MOCVD制备及ZnO/Si发光器件研究.[D].长春:吉林大学.2009.
    [77]董鑫.MgZnO薄膜材料的MOCVD法生长、退火及其发光器件研究.[D].长春:吉林大学2008.
    [78]F.R. R. Singh. P. Chou.. Comparative study of dielectric formation by furnace and rapid isothermal processing. [J].J. Vac. Sci. Technol,1989, A7(3):1456-1460.
    [79]P.C. R. Singh, F. Radpour, A. J. Nelson and H. S. Ullal, Oxidation of tin on silicon substrate by rapid isothermal processing. [J].J. Appl. Phys.,1989,66(6):2381-2387.
    [80]马金鑫,朱国凯,扫描电子显微镜入门.[M].北京:科学出版社,1985.
    [81]朱慧超,采用MOCVD方法在Si和InP衬底上制备ZnO薄膜及其发光器件.[D].长春:吉林大学2007.
    [82]刘恩科,朱秉升,罗晋升,等.,半导体物理学.[M]北京:国防工业出版社.2002,
    [83]陆家和,陈长彦,现代分析技术.[M]北京:清华大学出版社.1995.
    [84]郑伟涛,薄膜材料与薄膜技术.[J].北京:化学工业出版社,2004.
    [85]姚连增,晶体生长基础.[M].北京:中国科学技术大学出版社,1995.
    [86]W.I. Park and G.C. Yi, Photoluminescent properties of ZnO thin films grown on SiO2/Si(100) by metal-organic chemical vapor deposition. [J].Journal of Electronic Materials,2001,30(10):L32-L35.
    [87]U. Choppali and B.P. Gorman, Structural and optical properties of nanocrystalline ZnO thin films synthesized by the citrate precursor route. [J].Journal of Luminescence,2008,128(10):1641-1648.
    [88]H.B. Zeng, G.T. Duan, Y. Li, et al., Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls. [J].Advanced Functional Materials, 2010,20(4):561-572.
    [89]Y.J. Lin, C.L. Tsai, Y.M. Lu, et al., Optical and electrical properties of undoped ZnO films. [J].Journal of Applied Physics,2006,99(9):093501.
    [90]G.A. Mohamed. A.B. Abd El-Moiz, and M. Rashad, Li-doping effects on the electrical properties of ZnO films prepared by the chemical-bath deposition method. [J].Physica B-Condensed Matter,2005, 370(1-4):158-167.
    [91]E.C. Lee and K.J. Chang, Possible p-type doping with group-Ⅰ elements in ZnO. [J].Physical Review B, 2004,70(11):115210.
    [92]S.S. Lin, J.G. Lu, Z.Z. Ye, et al., p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. [J].Solid State Communications,2008,148(1-2):25-28.
    [93]Y.J. Zeng, Z.Z. Ye, W.Z. Xu, et al., Dopant source choice for formation of p-type ZnO:Li acceptor. [J].Applied Physics Letters,2006,88(6):062107.
    [94]Y.J. Zeng, Z.Z. Ye, J.G. Lu. et al., Identification of acceptor states in Li-doped p-type ZnO thin films (vol 89. art no 042106,2006). [J].Applied Physics Letters,2006,89(12):129901.
    [95]S.S. Lin. Z.Z. Ye, J.G. Lu, et al., Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. [J].Journal of Physics D-Applied Physics,2008,41(15):155114.
    [96]W. Jun and Y.T. Yang, Deposition of K-doped p type ZnO thin films on (0001) Al2O3 substrates. [J].Materials Letters,2008.62(12-13):1899-1901.
    [97]U. Wahl, E. Rita, J.G. Correia, et al., Lattice sites of implanted Cu and Ag in ZnO. [J].Superlattices and Microstructures,2006,39(1-4):229-237.
    [98]P. Fons. A. Yamada. K. Iwata. et al., An EXAFS and XANES study of MBE grown Cu-doped ZnO. [J].Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2003.199:190-194.
    [99]周婷.叶志镇,.赵炳辉.等.NO和N2O流量对ZnO薄膜p型导电性能的影响.[J].无机材料学报. 2005, (04).
    [100]E. Kaminska, A. Piotrowska, J. Kossut, et al., Transparent p-type ZnO films obtained by oxidation of sputter-deposited Zn3N2. [J].Solid State Communications,2005,135(1-2):11-15.
    [101]H.W. Liang, Y.M. Lu, D.Z. Shen, et al., P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO. [J].Physica Status Solidi a-Applications and Materials Science,2005, 202(6):1060-1065.
    [102]J.C. Sun, H.W. Liang, J.Z. Zhao, et al., Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N2O plasma ambient. [J].Chemical Physics Letters,2008,460(4-6):548-551.
    [103]T. Yang, J. Bian, H. Liang, et al., High quality p-type ZnO films grown by low pressure plasma-assisted MOCVD with N2O rf plasma doping source. [J].Journal of Materials Processing Technology,2008,204(1-3):481-485.
    [104]D.C. Look, D.C. Reynolds, C.W. Litton, et al., Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. [J].Applied Physics Letters,2002,81(10):1830-1832.
    [105]K.Y. MINEGISHI K, KIKUCHI Y, et al., Growth of p-type zinc oxide films by chemical vapor deposition. [J].Jpn. J. Appl. Phys,1997,36(11):L1453-1455.
    [106]S. Limpijumnong, S.B. Zhang, S.H.-Wei, et al., Doping by large-size-mismatched impurities:The microscopic origin of arsenic- or antimony-doped p-type zinc oxide. [J].Physical Review Letters,2004, 92(15):155504.
    [107]K.K. Kim, H.S. Kim, D.K. Hwang, et al., Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. [J].Applied Physics Letters,2003,83(1):63-65.
    [108]F.X. Xiu, Z. Yang, L.J. Mandalapu, et al., p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. [J].Applied Physics Letters,2006,88(5):05216.
    [109]J.Y. Zhang, Q.F. Zhang, T.S. Deng, et al., Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction. [J].Applied Physics Letters,2009, 95(21):211107.
    [110]Y.R. Ryu, S. Zhu, D.C. Look, et al., Synthesis of p-type ZnO films. [J].Journal of Crystal Growth. 2000,216(1-4):330-334.
    [111]Y.R. Ryu, T.S. Lee, and H.W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. [J].Applied Physics Letters,2003,83(1):87-89.
    [112]F.X. Xiu, Z. Yang, L.J. Mandalapu, et al., High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. [J].Applied Physics Letters,2005,87(15):152101.
    [113]L.J. Mandalapu, Z. Yang, S. Chu, et al., Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes. [J].Applied Physics Letters,2008,92(12):]2210].
    [114]L.J. Mandalapu, Z. Yang, F.X. Xiu, et al., Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection. [J].Applied Physics Letters,2006,88(9):092103.
    [115]O. Lopatiuk-Tirpak, W.V. Schoenfeld, L. Chernyak, et al., Carrier concentration dependence of acceptor activation energy in p-type ZnO. [J].Applied Physics Letters.2006.88(20):202110.
    [116]T. Yamamoto. Codoping for the fabrication of p-type ZnO. [J].Thin Solid Films.2002.420:100-106.
    [117]T. Yamamoto and H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. [J].Journal of Crystal Growth.2000.214:552-555.
    [118]M. Joseph. H. Tabata, and T. Kawai. p-type electrical conduction in ZnO thin films by Ga and N codoping. [J].Japanese Journal of Applied Physics Part 2-Letters,1999,38(11A):L1205-L1207.
    [119]X.C. Xia, W. Zhao, Y.T. Jian, et al., The structure and optical characters of the ZnO film grown on GaAs/Al2O3 substrate. [J].Applied Surface Science,2009,255(12):6313-6317.
    [120]H.S. Kang, G.H. Kim, D.L. Kim, et al., Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. [J].Applied Physics Letters,2006,89(18):181103.
    [121]J.C. Sun, J.Z. Zhao, H.W. Liang, et al., Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. [J].Applied Physics Letters,2007,90(12):121128.
    [122]C.R.B.a.D.L. Kirk, The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum. [J].J. Phys. D:Appl. Phys.,1976,9:233.
    [123]en.wikipedia.org/wiki/Phosphorus.
    [124]S.K. Hong, H.J. Ko, Y.F. Chen, et al., Defect characterization in epitaxial ZnO/epi-GaN/Al2O3 heterostructures:transmission electron microscopy and triple-axis X-ray diffractometry. [J].Journal of Crystal Growth,2000,209(2-3):537-541.
    [125]S.K. Panda and C. Jacob, Surface enhanced Raman scattering and photoluminescence properties of catalytic grown ZnO nanostructures. [J].Applied Physics a-Materials Science & Processing,2009, 96(4):805-811.
    [126]X.Y. Ma, P.L. Chen, D.S. Li, et al., Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. [J].Applied Physics Letters,2007,91(25):251109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700