四氧化三铁在有机电致发光器件中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)有着重量轻,响应速度快,视角宽,主动发光无需背光源,易于实现柔性显示等优点,无论是在平板显示还是固态照明领域都展示了广阔的应用和发展前景。然而,虽然近年来OLED取得了突飞猛进的发展,其产业化步伐并不像人们所预测的那样乐观,主要原因是效率和稳定性等关键问题有待于进一步解决。本论文针对这些关键性问题,将磁性材料四氧化三铁应用于OLED,作为阳极缓冲和p型掺杂,提高器件的空穴注入和传输性能;利用其磁性,在磁场作用下,增加单线态激子的形成比例。通过以上工作,从降低驱动电压和提高内量子效率的角度提高器件的性能和稳定性。主要研究内容如下:
     (1)Fe3O4作为底发射OLED阳极缓冲层,提高空穴注入效率。将过渡型的金属氧化物Fe3O4引入到底发射OLED的阳极ITO表面作修饰层,测试表明修饰层的引入使器件的开启电压由4V降低到2.5V,在12V下的亮度由9040 cd/m2提高到27540 cd/m2。采用X射线光电子能谱(XPS)和紫外光电子能谱(UPS)测试分析缓冲层的引入对空穴注入势垒和界面能级的影响。XPS测试表明缓冲层的引入使得电子从阳极向缓冲层发生转移,形成了界面偶极子层,导致能带向上发生约0.3 eV的弯曲,降低了ITO/Fe3O4/NPB界面的空穴注入势垒。由UPS能谱分析计算得到,引入缓冲层后空穴的注入势垒降低0.22 eV。除此之外,电极的表面平整度也会对载流子的注入效果产生较大的影响,因而对ITO电极生长缓冲层前后进行了原子力(AFM)的测试表征。AFM图片证明Fe3O4的引入改善了ITO电极表面的粗糙度,使其粗糙度从1.04 nm降低到0.72 nm。可见,Fe3O4缓冲层的引入不仅能够明显的降低空穴的注入势垒,而且还能够改善电极表面的平整度,增强空穴的注入能力,从而有效降低器件的驱动电压。
     (2)Fe3O4作为顶发射OLED阳极缓冲层,提高空穴注入效率。将Fe3O4引入到顶发射器件的银阳极表面,证明了其对银电极有着很好的修饰效果,使器件的开启电压从5V降低到2.5V,最大亮度为108297 cd/m2,提高7倍,效率也得到显著的提高。又进一步将其与常用的缓冲材料三氧化钼制作的器件进行分析对比,证明Fe3O4对银的修饰效果可与MoO3相比拟甚至更佳。采用XPS和UPS测试手段分析了Fe3O4缓冲层对电极/有机界面的影响,结果表明缓冲层的引入降低了空穴的注入势垒和驱动电压,提高了空穴的注入能力,从而大幅度的改善了器件的光电性能。
     (3)Fe3O4作为p型掺杂剂,提高空穴注入和传输。有机半导体迁移率低,载流子的传输性能差,p(n)型掺杂技术是用来提高载流子传输能力的有效方法之一,同时掺杂剂在电极和有机层界面也能够显著降低载流子注入势垒,提高注入效率。这里采用Fe3O4作为p型掺杂剂,分别掺杂到不同的主体材料中,使器件的性能得到大幅度的改善。将Fe3O4分别掺杂在常用的空穴注入材料m-MTDATA和空穴传输材料NPB中,实验结果证明基于这两种不同掺杂体系(m-MTDATA:Fe3O4和NPB:Fe3O4)的器件性能都得到显著的提高,开启电压分别从3V降低到2.4V;从5V降低到2.5 V。m-MTDATA:Fe3O4的器件在8V下的亮度由未掺杂时的6005 cd/m2提高到29360 cd/m2,NPB:Fe3O4的器件在10V下的亮度由未掺杂时的1680 cd/m2提高到30590 cd/m2,证明Fe3O4是一种很理想的p型掺杂剂。通过XPS和UPS系统分析了上述两种p型掺杂体系的作用机理,基于m-MTDATA:Fe3O4的体系,对空穴传输能力的改善占主导地位,而基于NPB:Fe3O4的体系则是对空穴注入能力的提高占主导。
     (4)利用磁场效应提高OLED的单线态激子形成几率。Fe3O4本身是一种具有极高自旋极化率的铁磁材料,针对荧光OLED内量子效率极限只能达到25%的问题,从器件的发光机理出发,将这一磁性材料引入到OLED,在外加磁场的作用下,提高单线态激子的形成比例,进而提高器件的内量子效率。我们分别尝试了将Fe3O4以阳极缓冲层和传输层掺杂剂的方式引入到OLED中,研究其磁场效应。作为阳极缓冲层,在外加磁场下器件的内量子效率相对于无外加磁场下器件的内量子效率提高了10.5%,分析得知这应该主要是由于从阳极注入的空穴在经过磁性缓冲层材料时,发生了自旋极化,引起了单线态激子形成比例的增加。将Fe3O4作为传输层掺杂剂掺杂到空穴传输材料NPB中,通过测试对比分析得到在外加磁场下掺杂器件的效率相对于无外加磁场下器件的效率获得了24%的提高。此方法获得的效率增长因子明显高于上述将磁性材料以阳极缓冲层的方式引入到OLED中获得的增长因子。这是由于将磁性材料Fe3O4掺杂在NPB中,能够使磁性材料分布范围更大,增加其与注入空穴的接触机会。上述结果证明将Fe3O4引入到OLED中,在磁场作用下能够有效增强器件的磁场效应,提高器件的内量子效率,为突破荧光OLED内量子效率25%的极限奠定了基础。
     综上所述,本论文的工作主要致力于将磁性材料Fe3O4应用于OLED,系统研究了Fe3O4作为阳极缓冲和p型掺杂提高OLED的空穴注入和传输,以及作为磁性薄膜和磁性掺杂剂在磁场作用下提高OLED单线态激子形成几率。以上工作对于应用Fe3O4提高OLED性能,解决其效率和稳定性的问题做出了有益的探索。
Organic light-emitting devices (OLEDs) has drawn much attention due to its advantages such as light weight, fast response, large viewing angle, active luminescence without background light, easy to realize flexible display and three-dimensional display. In recent years, significant progress has been achieved in OLEDs, however, stability and efficiency is still key issue for its potential applications in flat-panel display and solid-state lighting. In this thesis, Fe3O4 has been applied into OLEDs as electrode modification layer and p type dopant to effectively reduce the driving voltage and power consumption and enhance the luminance of OLEDs. Moreover, we have studied the magnetic field effect of the OLEDs with Fe3O4 to increase the proportion of the singlet excitons, and finally enhance the internal quantum efficiency of the devices.
     (1) Enhanced hole injection for the bottom-emitting OLEDs (BOLEDs) with the transitional metal oxides Fe3O4 as indium-tin oxide (ITO) anodic buffer. The turn-on voltage of the OLEDs with the anodic buffer is reduced from 4 V to 2.5 V, and the brightness is increased from 9040 cd/m2 to 27540 cd/m2 at 12 V. The x-ray photoemission spectroscopy (XPS) and UV photoemission spectroscopy (UPS) measurements were performed to determine the interfacial energy level. The XPS results showed that the electrons transferred from ITO to Fe3O4 at the interface. The electron transfer across the interface results in a formation of a dipole layer at the interface, leading to an abrupt shift in the potential across the dipole. The core-level shift shows a 0.3 eV up-shift in the vacuum level after depositing 1 nm Fe3O4, which results in a reduced energy barrier at the ITO/Fe3O4/NPB interface and accordingly reduced driving voltage. The UPS spectra showed that the hole-injection barrier at the ITO/NPB interface is reduced by 0.22 eV when the Fe3O4 buffer layer is inserted between them. In addition to the energetics, the morphology of the interface can play a role in determining the injection efficiency. The effect of the Fe3O4 on the interfacial morphology between the ITO anode and the deposited NPB films was investigated by AFM. The AFM images revealed that the Fe3O4 capped ITO surface displays improved smoothness with a root-mean-square (rms) roughness of 0.72 nm compared to the bare ITO with a rms roughness of 1.04 nm. The above results indicates that Fe3O4 is a practical anodic buffer layer to improve the performance of the OLEDs by enhancing the hole injection.
     (2) Enhanced hole injection for the top-emitting OLEDs (TOLEDs) with the transitional metal oxides Fe3O4 as the silver (Ag) anodic buffer. The turn-on voltage of the Fe3O4 buffered TOLEDs was reduced from 5 V to 2.5 V, and the maximum brightness reached to 108297 cd/m2, which is eight times of that device without buffer layer. In order to study the relative effectiveness of the anodic modification of the Fe3O4, we have fabricated the devices with MoO3 as the buffer layer for comparison, which is one of the most effective anodic buffer materials for the Ag anode. The results indicated that Fe3O4 has comparable and even appreciably superior effect in modifying the Ag anode and improving the properties of the TOLEDs to the MoO3. The XPS and UPS measurements indicated that the introduction of the thin film Fe3O4 can greatly reduce the hole-injection barrier, enhance the hole injection ability and consequently improve the device performances.
     (3) Fe3O4 as the p-dopant to improve the hole injection and transport of the OLEDs. The mobility of the organic semiconductor is very low, while the p/n doping technology is a powerful solution to improve the charge conductivity, and the carrier injection ability could be improved simultaneously. In our work, the hole injection and transport ability were evidently enhanced by doping the p dopant Fe3O4 into different host materials 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) and N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB), respectively. The experiment results have demonstrated that the luminance, the current density, and the power efficiency of the OLEDs with Fe3O4 doped in two different hosts of m-MTDATA and NPB have been remarkably enhanced compared to those of the undoped devices. The brightness were 29360 cd/m2 and 6005 cd/m2 at 8 V for the devices with doped m-MTDATA and undoped m-MTDATA respectively, and 30590 cd/m2 and 1680 cd/m2 at 10 V for the devices with the doped NPB and undoped NPB, respectively. The turn-on voltage obtained the luminance of 1 cd/m2 was found to be greatly decreased from 3 to 2.4 V and from 5 to 2.5 V, respectively, for the devices with doped m-MTDATA and NPB. The role of the Fe3O4 as the p-dopant in different hosts has been studied. The Fe3O4-doped m-MTDATA layer in the OLEDs is more efficient in improving the hole transportation, while the Fe3O4-doped NPB layer is more efficient in lowering the hole-injection barrier.
     (4) Magnetic field effect on the OLEDs with the Fe3O4 as the magnetic buffer and dopant. Although 100% internal quantum efficiency can theoretically be achieved by introducing triplet emitter,25% singlet exciton formation ratio has been a bottleneck in improving the efficiency of the conventional fluorescent OLEDs. We chose magnetite Fe3O4 as the magnetic buffer and dopant to improve the singlet exciton formation ratio under an applied magnetic field. The efficiency with the presence of the magnetic field was enhanced by 10.5% compared to that of without the magnetic field for the Fe3O4 buffered OLEDs, this was because that the increase of the singlet exciton fraction due to the hole spin polarization injection. In order to increase the ratio of hole spin polarization, OLEDs with a magnetic dopant of Fe3O4 in a hole-transport layer (HTL) were fabricated and characterized. Magnetic field-dependent electroluminescence (EL) was observed and large enhancement of 24% for the current efficiency was obtained from the magnetic doped devices. Obviously, the efficiency enhancement for the OLEDs with the magnetic dopant was higher than that of the device based on Fe3O4 as the anodic buffer, which is attributed to the increased contact between the holes and magnetic material Fe3O4. We can come to a conclusion that magnetic field effect on the OLEDs employing the Fe3O4 presents an efficient pathway to enhance the EL efficiency of the fluorescent OLEDs.
     In summary, the application of the Fe3O4 in OLEDs has been systematically investigated. The Fe3O4 has been demonstrated as an effective anodic buffer and p dopant to improve the hole injection and transport. The magnetic field effect on the OLEDs with Fe3O4 as the magnetic buffer and dopant has been explored and enhanced singlet formation ratio has been obtained. Therefore, the use of Fe3O4 in OLEDs presents an efficient pathway to enhance the performance of the OLEDs, and the observational fact we attained may open a new avenue to broad application of Fe3O4, an environmentally benign, inexhaustible, and cheap material in OLEDs.
引文
[1]陈金鑫,黄孝文,田民波OLED有机电致发光材料与器件.北京:清华大学出版社,2005.
    [2]黄春辉,李富友,黄维.有机电致发光材料和器件导论.上海:复旦大学出版社,2005.
    [3]Li Yunbai TF, Xu Zheng. Electroluminescent mechanism of ir(ppy)3 doped pvk. [J]. Chin. J. Lumin.,2004,26:633-638.
    [4]POPE M, KALLMANN HP, MAGNANTE P. Electroluminescence in organic crystals. [J]. J. Chem.Phys.,1963,38:2042-2043.
    [5]LOHMANN F, MEHL W. Dark injection and radiative recombination of electrons and holes in naphthalene crystals. [J]. J. Chem.Phys.,1969,50:500-506.
    [6]WILLIAMS DF, SCHADT M. A simple organic electroluminescent diode. [J]. Proceedings of the IEEE,1970,58:476-476.
    [7]KIDO J, KIMURA M, NAGAI K. Multilayer white light-emitting organic electroluminescent device. [J]. Science,1995,267:1332-1334.
    [8]SHI J, TANG CW. Doped organic electroluminescent devices with improved stability. [J]. Appl. Phys. Lett.,1997,70:1665-1667.
    [9]DESHPANDE RS, BULOVIC V, FORREST SR. White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer. [J]. Appl. Phys. Lett.,1999,75:888-890.
    [10]KAWAMURA Y, YANAGIDA S, FORREST SR. Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. [J]. J. Appl. Phys.,2002,92:87-93.
    [11]VINCETT PS, BARLOW WA, HANN RA, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. [J]. Thin Solid Films,1982,94:171-183.
    [12]TANG CW, VANSLYKE SA. Organic electroluminescent diodes. [J]. Appl. Phys. Lett.,1987,51:913-915.
    [13]C. ADACHI ST, T. TSUTSUI, S. SAITO. Organic electroluminescence device with a three layer structure. [J]. Jpn. J. Appl. Phys. B.,1988,27:L713.
    [14]C. ADACHI ST, T. TSUTSUI, S. SAITO. Electroluminescence in organic films with a 3-layer structure. [J]. Jpn.J. Appl. Phys.,1988,27:L269.
    [15]J. H. BURROUGHES DDCB, A. R. BROWN, R. N. MARKS, K. MACKAY, R. H.FRIEND, P. L. BURNSAN, A. B. HOLMES. Light-emitting diodes based on conjugated polymers. [J]. Nature,1990,347:539-541.
    [16]SOKOLIK I, YANG Z, KARASZ FE, et al. Blue-light electroluminescence from p-phenylene vinylene-based copolymers. [J]. J. Appl. Phys.,1993,74:3584-3586.
    [17]HUNG LS, TANG CW, MASON MG. Enhanced electron injection in organic electroluminescence devices using an al/lif electrode. [J]. Appl. Phys. Lett.,1997,70:152-154.
    [18]HEBNER TR, STURM JC. Local tuning of organic light-emitting diode color by dye droplet application. [J]. Appl. Phys. Lett.,1998,73:1775-1777.
    [19]AZIZ H, POPOVIC ZD, HU N-X, et al. Degradation mechanism of small molecule-based organic light-emitting devices. [J]. Science,1999,283:1900-1902.
    [20]BALDO MA, LAMANSKY S, BURROWS PE, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. [J]. Appl. Phys. Lett.,1999,75:4-6.
    [21]LIAO LS, KLUBEK KP, TANG CW. High-efficiency tandem organic light-emitting diodes. [J]. Appl. Phys. Lett.,2004,84:167-169.
    [22]DODABALAPUR A, ROTHBERG LJ, MILLER TM, et al. Microcavity effects in organic semiconductors. [J]. Appl. Phys. Lett.,1994,64:2486-2488.
    [23]CAMPBELL IH, FERRARIS JP, HAGLER TW, et al. Measuring internal electric fields in organic light-emitting diodes using electroabsorption spectroscopy. [J]. Polymers for Advanced Technologies,1997,8:417-423.
    [24]AZIZ H, POPOVIC ZD. Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer. [J]. Appl. Phys. Lett.,2002,80:2180-2182.
    [25]A.FUJII MY, Y.OHMORI, K.YOSHINO. Polarization anisotropy of organic electroluminescent diode with periodic multilayer structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine. [J]. Jpn. J. Appl. Phys. B.,1995,34:L621.
    [26]Y. OHMORI AF, M. YOSHIDA, K. YOSHINO. Novel characteristics of electroluminescent diode with organic multiple-quantum-well structure. [J]. Jpn. J. Appl. Phys. B.,1995,34:3790.
    [27]D.O.科恩,R.L.德里斯科著,丁树明,史永基译.有机光化学原理.北京:科学出版社,1989.7.
    [28]E. AMINAKA TT, S. SAITO. Electroluminecent behaviors in multi-layer thin-film electroluminescent devices using 9,10-bissty rylanthracene deriratives. [J]. Jpn.J.Appl.Phys.,1994,33:1061.
    [29]PARKER ID. Carrier tunneling and device characteristics in polymer light-emitting diodes. [J]. J. Appl. Phys.,1994,75:1656-1666.
    [30]S. R. FORREST PEB, M. E. THOMPSON. [J]. Laser Focus World,1995,31:99.
    [31]STRUKELJ M, MILLER TM, PAPADIMITRAKOPOULOS F, et al. Effects of polymeric electron transporters and the structure of poly(p-phenylenevinylene) on the performance of light-emitting diodes. [J]. J. Am. Chem. Soc.,1995,117:11976-11983.
    [32]BLOM PWM, JONG MJMD, VLEGGAAR JJM. Electron and hole transport in poly(p-phenylene vinylene) devices. [J]. Appl. Phys. Lett.,1996,68:3308-3310.
    [33]BURROWS PE, SHEN Z, BULOVIC V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. [J]. J. Appl. Phys.,1996,79:7991-8006.
    [34]KARG S, MEIER M, RIESS W. Light-emitting diodes based on poly-p-phenylene-vinylene:I. Charge-carrier injection and transport. [J]. J. Appl. Phys.,1997,82:1951-1960.
    [35]CAMPBELL IH, DAVIDS PS, SMITH DL, et al. The schottky energy barrier dependence of charge injection in organic light-emitting diodes. [J]. Appl. Phys. Lett.,1998,72:1863-1865.
    [36]WOLF U, BARTH S, BASSLER H. Electrode versus space-charge-limited conduction in organic light-emitting diodes. [J]. Appl. Phys. Lett.,1999,75:2035-2037.
    [37]KIY M, BIAGGIO I, KOEHLER M, et al. Conditions for ohmic electron injection at the mg/alq[sub 3] interface. [J]. Appl. Phys. Lett.,2002,80:4366-4368.
    [38]SHEATS JR, ANTONIADIS H, HUESCHEN M, et al. Organic electroluminescent devices. [J]. Science,1996,273:884-888.
    [39]LENNIE P, POKORNY J, SMITH VC. Luminance. [J]. J. Opt. Soc. Am. A,1993, 10:1283-1293.
    [40]FORREST SR, BRADLEY DDC, THOMPSON ME. Measuring the efficiency of organic light-emitting devices. [J]. Adv. Mater.,2003,15:1043-1048.
    [41]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001.
    [1]TOKITO S, SAKATA J, TAGA Y. Organic/inorganic superlattices with ordered organic layers. [J]. J. Appl. Phys.,1995,77:1985-1989.
    [2]CHOONG V, PARK Y, GAO Y, et al. Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer ca deposition. [J]. Appl. Phys. Lett.,1996,69:1492-1494.
    [3]DO L-M, OYAMADA M, KOIKE A, et al. Morphological change in the degradation of al electrode surfaces of electroluminescent devices by fluorescence microscopy and afm. [J]. Thin Solid Films,1996,273:209-213.
    [4]GU G, BULOVIC V, BURROWS PE, et al. Transparent organic light emitting devices. [J]. Appl. Phys. Lett.,1996,68:2606-2608.
    [5]CHEN C-W, HSIEH P-Y, CHIANG H-H, et al. Top-emitting organic light-emitting devices using surface-modified ag anode. [J]. Appl. Phys. Lett..2003,83:5127-5129.
    [6]LI YQ, TANG JX, XIE ZY, et al. An efficient organic light-emitting diode with silver electrodes. [J]. Chem. Phys. Lett.,2004,386:128-131.
    [7]DENG XY, HO MK, WONG KY. Top-emitting polymer light-emitting diodes with environmentally stable cathodes. [J]. J. Appl. Phys.,2006,99:016103.
    [8]TANG CW, VANSLYKE SA, CHEN CH. Electroluminescence of doped organic thin films. [J]. J. Appl. Phys.,1989,65:3610-3616.
    [9]NAKA S, TAMEKAWA M, TERASHITA T, et al. Electrical properties of organic electroluminescent devices with aluminium alloy cathode. [J]. Synth. Met.,1997,91:129-130.
    [10]SHEN C, HILL IG, KAHN A. Role of electrode contamination in electron injection at mg:Ag/alq3 interfaces. [J]. Adv. Mater.,1999,11:1523-1527.
    [11]MATSUMURA M, AKAI T, SAITO M, et al. Height of the energy barrier existing between cathodes and hydroxyquinoline--aluminum complex of organic electroluminescence devices. [J]. J. Appl. Phys.,1996,79:264-268.
    [12]HUNG LS, TANG CW, MASON MG Enhanced electron injection in organic electroluminescence devices using an al/lif electrode. [J]. Appl. Phys. Lett.,1997,70:152-154.
    [13]LEE CH. Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the alq3/cathode interface. [J]. Synth. Met.,1997,91:125-127.
    [14]MATSUMURA M, FURUKAWA K, JINDE Y. Effect of al/lif cathodes on emission efficiency of organic el devices. [J]. Thin Solid Films,1998,331:96-100.
    [15]LEE J, PARK Y, KIM DY, et al. High efficiency organic light-emitting devices with al/naf cathode. [J]. Appl. Phys. Lett.,2003,82:173-175.
    [16]LEE Y-S, PARK J-H, KWAK Y-H, et al. Improved characteristics of organic light emitting diodes with coevaporated al-alkaline metal cathode. [J]. Molecular Crystals and Liquid Crystals,2003,405:89-95.
    [17]OKADA S, OKINAKA K, IWAWAKI H, et al. Substituent effects of iridium complexes for highly efficient red oleds. [J]. Dalton Transactions,20051583-1590.
    [18]HASEGAWA T, MIURA S, MORIYAMA T, et al.11.3:Novel electron-injection layers for top-emission oleds. [J]. SID Symposium Digest of Technical Papers,2004,35:154-157.
    [19]HUANG J, LI G, WU E, et al. Achieving high-efficiency polymer white-light-emitting devices. [J]. Adv. Mater.,2006,18:114-117.
    [20]HUANG J, WATANABE T, UENO K, et al. Highly efficient red-emission polymer phosphorescent light-emitting diodes based on two novel tris(1-phenylisoquinolinato-c2,n)iridium(iii) derivatives. [J]. Adv. Mater.,2007,19:739-743.
    [21]HUANG J, HOU W-J, LI J-H, et al. Improving the power efficiency of white light-emitting diode by doping electron transport material. [J]. Appl. Phys. Lett.,2006,89:133509.
    [22]HUANG J, XU Z, YANG Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. [J]. Adv. Funct. Mater.,2007,17:1966-1973.
    [23]BRAUN D, HEEGER AJ. Visible light emission from semiconducting polymer diodes. [J]. Appl. Phys. Lett.,1991,58:1982-1984.
    [24]XIE ZHIYUAN LC, HUANG JINSONG. Organic multi-layer white leds. [J]. Chinese Journal of Semiconductors,2000,21:184.
    [25]ZHILIN Z, XUEYIN J, SHAOHONG X. Energy transfer and white emitting organic thin film electroluminescence. [J]. Thin Solid Films,2000,363:61-63.
    [26]SHIROTA Y, KUWABARA Y, INADA H, et al. Multilayered organic electroluminescent device using a novel starburst molecule,4,4[script'],4[script ]-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. [J]. Appl. Phys. Lett.,1994,65:807-809.
    [27]SLYKE SAV, CHEN CH, TANG CW. Organic electroluminescent devices with improved stability. [J]. Appl. Phys. Lett.,1996,69:2160-2162.
    [28]ZHU XL, SUN JX, PENG HJ, et al. Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes. [J]. Appl. Phys. Lett.,2005,87:153508.
    [29]MEYER J, HAMWI S, BULOW T, et al. Highly efficient simplified organic light emitting diodes. [J]. Appl. Phys. Lett.,2007,91:113506.
    [30]YOU H, DAI Y, ZHANG Z, et al. Improved performances of organic light-emitting diodes with metal oxide as anode buffer. [J]. J. Appl. Phys.,2007,101:026105.
    [31]KUROSAKA Y TN, OHMORI Y. Improvement of electrode/organic layer interfaces by the insertion of monolayer-like aluminum oxide film. [J]. Jpn. J. Appl. Phys. B.,1998,37:L8722-L8725.
    [32]ZHU WQ ZX, ZHANG BX. C60 as a hole-injecting buffer layer for improvement in efficiency of organic electroluminescent devices. [J]. Chin. J. Lumin.,2002,23:2692271.
    [33]LU H-T, YOKOYAMA M. Enhanced emission in organic light-emitting diodes using ta2o5 buffer layers. [J]. Sol.Sta. Elec.,2003,47:1409-1412.
    [34]POON CO, WONG FL, TONG SW, et al. Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer. [J]. Appl. Phys. Lett.,2003,83:1038-1040.
    [35]ZHONG F LPY, REN S Y. Investigation on organic light-emitting diodes with tio2 ultra-thin films as hole buffer layer by rf magnetron sputtering. [J]. J. Func. Mater. Devi.,2005,11:461-465.
    [36]ZHONG F YQ, LIU P Y. Organic light-emitting diodes with nano-zns thin films as hole buffer layer by rf magne-tron sputtering. [J]. Chin. J. Lumin.,2006,27:877-881.
    [37]JOONG KIM K, MOON DW, LEE SK, et al. Formation of a highly oriented feo thin film by phase transition of fe3o4 and fe nanocrystallines. [J]. Thin Solid Films,2000,360:118-121.
    [38]HUNG LS, TANG CW, MASON MG, et al. Application of an ultrathin lif/al bilayer in organic surface-emitting diodes. [J]. Appl. Phys. Lett.,2001,78:544-546.
    [39]WU J, ET AL. Efficient top-emitting organic light-emitting diodes with a v 2 o 5 modified silver anode. [J]. Semicond. Sci. Technol.,2007,22:824.
    [40]LEE H, CHO SW, HAN K, et al. The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/n,n[sup [prime]]-bis(1-naphthyl)-n,n[sup [prime]]-diphenyl-1,1[sup [prime]]-biphenyl-4,4[sup [prime]]-diamine interfaces. [J]. Appl. Phys. Lett.,2008,93:043308.
    [41]HSU S-F, LEE C-C, HWANG S-W, et al. Highly efficient top-emitting white organic electroluminescent devices. [J]. Appl. Phys. Lett.,2005,86:253508.
    [42]LI Y, TAN L-W, HAO X-T, et al. Flexible top-emitting electroluminescent devices on polyethylene terephthalate substrates. [J]. Appl. Phys. Lett.,2005,86:153508.
    [43]CHEN S, ZHAO Y, CHENG G, et al. Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices. [J]. Appl. Phys. Lett.,2006,88:153517.
    [44]MA GL, RAN GZ, XU AG, et al. Novel transparent yb-based cathodes for top-emitting organic light emitting devices with high performance. [J]. Appl Surf Sci,2006,252:3580-3584.
    [45]HB M. Relation between an atomic electronegativity scale and the work function. [J].J. Res. Dev.,1978,22:72.
    [46]CAO J, JIANG X, ZHANG Z. Moo[sub x] modified ag anode for top-emitting organic light-emitting devices. [J]. Appl. Phys. Lett.,2006,89:252108.
    [47]WANG F, QIAO X, XIONG T, et al. The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. [J]. org. Electron.,2008,9:985-993.
    [48]MATSUSHIMA T, KINOSHITA Y, MURATA H. Formation of ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. [J]. Appl. Phys. Lett.,2007,91:253504.
    [49]LEE J-H, LEEM D-S, KIM H-J, et al. Effectiveness of p-dopants in an organic hole transporting material. [J]. Appl. Phys. Lett.,2009,94:123306.
    [50]TADAYYON SM, GRANDIN HM, GRIFFITHS K, et al. Cupc buffer layer role in oled performance:A study of the interfacial band energies. [J]. org. Electron.,2004,5:157-166.
    [51]LEE Y, KIM J, KWON S, et al. Interface studies of aluminum, 8-hydroxyquinolatolithium (liq) and alq3 for inverted oled application. [J]. org. Electron.,2008,9:407-412.
    [52]XUE J, FORREST SR. Bipolar doping between a molecular organic donor-acceptor couple. [J]. Phys. Rev. B.,2004,69:245322.
    [53]YANAGI H, KIKUCHI M, KIM K-B, et al. Low and small resistance hole-injection barrier for NPB realized by wide-gap p-type degenerate semiconductor, lacuose:Mg. [J]. org. Electron.,2008,9:890-894.
    [1]Li MT, Wang J, Zhuang L, et al. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography.[J]. Appl. Phys. Lett., 2000,76:673-675.
    [2]Li SX, Yu G, Zheng CY, et al. Quasi-Dammann grating with proportional intensity array spots.[J]. Opt.Lett.,2008,33:2023-2025.
    [3]Kim KJ, Seo JK, Oh MC. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.[J]. Opt.Express,2008,16: 1423-1430.
    [4]KIDO J, MATSUMOTO T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer. [J]. Appl. Phys. Lett.,1998,73:2866-2868.
    [5]CHAN CK, KIM EG, BR DAS JL, et al. Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyroninb studied using direct and inverse photoelectron spectroscopies. [J]. Adv. Funct. Mater.,2006,16:831-837.
    [6]CHANG C-C, HSIEH M-T, CHEN J-F, et al. Highly power efficient organic light-emitting diodes with a p-doping layer. [J]. Appl. Phys. Lett.,2006,89:253504.
    [7]GAO ZQ, MI BX, XU GZ, et al. An organic p-type dopant with high thermal stability for an organic semiconductor. [J]. Chem. Comm.,2008117-119.
    [8]XIE G, MENG Y, WU F, et al. Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light-emitting diodes with a moo[sub x] p-doping layer. [J]. Appl. Phys. Lett.,2008,92:093305.
    [9]黄春辉,李富友,黄维.有机电致发光材料和器件导论.上海:复旦大学出版社,2005
    [10]陈金鑫,黄孝文,田民波Oled有机电致发光材料与器件.北京:清华大学出版社,2005
    [11]CHANG CC HS, CHEN CH. High-efficiency organic electroluminescent device with multiple emitting units. [J]. Jpn. J. Appl.Phys.,2004,43:6418.
    [12]LIAO LS, KLUBEK KP, TANG CW. High-efficiency tandem organic light-emitting diodes. [J]. Appl. Phys. Lett.,2004,84:167-169.
    [13]TSUTSUI T, TERAI M. Electric field-assisted bipolar charge spouting in organic thin-film diodes. [J]. Appl. Phys. Lett.,2004,84:440-442.
    [14]CHEN C-W, LU Y-J, WU C-C, et al. Effective connecting architecture for tandem organic light-emitting devices. [J]. Appl. Phys. Lett.,2005,87:241121.
    [15]CHO T-Y, LIN C-L, WU C-C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency. [J]. Appl. Phys. Lett.,2006,88:111106.
    [16]LAW CW, LAU KM, FUNG MK, et al. Effective organic-based connection unit for stacked organic light-emitting devices. [J]. Appl. Phys. Lett.,2006,89:133511.
    [17]HO M-H, CHEN T-M, YEH P-C, et al. Highly efficient p-i-n white organic light emitting devices with tandem structure. [J]. Appl. Phys. Lett.,2007,91:233507.
    [18]ZHU XL, SUN JX, PENG HJ, et al. Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes. [J]. Appl. Phys. Lett.,2005,87:153508.
    [19]LEEM D-S, PARK H-D, KANG J-W, et al. Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer. [J]. Appl. Phys. Lett.,2007,91:011113.
    [20]ROMERO DB, SCHAER M, ZUPPIROLI L, et al. Effects of doping in polymer light-emitting diodes. [J]. Appl. Phys. Lett.,1995,67:1659-1661.
    [21]HUANG F, MACDIARMID AG, HSIEH BR. An iodine-doped polymer light-emitting diode. [J]. Appl. Phys. Lett.,1997,71:2415-2417.
    [22]BLOCHWITZ J, PFEIFFER M, FRITZ T, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. [J]. Appl. Phys. Lett.,1998,73:729-731.
    [23]GANZORIG C, FUJIHIRA M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer. [J]. Appl. Phys. Lett.,2000,77:4211-4213.
    [24]PFEIFFER M, FORREST SR, LEO K, et al. Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. [J]. Adv. Mater.,2002,14:1633-1636.
    [25]PFEIFFER M, LEO K, ZHOU X, et al. Doped organic semiconductors:Physics and application in light emitting diodes. [J]. org. Electron.,2003,4:89-103.
    [26]LE QT, YAN L, GAO Y, et al. Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/lif/tris-(8-hydroxyquinoline) aluminum interfaces. [J]. J. Appl. Phys.,2000,87:375-379.
    [27]MASON MG, TANG CW, HUNG L-S, et al. Interfacial chemistry of alq[sub 3] and lif with reactive metals. [J]. J. Appl. Phys.,2001,89:2756-2765.
    [28]PARTHASARATHY G, SHEN C, KAHN A, et al. Lithium doping of semiconducting organic charge transport materials. [J]. J. Appl. Phys.,2001,89:4986-4992.
    [29]YAN L, WATKINS NJ, ZORBA S, et al. Direct observation of fermi-level pinning in cs-doped cupc film. [J]. Appl. Phys. Lett.,2001,79:4148-4150.
    [30]GAO Y, YAN L. Cs doping and energy level shift in cupc. [J]. Chem. Phys. Lett.,2003,380:451-455.
    [31]IHM K, KANG T-H, KIM K-J, et al. Band bending of lif/alq[sub 3] interface in organic light-emitting diodes. [J]. Appl. Phys. Lett.,2003,83:2949-2951.
    [32]LIU J, DUGGAL AR, SHIANG JJ, et al. Efficient bottom cathodes for organic light-emitting devices. [J]. Appl. Phys. Lett.,2004,85:837-839.
    [33]ZHANG D-D, FENG J, LIU Y-F, et al. Enhanced hole injection in organic light-emitting devices by using fe[sub 3]o[sub 4] as an anodic buffer layer. [J]. Appl. Phys. Lett.,2009,94:223306.
    [34]ZHANG D-D, FENG J, ZHONG Y-Q, et al. Efficient top-emitting organic light-emitting devices using Fe3O4 modified ag anode. [J]. org. Electron.,2010,11:1891-1895.
    [35]OYAMADA T, SASABE H, ADACHI C, et al. Extremely low-voltage driving of organic light-emitting diodes with a cs-doped phenyldipyrenylphosphine oxide layer as an electron-injection layer. [J]. Appl. Phys. Lett.,2005,86:033503.
    [36]KHAN MA, ET AL. Influence of p-doping hole transport layer on the performance of organic light-emitting devices. [J]. Semicond. Sci. Technol.,2008,23:055014.
    [37]GAO ZQ, XIA PF, LO PK, et al. P-doped p-phenylenediamine-substituted fluorenes for organic electroluminescent devices. [J]. org. Electron.,2009,10:666-673.
    [38]MI BX, GAO ZQ, CHEAH KW, et al. Organic light-emitting diodes using 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane as p-type dopant. [J]. Appl. Phys. Lett.,2009,94:073507.
    [39]YOOK KS, LEE JY. Low driving voltage in organic light-emitting diodes using moo3 as an interlayer in hole transport layer. [J]. Synth. Met.,2009,159:69-71.
    [40]YI Y, KANG SJ, CHO K, et al. Evidence of gap state formed by the charge transfer in alq[sub 3]/nacl/al interface studied by ultraviolet and x-ray photoelectron spectroscopy. [J]. Appl. Phys. Lett.,2005,86:113503.
    [41]WANG F, QIAO X, XIONG T, et al. The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. [J]. org. Electron.,2008,9:985-993.
    [42]XUE J, FORREST SR. Bipolar doping between a molecular organic donor-acceptor couple. [J]. Phys. Rev. B.,2004,69:245322.
    [43]LEE Y, KIM J, KWON S, et al. Interface studies of aluminum, 8-hydroxyquinolatolithium (liq) and alq3 for inverted oled application. [J]. org. Electron.,2008,9:407-412.
    [44]YANAGI H, KIKUCHI M, KIM K-B, et al. Low and small resistance hole-injection barrier for NPB realized by wide-gap p-type degenerate semiconductor, lacuose:Mg. [J]. org. Electron.,2008,9:890-894.
    [45]MATSUSHIMA T, ADACHI C. Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers. [J]. J. Appl. Phys.,2008,103:034501.
    [1]BAIBICH MN, BROTO JM, FERT A, et al. Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices. [J]. Phys. Rev. Lett.,1988,61:2472.
    [2]DEDIU V, MURGIA M, MATACOTTA FC, et al. Room temperature spin polarized injection in organic semiconductor. [J]. Sol. Sta. Comm.,2002,122:181-184.
    [3]JOHNSON RC, MERRIFIELD RE, AVAKIAN P, et al. Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals. [J]. Phys. Rev. Lett.,1967,19:285.
    [4]ERN V, MERRIFIELD RE. Magnetic field effect on triplet exciton quenching in organic crystals. [J]. Phys. Rev. Lett.,1968,21:609.
    [5]ITO F, IKOMA T, AKIYAMA K, et al. Long-range jump versus stepwise hops: Magnetic field effects on the charge-transfer fluorescence from photoconductive polymer films. [J]. J. Am. Chem. Soc.,2003,125:4722-4723.
    [6]DAVIS AH, BUSSMANN K. Large magnetic field effects in organic light emitting diodes based on tris(8-hydroxyquinoline aluminum) (alq[sub 3])/n,n[sup [prime]]-di(naphthalen-l-yl)-n,n[sup [prime]]diphenyl-benzidine (NPB) bilayers. [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2004,22:1885-1891.
    [7]KALINOWSKI J, COCCHI M, VIRGILI D, et al. Magnetic field effects on organic electrophosphorescence. [J]. Phys. Rev. B.,2004,70:205303.
    [8]SALIS G, ALVARADO SF, TSCHUDY M, et al. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. [J]. Phys. Rev. B.,2004,70:085203.
    [9]XIONG ZH, WU D, VALY VARDENY Z, et al. Giant magnetoresistance in organic spin-valves. [J]. Nature,2004,427:821-824.
    [10]WU Y, HU B, HOWE J, et al. Spin injection from ferromagnetic co nanoclusters into organic semiconducting polymers. [J]. Phys. Rev. B.,2007,75:075413.
    [11]MERRIFIELD RE. Theory of magnetic field effects on the mutual annihilation of triplet excitons. [J]. J. Chem.Phys.,1968,48:4318-4319.
    [12]GROFF RP, MERRIFIELD RE, SUNA A, et al. Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in an organic crystal. [J]. Phys. Rev. Lett.,1972,29:429.
    [13]GROFF RP, SUNA A, AVAKIAN P, et al. Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in organic crystals. [J]. Phys. Rev. B.,1974,9:2655.
    [14]FRANKEVICH EL, LYMAREV AA, SOKOLIK I, et al. Polaron-pair generation in poly(phenylene vinylenes). [J]. Phys. Rev. B.,1992,46:9320.
    [15]AGRANOVICH VM, BASKO DM, SCHMIDT K, et al. Charged frenkel excitons in organic crystals. [J]. Chem. Phy.,2001,272:159-169.
    [16]WOHLGENANNT M, TANDON K, MAZUMDAR S, et al. Formation cross-sections of singlet and triplet excitons in [pi]-conjugated polymers. [J]. Nature,2001,409:494-497.
    [17]HU B, WU Y, ZHANG Z, et al. Effects of ferromagnetic nanowires on singlet and triplet exciton fractions in fluorescent and phosphorescent organic semiconductors. [J]. Appl. Phys. Lett.,2006,88:022114.
    [18]ZHANG D-D, FENG J, LIU Y-F, et al. Enhanced hole injection in organic light-emitting devices by using fe[sub 3]o[sub 4] as an anodic buffer layer. [J]. Appl. Phys. Lett.,2009,94:223306.
    [19]SUN C-J, WU Y, XU Z, et al. Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles. [J]. Appl. Phys. Lett.,2007,90:232110.
    [20]JAIN S, ADEYEYE AO, BOOTHROYD CB. Electronic properties of half metallic fe[sub 3]o[sub 4] films. [J]. J. Appl. Phys.,2005,97:093713.
    [21]ARISI E, BERGENTI I, CAVALLINI M, et al. Direct deposition of magnetite thin films on organic semiconductors. [J]. Appl. Phys. Lett.,2008,93:113305.
    [22]ZHANG D-D, FENG J, WANG H, et al. Improved hole injection and transport of organic light-emitting devices with an efficient p-doped hole-injection layer. [J]. Appl. Phys. Lett.,2009,95:263303.
    [23]VOOGT FC, PALSTRA TTM, NIESEN L, et al. Superparamagnetic behavior of structural domains in epitaxial ultrathin magnetite films. [J]. Phys. Rev. B.,1998,57:R8107.
    [24]EERENSTEIN W, HIBMA T, CELOTTO S. Mechanism for superparamagnetic behavior in epitaxial fe_{3}o_{4} films. [J]. Phys. Rev. B.,2004,70:184404.
    [25]KALINOWSKI J, COCCHI M, VIRGILI D, et al. Magnetic field effects on emission and current in alq3-based electroluminescent diodes. [J]. Chem. Phys. Lett.,2003,380:710-715.
    [26]ODAKA H, OKIMOTO Y, YAMADA T, et al. Control of magnetic-field effect on electroluminescence in alq[sub 3]-based organic light emitting diodes. [J]. Appl. Phys. Lett.,2006,88:123501.
    [27]COEY JMD, VIRET M, VON MOLN R S. Mixed-valence manganites. [J]. Adv. in Phy.,1999,48:167-293.
    [28]BLOOM FL, WAGEMANS W, KEMERINK M, et al. Separating positive and negative magnetoresistance in organic semiconductor devices. [J]. Phys. Rev. Lett.,2007,99:257201.
    [29]DING BF, ZHAN YQ, SUN ZY, et al. Electroluminescence and magnetoresistance of the organic light-emitting diode with a la[sub 0.7]sr[sub 0.3]mno[sub 3] anode. [J]. Appl. Phys. Lett.,2008,93:183307.
    [30]DAVIS AH, BUSSMANN K. Organic luminescent devices and magnetoelectronics. [J]. J. Appl. Phys.,2003,93:7358-7360.
    [31]SINHA S, MONKMAN AP. Delayed electroluminescence via triplet--triplet annihilation in light emitting diodes based on poly[2-methoxy-5-(2[sup [prime]]-ethyl-hexyloxy)-1,4-phenylene vinylene]. [J]. Appl. Phys. Lett.,2003,82:4651-4653.
    [32]BERGENTI I, DEDIU V, ARISI E, et al. Spin polarised electrodes for organic light emitting diodes. [J]. org. Electron.,2004,5:309-314.
    [33]YU J, LAMMI R, GESQUIERE AJ, et al. Singlet-triplet and triplet-triplet interactions in conjugated polymer single molecules. [J]. J. Phys. Chem. B.,2005,109:10025-10034.
    [34]FONIN M, PENTCHEVA R, DEDKOV YS, et al. Surface electronic structure of the fe_{3}o_{4}(100):Evidence of a half-metal to metal transition. [J]. Phys. Rev. B.,2005,72:104436.
    [35]WITTMER M, ZSCHOKKE-GRANACHER I. Exciton--charge carrier interactions in the electroluminescence of crystalline anthracene. [J]. J. Chem.Phys.,1975,63:4187-4194.
    [36]STEINER UE, ULRICH T. Magnetic field effects in chemical kinetics and related phenomena. [J]. Chemical Reviews,1989,89:51-147.
    [37]STEINER UE, WOLFF HJ, ULRICH T, et al. Spin-orbit coupling and magnetic field effects in photoredox reactions of ruthenium(ii) complexes. [J]. J. Phys. Chem.,1989,93:5147-5154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700