AlGaInP LED转移衬底和可靠性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LED(light emitting diode,发光二极管)具有节能、环保、寿命长等特点,其在景观照明、背光照明、室内室外通用照明、大屏幕显示、汽车照明、农业、医疗、舞台等有着广泛应用。但AlGaInP LED出光椎体角度小、电极吸光、GaAs衬底吸光散热性差等因素限制了光提取效率的提高,针对这些问题,本论文对有ODR (Omni-directional reflector,全方位反光镜)、Au-Au键合、粗化结构的转移衬底到Si衬底的AlGaInP LED展开了系统性的研究。对自主研发的新型高亮度LED进行了可靠性研究。本文主要的研究工作可归纳如下:
     论文首先分析了转移衬底的AlGaInP LED中影响其出光的各种因素。分析了LED内有无散射时,AlGaInP LED中光子的路径。假设有源区散射了出光面反射回的全部光子,计算了随出光面出射率、外延层透射率、反光镜反射率变化,光提取效率的变化值。因电流扩展层n-AlGaInP掺杂浓度和厚度有限,分析了影响电流扩展的因素,电极形状与电流扩展的关系。
     其次,研究了转移衬底AlGaInP LED晶片的键合。在Au-Au扩散键合工艺中,研究了2inch的GaAs片与Si片的合适键合条件,键合会出现气泡、裂纹等问题。石墨片在晶片键合中可以保证两晶片整体的接触。键合工艺中,裂纹随温度的冷却速率减小而减少。制作了不同键合温度270℃、280℃、290℃、300℃下,转移衬底的SiO_2 ODR AlGaInP LED,其光输出随温度的增加而减小,电压随温度的增加而增加。反射率因反光镜界面高温下相互扩散而下降,下降的大小随温度的增加而增加,即LED光输出随温度的增加而减小;键合长时间的高温和工艺中的退火使形成欧姆接触时,金属和半导体过扩散。随着键合温度增加,这种过扩散程度增加,电压增加。
     再次,对比制作并分别研究了Au/ITO/GaP、Au/SiO_2/GaP两种ODR的转移衬底LED。计算了随角度变化的Au/GaP、Au/ITO/GaP、Au/SiO_2/GaP三种反光镜反射率,并制作对比了三种反光镜的AlGaInP LED。20mA电流下,吸收衬底LED、Au反光镜LED、Au/SiO_2 ODR LED与AuZnAu/ITO ODR LED光输出功率分别为1.04mW、1.14mW、2.53mW和2.15mW。Au与GaP相互扩散导致反光镜反射率降低是Au反光镜LED光输出低的主要原因,ITO的吸收是ITO ODR LED光输出为SiO_2 ODR LED光输出的85%的主要原因。
     设计制备了具有ITO/Au ODR、ITO/AuZnAu ODR结构的转移衬底AlGaInP LED。Zn的加入使器件在20mA时的电压由2.378V降至2.033V。设计制备了ITO厚度为65nm,90nm,270nm的AuZnAu/ITO ODR LED,随ITO厚度增加,光输出减小,电压增加。分析其光输出与电压, ITO厚度在65nm时,性能最好。Zn扩散透过ITO至GaP,改善了ITO与GaP的欧姆接触。
     设计制作了0.6μm GaP SiO_2 ODR LED与8μm GaP SiO_2 ODR LED,20mA下的光强分别为180mcd、133mcd,提高了35%。在20mA时,电压为2.54V、2.46V。P型欧姆接触小孔处因0.6μm GaP薄,电流扩展差而电压高。测量了两种GaP厚度的Au/SiO_2/GaP ODR的反射率,在有源区发光波段处,0.6μm GaP ODR的反射率远大于8μm GaP ODR的反射率是0.6μm GaP转移衬底LED光输出高的主要原因。研究了0.6μm GaP LED中,ICP刻蚀减小GaP的厚度的影响。制作了无刻蚀、刻蚀110nm、刻蚀200nm三种SiO_2 ODR LED,随GaP厚度的减小,LED光输出增加。
     制作了稀盐酸湿法腐蚀、粗化n-AlGaInP电流扩展层的SiO_2 ODR,Au-Au键合AlGaInP LED。20mA下,其光强分别为315mcd和173mcd,经粗化后增加了82%。出光面积增加和光子方向改变是光输出增加的主要原因。
     最后,对新型高亮度的AlGaInP LED进行了可靠性研究。对具有自主知识产权的新型高亮度AlGaInP LED进行了各种可靠性试验。研究了电流下LED电压升高的现象,提出了增加λ/4 ITO厚度至3λ/4的改进工艺。对改进工艺之后的3/4波长ITO作为电流扩展的新型AlGaInP LED进行了电流为50mA、60mA、70mA、80mA、90mA条件下的加速寿命试验,拟合出艾伦模型的指数加速因子n=3.43,推算出20mA电流下,工艺改进后的LED寿命为99.9万小时。
The LED (light emitting diode) has advantages of energy saving, environment-friendly and long life. The application of LED include sight lighting, back light source, indoor and outdoor illumination, full color outdoor display, automobile lamp, agriculture lighting, medical lighting, and stage lighting. However, the light extraction of AlGaInP LED is still relatively low because of small light output cone, absorbing of electrode and substrate. The study of this paper focuses on the research of substrate transfer AlGaInP LED with Si substrate, ODR (Omni-directional reflector), Au-Au metal bonding and roughened surface. The reliability of independent RD high brightness AlGaInP LED was investigated. The main contents of the study are as following:
     First,various influencing light output factors in substrate transfer AlGaInP LED were analyzed. The path of photon in substrate transfer AlGaInP LED was analyzed in both situations with and without scatter centers. Supposing the active layer scattered all photons, the light extraction was calculated as the changing of the output facet extraction efficiency, the reflectivity and the epi-layer transmittance. The doping concentration and thickness of n-AlGaInP layer in substrate transfer AlGaInP LED is finite and cannot meet the needs of current spreading. The electrode shape can be designed to improve current spreading.
     Second, the wafer bonding process in substrate transfer AlGaInP LED was analyzed and studied. The Au-Au metal diffusion bonding condition was investigated in substrate transfer AlGaInP LED. The graphite sheet in bonding process can guarantee the whole wafer contact. The crackle can be restrained under small temperature cooling rate. Under different bonding temperature 270℃, 280℃, 290℃, 300℃, substrate transfer AlGaInP LED with SiO_2 ODR were fabricated. With the temperature increasing, the light output decreases and the voltage increases. The main reasons were the diffusion at the reflector interface and the over-annealing of p type ohmic contact.
     Third, substrate transfer AlGaInP LED with Au/ITO/GaP and Au/SiO_2/GaP ODR were studied. The reflectivity versus incident angle of GaP/Au reflector, GaP/SiO_2/Au ODR and GaP/ITO/Au ODR were calculated. Compared with the AlGaInP LEDs with GaAs absorbing substrate, LEDs with Au reflector, Au/SiO_2 ODR and AuZnAu/ITO ODR were fabricated. At current of 20mA, the optical output powers of four samples were 1.04mW, 1.14mW, 2.53mW and 2.15mW respectively. The Au diffusion at the annealing process reduces the reflectivity of Au/GaP reflector to 9%. The different transmittance of quarter-wave thickness ITO and SiO_2 induces different optical output power between the SiO_2 and ITO ODR LEDs.
     The ITO/Au ODR and ITO/AuZnAu ODR were designed and fabricated. The insertion of Zn in ITO ODR LED does not affect the light output but evidently reduces the voltage from 2.378V to 2.033V at 20mA. The AuZnAu/ITO ODR LED with three kinds of ITO thickness which were 65nm, 90nm and 270nm, were fabricated and measured. The LED with 65nm ITO showed the highest brightness and lowest voltage. The main reason was that the diffusion of Zn passed through ITO and reach p-GaP and good ohmic contact was formed.
     SiO_2 ODR AlGaInP LED with 8μm and 0.6μm GaP was designed and fabricated. At the 20mA, the light intensity was 133 mcd, 180 mcd. The reflectivity of GaP/SiO_2/Au ODR on the LED lighting spectrum of 0.6μm GaP was greatly higher than that of 8μm GaP. The voltage of LED with 0.6μm GaP was higher because of the higher series resistance introduced by the lack of current spreading.
     0.6μm GaP AlGaInP LEDs with and without roughened surface were made and measured. The light intensities were 315mcd and 173mcd respectively. The current spreading layer n-AlGaInP were etched using the 1HCl : 2.5H_2O solution at 25℃for 20s of etching time to form a patterned surface. The morphology of the etched surface exhibits a pyramid-like feature, which introduced the increasing light output area and the change of photon direction.
     Finally, the reliability of independent RD high brightness AlGaInP LED was studied. The voltage increasing of AlGaInP LED at high current was studied. The high current density was the main reason and 3λ/4 thickness ITO was suggested. With the new process, the current accelerated aging experiment was conducted. The driving currents were 50mA, 60mA, 70mA, 80mA and 90mA respectively. Using the extrapolation of the current density, the index n in Eyring Model is 3.43 and the theoretical lifetime at 20mA is 999 thousand hours.
引文
1 Craford M G, Holonyak N, and Kish F A. In pursuit of the ultimate lamp. Scientific American, 2001, 284(2): 62—67.
    2 Holonyak N. Is the light emitting diode (LED) an ultimate lamp? American Journal of Physics, 2000, 68(9): 864—866.
    3 Dupuis R D and Krames M R. History, development, and applications of high-brightness visible light-emitting diodes. Journal of Lightwave Technology, 2008, 26(9—12): 1154—1171.
    4 Harbers G, Bierhuizen S J, and Krames M R. Performance of high power light emitting diodes in display illumination applications. Journal of Display Technology, 2007, 3(2): 98—109.
    5 Sanchez M C, Brown R E, Webber C, and Homan G K. Savings estimates for the United States Environmental Protection Agency's ENERGY STAR voluntary product labeling program. Energy Policy, 2008, 36(6): 2098—2108.
    6 Multi-Year Program Plan FY’09-FY’15: Solid-State Lighting Research and Development. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy 2009, Washington, D.C.
    7 Holonyak N and Bevacqua S F. Coherent (Visible) Light Emission from Ga(As1-Xpx) Junctions. Applied Physics Letters, 1962, 1(4): 82—83.
    8 Steigerwald D A, Bhat J C, Collins D, Fletcher R M, Holcomb M O, et al. Illumination with solid state lighting technology. Ieee Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 310—320.
    9 Nakamura S. High-Power Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes. International Electron Devices Meeting 1994 - Iedm Technical Digest, 1994: 567—570
    10 Nakamura S, Mukai T, and Senoh M. High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes. Journal of Applied Physics, 1994, 76(12): 8189—8191.
    11 Nakamura S, Mukai T, and Senoh M. Candela-Class High-Brightness Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes. Applied Physics Letters, 1994, 64(13): 1687—1689.
    12 Nakamura S, Senoh M, and Mukai T. P-Gan/N-Ingan/N-Gan Double-Heterostructure Blue-Light-Emitting Diodes. Japanese Journal of Applied Physics Part 2-Letters, 1993, 32(1A-B): L8—L11.
    13 Nakamura S, Mukai T, and Senoh M. High brightness InGaN/AlGaN double heterostructure blue green light emitting diodes. Journal of Applied Physics, 1994,76(12): 8189—8191.
    14 Gessmann T and Schubert E F. High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications. Journal of Applied Physics, 2004, 95(5): 2203—2216.
    15 Sugawara H, Itaya K, Ishikawa M, and Hatakoshi G. High-Efficiency Ingaalp Visible Light-Emitting-Diodes. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1992, 31(8): 2446—2451.
    16 Sugawara H, Ishikawa M, and Hatakoshi G. High-Efficiency Ingaalp/Gaas Visible Light-Emitting-Diodes. Applied Physics Letters, 1991, 58(10): 1010—1012.
    17 Lee Y J, Lu T C, Kuo H C, Wang S C, Liou M J, et al. High brightness AlGaInP-based light emitting diodes by adopting the stripe-patterned omni-directional reflector. Semiconductor Science and Technology, 2006, 21(2): 184—189.
    18 Streubel K, Linder N, Wirth R, and Jaeger A. High brightness AlGaInP light-emitting diodes. Ieee Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 321—332.
    19 Linder N, Kugler S, Stauss P, Streubel K P, Wirth R, et al. High-brightness AlGaInP light-emitting diodes using surface texturing. Light-Emitting Diodes: Research Manufacturing, and Applications V, 2001, 4278: 19—25
    20 Ikeda M, Mori Y, Sato H, Kaneko K, and Watanabe N. Room-Temperature Continuous-Wave Operation of an Algainp Double Heterostructure Laser Grown by Atmospheric-Pressure Metalorganic Chemical Vapor-Deposition. Applied Physics Letters, 1985, 47(10): 1027—1028.
    21 Altieri P, Jaeger A, Windisch R, Linder N, Stauss P, et al. Internal quantum efficiency of high-brightness AlGaInP light-emitting devices. Journal of Applied Physics, 2005, 98(8): 086101—086101-3
    22 Windisch R, Altieri P, Butendeich R, Illek S, Stauss P, et al. InGaAlP thinfilm LEDs with high luminous efficiency. Light -Emitting Diodes: Research, Manufacturing, and Applications Viii, 2004, 5366: 43—52
    23 Yen C H, Liu Y J, Chen T P, Chen L Y, Tsai T H, et al. On an AlGaInP Light-Emitting Diode With a Modulation-Doped Multiquantum-Well (MD-MQW) Structure. Ieee Journal of Quantum Electronics, 2009, 45(4): 367—372.
    24 Lee C Y, Wu M C, and Lin W. The influence of window layers on the performance of
    650 nm AlGaInP/GaInP multi-quantum-well light-emitting diodes. Journal of Crystal Growth, 1999, 200(3-4): 382—390.
    25 Porch A, Morgan D V, Perks R M, Jones M O, and Edwards P P. Transparent current spreading layers for optoelectronic devices. Journal of Applied Physics, 2004, 96(8): 4211—4218.
    26 Aliyu Y H, Morgan D V, Thomas H, and Bland S W. AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO). Electronics Letters, 1995, 31(25): 2210—2212.
    27 Wang H C, Su Y K, Chung Y H, Lin C L, Chen W B, et al. AlGaInP light emitting diode with a current-blocking structure. Solid-State Electronics, 2005, 49(1): 37—41.
    28 Chen T M, Wang S J, Uang K M, Chen S L, Tsai C C, et al. High Power Vertical-structure GaN-based LEDs with Improved Current Spreading and Blocking Designs: IEEE, 2007, 10:83—84.
    29 Sugawara H, Itaya K, and Hatakoshi G. Hybrid-Type Ingaalp/Gaas Distributed Bragg Reflectors for Ingaalp Light-Emitting-Diodes. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1994, 33(11): 6195—6198.
    30 Tan I H, Vanderwater D A, Huang J W, Hofler G E, Kish F A, et al. Wafer bonding of 75 mm diameter GaP to AlGaInP-GaP light-emitting diode wafers. Journal of Electronic Materials, 2000, 29(2): 188—194.
    31 Vanderwater D A, Tan I H, Hofler G E, Defevere D C, and Kish F A. High-brightness AlGaInP light emitting diodes. Proceedings of the IEEE, 1997, 85(11): 1752—1764.
    32 Krames M R, Ochiai-Holcomb M, Hofler G E, Carter-Coman C, Chen E I, et al. High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency. Applied Physics Letters, 1999, 75(16): 2365—2367.
    33 Windisch R, Rooman C, Meinlschmidt S, Kiesel P, Zipperer D, et al. Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes. Applied Physics Letters, 2001, 79(15): 2315—2317.
    34 Kasugai H, Miyake Y, Honshio A, Mishima S, Kawashima T, et al. High-efficiency nitride-based light-emitting diodes with moth-eye structure. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44(10): 7414—7417.
    35 Huh C, Lee K S, Kang E J, and Park S J. Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surface. Journal of Applied Physics, 2003, 93(11): 9383—9385.
    36 Yamada M, Mitami I, and Narukawa Y. Wafer-bonded thin-film surface-textured light emitting diodes. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41: 1431.
    37 Wierer J, Krames M R, and pler J E E. The natural lithography for light emitting diodes. Applied Physics Letters, 2004, 24: 2885.
    38 Zhang B J, Egawa T, Ishikawa H, Liu Y, and Jimbo T. Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si(111) substrate onto copper carrier by selective lift-off. Applied Physics Letters, 2005, 86(7): 071113—071113-3
    39 Chang S J, Chang C S, Su Y K, Chang P T, Wu Y R, et al. AlGaInP multiquantum well light-emitting diodes. Iee Proceedings-Optoelectronics, 1997, 144(6): 405—409.
    40 Chen N C, Lien W C, Yang Y K, Shen C, Wang Y S, et al. Spectral shape and broadening of emission from AlGaInP light-emitting diodes. Journal of Applied Physics, 2009, 106(7): 074514—074514-9.
    41张剑铭.新型倒装发光二极管结构设计与关键技术的研究.北京:北京工业大学, 2007.29-30
    42 Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J, and Scherer A. 30-Percent External Quantum Efficiency from Surface Textured, Thin-Film Light-Emitting-Diodes. Applied Physics Letters, 1993, 63(16): 2174—2176.
    43 Zhu Z H, Ejeckam F E, Qian Y, Zhang J Z, Zhang Z J, et al. Wafer bonding technology and its applications in optoelectronic devices and materials. Ieee Journal of Selected Topics in Quantum Electronics, 1997, 3(3): 927—936.
    44 Wong W S, Sands T, Cheung N W, Kneissl M, Bour D P, et al. Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Applied Physics Letters, 1999, 75(10): 1360—1362.
    45 Harle V, Hahn B, Kaiser S, Weimar A, Eisert D, et al. Light extraction technologies for high efficiency GaInN-LED devices. Light-Emitting Diodes: Research, Manufacturing, and Applications Vii, 2003, 4996: 133—138
    46谢正生,吴惠祯,劳燕锋,刘成,曹萌.低温Au-In-Au金属键合及其在VCSELs制作中的应用.金属学报, 2007. 43(003): 264—268.
    47 Bergenek K, Wiesmann C, Zull H, Wirth R, Sundgren P, et al. Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal. Applied Physics Letters, 2008, 93(23): 231109—231109-3.
    48 Baur J, Baumann F, Peter M, Engl K, Zehnder U, et al. Status of high efficiency and high power ThinGaN(R)?\LED development. physica status solidi (c), 2009, 6(S2): S905—S908.
    49 Laubsch A, Sabathil M, Baur J, Peter M, and Hahn B. High-Power and High-Efficiency InGaN-Based Light Emitters. Ieee Transactions on Electron Devices, 2010, 57(1): 79-87.
    50 Gessmann T, Luo H, Xia J Q, Streubel K, and Schubert E F. Light-emitting diodes with integrated omnidirectionally reflective contacts. Light -Emitting Diodes: Research, Manufacturing, and Applications Viii, 2004, 5366: 53—61
    51 Schad S S, Neubert B, Eichler C, Scherer M, Habel F, et al. Absorption and light scattering in InGaN-on-sapphire- and AlGaInP-based light-emitting diodes. Journal of Lightwave Technology, 2004, 22(10): 2323—2332.
    52 Perks R M, Porch A, Morgan D V, and Kettle J. Theoretical and experimental analysis of current spreading in AlGaInP light emitting diodes. Journal of Applied Physics, 2006, 100(8): 083109—083109-7.
    53 Chen T P, Yao C L, Wu C Y, Yeh J H, Wang C W, et al. Recent development in highbrightness LEDs - art. no. 691005. Light-Emitting Diodes: Research, Manufacturing, and Applications Xii, 2008, 6910: 691005.1—691005.10
    54张俊兵,林岳明,柏林,曾祥华. AlGaInP LED电极形状的优化.物理学报, 2008, 57(9).
    55 Jan W, Liao T F, Chen T P, and Chang C S. AlGaInP light emitting diode with metal reflector structure. Light-Emitting Diodes: Research, Manufacturing, and Applications IX, 2005, 5739: 81—85
    56 Lee Y J, Kuo H C, Wang S C, Hsu T C, Hsieh M H, et al. Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening. Ieee Photonics Technology Letters, 2005, 17(11): 2289—2291.
    57 Hsu S C, Wuu D S, Lee C Y, Su J Y, and Horng R H. High-efficiency 1-mm(2) AlGaInP LEDs sandwiched by ITO omni-directional reflector and current-spreading layer. Ieee Photonics Technology Letters, 2007, 19(5-8): 492—494.
    58 Huang P W and Wu Y C S. Improved Performance of AlGaInP LEDs by a Periodic GaP-Dish Mirror Array. Ieee Photonics Technology Letters, 2009, 21(19): 1441—1443.
    59 Kim S K, Song H D, Ee H S, Choi H M, Cho H K, et al. Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes. Applied Physics Letters, 2009, 94(10): 101102—101102-3.
    60 Christiansen S H, Singh R, and Gosele U. Wafer direct bonding: From advanced substrate engineering to future applications in micro/nanoelectronics. Proceedings of the IEEE, 2006, 94(12): 2060—2106.
    61 Gosele U, Bluhm Y, Kastner G, Kopperschmidt P, Krauter G, et al. Fundamental issues in wafer bonding. Journal of Vacuum Science & Technology A, 1999, 17(4): 1145—1152.
    62 Tan C M, Yu W B, and Wei J. Comparison of medium-vacuum and plasma-activated low-temperature wafer bonding. Applied Physics Letters, 2006, 88(11): 114102—114102-3.
    63 Malecki K and Della Corte F G. Silicon-glass anodic bonding at low temperature. Micromachining and Microfabrication Process Technology X, 2005, 5715: 180—189
    64 Niklaus F, Stemme G, Lu J Q, and Gutmann R J. Adhesive wafer bonding. Journal of Applied Physics, 2006, 99(3): 031101—031101-28.
    65 Onuki J, Satou M, Murakami S, and Yatsuo T. A new low-temperature bonding technology between large-area, high-power devices and Mo electrodes using Au-Al films. Electron Devices, IEEE Transactions on, 1997, 44(12): 2154—2159.
    66 Diest K, Archer M J, Dionne J A, Park Y B, Czubakowski M J, et al. Silver diffusion bonding and layer transfer of lithium niobate to silicon. Applied Physics Letters, 2008, 93(9): 092906—092906-3.
    67 Leong H L, Gan C L, Thompson C V, Pey K L, and Li H Y. Application of contact theory to metal-metal bonding of silicon wafers. Journal of Applied Physics, 2007, 102(10):103510—103510-9.
    68 Tseng A A and Park J S. Effects of surface roughness and contact pressure on wafer bonding strength using transmission laser bonding technique. Journal of Microlithography Microfabrication and Microsystems, 2006, 5(4): 043013.
    69 Dragoi V, Mittendorfer G, Thanner C, and Lindner P. Wafer-level plasma activated bonding: new technology for MEMS fabrication. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008. 14(4-5): 509—515.
    70 Higurashi E, Imamura T, Suga T, and Sawada R. Low-temperature bonding of laser diode chips on silicon substrates using plasma activation of Au films. Ieee Photonics Technology Letters, 2007, 19(21-24): 1994—1996.
    71 Dragoi V, Farrens S, and Lindner P. Plasma activated wafer bonding for MEMS. Smart Sensors, Actuators, and MEMS II, 2005, 5836: 179—187
    72林晓辉.晶圆低温键合技术及应用研究. 2008,华中科技大学:武汉.
    73 Stamoulis K, Tsau C H, and Spearing S M. Low-temperature, wafer-level, gold thermocompression bonding: Modeling of flatness deviations and associated process optimization for high yield and tough bonds. Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, 2005, 5716: 42—52
    74 Li J F, Agyakwa P A, and Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Materialia, 2010, 58(9): 3429—3443.
    75 Welch W C and Najafi K. Gold-indium transient liquid phase (TLP) wafer bonding for MEMS vacuum packaging. Mems 2008: 21st Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest, 2008: 806—809
    76 Lee C C, Wang C Y, and Matijasevic G. Au-in Bonding Below the Eutectic Temperature. Ieee Transactions on Components Hybrids and Manufacturing Technology, 1993. 16(3): 311—316.
    77 Made R I, Gan C L, Lee C, Yan L L, Yu A B, et al. Study of Ag-In solder as low temperature wafer bonding intermediate layer - art. no. 68840H. Reliability, Packaging, Testing, and Characterization of Mems/Moems Vii, 2008, 6884: H8840—H8840
    78 Tsau C H, Spearing S M, and Schmidt M A. Fabrication of wafer-level thermocompression bonds. Journal of Microelectromechanical Systems, 2002, 11(6): 641—647.
    79 Tsau C H, Spearing S M, and Schmidt M A. Characterization of wafer-level thermocompression bonds. Journal of Microelectromechanical Systems, 2004, 13(6): 963—971.
    80张家纶,金/银扩散键合研究及其应用在发光二极管. 2008,国立中央大学.
    81 Song J O, Kwak J S, Park Y, and Seong T Y. Ohmic and degradation mechanisms of Ag contacts on p-type GaN. Applied Physics Letters, 2005, 86(6): 062104—062104-3.
    82 Gessmann T, Schubert E F, Graff J W, Streubel K, and Karnutsch C. Omnidirectional reflective contacts for light-emitting diodes. Ieee Electron Device Letters, 2003, 24(11): 683—685.
    83成立顺,孙本双,钟景明,何力军,王东新, et al. ITO透明导电薄膜的研究进展.稀有金属快报, 2008, 27(003): 10—16.
    84 He G Z, Xiong C X, and Yao X L. Properties of ITO thin films prepared by APS assisted EB evaporation - art. no. 683111. Nanophotonics, Nanostructure, and Nanometrology Ii, 2008, 6831: 83111—83140.
    85 Yamaguchi M, Ide-Ektessabi A, Nomura H, and Yasui N. Characteristics of indium tin oxide thin films prepared using electron beam evaporation. Thin Solid Films, 2004, 447: 115—118.
    86 Senthilkumar V, Vickraman P, Jayachandran M, and Sanjeeviraja C. Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum, 2010, 84(6): 864—869.
    87 Pearton S J. Critical issues of III-V compound semiconductor processing. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1997, 44(1-3): 1—7.
    88 Pecz B, Veresegyhazy R, Radnoczi G, Barna A, Mojzes I, et al. Cross-Sectional Transmission Electron-Microscopic Study of Au/Gap and Au/Inp Contacts. Journal of Applied Physics, 1991, 70(1): 332—336.
    89 Guo H, Andagana H B, and Cao X A. Au-Doped Indium Tin Oxide Ohmic Contacts to p-Type GaN. Journal of Electronic Materials, 2010, 39(5): 494—498.
    90 Kim D. Characterization of low pressure annealed ITO/Au/ITO films prepared by reactive magnetron sputtering. Journal of Alloys and Compounds, 2010, 493(1-2): 208—211.
    91 Kim Y S, Park J H, Choi D H, Jang H S, Lee J H, et al. ITO/AuATO multilayer thin films for transparent conducting electrode applications. Applied Surface Science, 2007, 254(5): 1524—1527.
    92 Chang S J, Chen W S, Shei S C, Ko T K, Shen C F, et al. Highly reliable high-brightness GaN-based flip chip LEDs. Ieee Transactions on Advanced Packaging, 2007, 30(4): 752—757.
    93 Lin J F, Wu M C, Jou M J, Chang C M, Lee B J, et al. Highly Reliable Operation of Indium Tin Oxide Algainp Orange Light-Emitting-Diodes. Electronics Letters, 1994, 30(21): 1793—1794.
    94 Liu Y J, Yen C H, Yu K H, Lin P L, Chen L Y, et al. Characteristics of an AlGaInP-Based Light Emitting Diode With an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure. Ieee Journal of Quantum Electronics, 2010, 46(2): 246—252.
    95 Kaminska E, Piotrowska A, Barcz A, Adamczewska J, and Turos A. Interaction ofAu/Zn/Au Sandwich Contact Layers with Aiiibv Compound Semiconductors. Solid-State Electronics, 1986, 29(3): 279—286.
    96 Yamashita M and Oana Y. Barrier Metal against Ga and Zn out-Diffusion in P-Gap-Au-Zn Contact System. Journal of Applied Physics, 1981, 52(12): 7304—7308.
    97 Lee J Y, Yang J W, Chae J H, Park J H, Choi J I, et al. Dependence of intermediated noble metals on the optical and electrical properties of ITO/metal/ITO multilayers. Optics Communications, 2009, 282(12): 2362—2366.
    98 Liu D S, Lin C H, Tsai F C, and Wu C C. Microstructure investigations of indium tin oxide films cosputtered with zinc oxide at room temperature. Journal of Vacuum Science & Technology A, 2006, 24(3): 694—699.
    99 Nietovesperinas M and Sanchezgil J A. Light-Scattering from a Random Rough Interface with Total Internal-Reflection. Journal of the Optical Society of America a-Optics Image Science and Vision, 1992, 9(3): 424—436.
    100金碧辉.系统可靠性工程.北京:国防工业出版社. 2004.
    101 Hong E and Narendran N. A method for projecting useful life of LED lighting systems. Third International Conference on Solid State Lighting, 2004, 5187: 93—99
    102 Chhajed S, Xi Y, Gessmann T, Xi J Q, Shah J M, et al. Junction temperature in light-emitting diodes assessed by different methods. Light-Emitting Diodes: Research, Manufacturing, and Applications IX, 2005, 5739: 16—24
    103 Chhajed S, Xi Y, Li Y L, Gessmann T, and Schubert E F. Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. Journal of Applied Physics, 2005, 97(5): 054506—054506-8.
    104 Solid-State Lighting Research and Development: Manufacturing Roadmap. Lighting Research and Development Building Technologies Program. 2009: U.S. Department of Energy.
    105 Ott M. Capabilities and reliability of LEDs and laser diodes. Internal NASA Parts and Packaging Publication, 1996.
    106 Lacey J D G, Morgan D V, Aliyu Y H, and Thomas H. The reliability of (AlxGa1-x)0.5In0.5P visible light-emitting diodes. Quality and Reliability Engineering International, 2000, 16(1): 45—49.
    107 Meneghini M, Trevisanello L R, Meneghesso G, and Zanoni E. A review on the reliability of GaN-based LEDs. Ieee Transactions on Device and Materials Reliability, 2008, 8(2): 323—331.
    108 Hu J, Yang L, and Shin M W. Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes. Journal of Physics D: Applied Physics, 2008, 41: 035107.
    109 Polyakov A Y, Smirnov N B, Govorkov A V, Kim J, Luo B, et al. Enhanced tunneling inGaN/InGaN multi-quantum-well heterojunction diodes after short-term injection annealing. Journal of Applied Physics, 2002, 91(8): 5203—5207.
    110 Trevisanello L R, Meneghini M, Mura G, Sanna C, Buso S, et al. Thermal stability analysis of high brightness LED during high temperature and electrical aging - art. no. 666913. Seventh International Conference on Solid State Lighting, 2007, 6669: 66913—66913
    111陈依新,沈光地,蒋文静,李建军,高伟,韩金茹.高性能正装AlGaInP红光LED的制备2007年全国博士生学术论坛(材料科学与工程学科).
    112田咏桃.常规和新型AlGaInP发光二极管特性分析与可靠性研究.北京:北京工业大学, 2004.13-27
    113 Wei G, Weiling G, Yanxu Z, Wenjing J, and Guangdi S. Reliability of AlGaInP light emitting diodes with an ITO current spreading layer. Journal of Semiconductors, 2009, 30: 064004.
    114 Chao C I, Chuang K R, and Chen S A. Failure phenomena and mechanisms of polymeric light-emitting diodes: Indium-tin-oxide-damage. Applied Physics Letters, 1996, 69(19): 2894—2896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700