铜绿微囊藻水华模拟研究及微囊藻毒素测定方法的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化程度日益加剧,蓝藻水华的发生越来越频繁,由蓝藻毒素引起各种动物甚至人类中毒的事件也随之增多,对人类社会、经济和环境造成不良影响。微囊藻毒素成为最受人们关注的问题之一,也是防治水华危害的重点。本论文采用实验室小试和小型模拟装置的方法,研究了在铜绿微囊藻生长过程中,不同环境因子对藻类增殖的特征、氮磷在细胞内外份额的变化、群体形态变化等的影响,并考察了铜绿微囊藻的产毒特性。同时在进行测定微囊藻毒素时,提出了一种微囊藻毒素富集提取的新方法。
     研究结果表明,铜绿微囊藻最适生长条件为:温度为29℃,光照强度为4000Lx,pH为9.0,Zn~(2+)浓度为100nmol/L,Fe~(3+)浓度为10000nmol/L,总磷浓度为7.0mg/L,氮磷比为30:1。根据Monod方程和Droop方程,磷酸盐影响铜绿微囊藻生长的比增长率最大值μ_(max)=0.173/d,半饱和常数K_s=0.275mg/L,细胞内磷份额Q_0 =3.803μg/mg(dw);不同氮磷比影响铜绿微囊藻生长的比增长率最大值为0.173/d,半饱和常数为4.990mg/L,细胞内氮份额62.137μg/mg(dw)。
     实验室小型模拟装置条件下,通过营养盐对微囊藻生长影响的过程分析结果表明,藻的生长最终发展为磷限制。但随着外源性磷的输入,藻体不再受磷限制,当藻体生物量达到一定量之后,藻的生长可能转变为光限制。试验表明,水体的外加营养盐浓度的逐步提高是对铜绿微囊藻生长的一种外加刺激,将促进铜绿微囊藻的生长。此外,微囊藻对磷营养的摄取存在过度摄取行为,以应对环境中磷的缺乏及为爆发性增殖做准备。在微囊藻培养过程中,水体pH、DO表现出了昼夜变化。
     以产毒铜绿微囊藻为研究对象,主要通过对不同的有机相萃取液和沸水浴的处理时间的优化选择,提出了一种新的前处理方法用于高效液相色谱(HPLC)法分析测定微囊藻毒素环境样品。结果表明,有机相萃取液选用CCl_4,沸水浴时间为15min,可以取得较好的提取效果。该方法的MC-RR和MC-LR的回收率分别达到94.6%和95.3%,与传统提取方法相比MC-RR和MC-LR的相对误差为3%和9.3%。
     通过对铜绿微囊藻生长与产毒关系的研究结果可知,铜绿微囊藻的产毒能力与所处的生长阶段有关。铜绿微囊藻在对数生长期,产毒量明显增高。铜绿微囊藻通过分泌微囊藻毒素,抑制其他水生物种的生长,这也是铜绿微囊藻在自然水体中能够获得竞争优势,暴发微囊藻水华的原因之一。
The serious eutrophication of water body results in frequent breaking out of cyanobacterial blooms, and some genera of cyanobacteria can produce microcystins, which can cause health problems in animals and humans. The effect of microcystins on society,economy and environment has become one of the problems people concerned mostly, as well as the key in the control of cyanobacterial blooms. The sutdies were established with M. aeruginosa, one of the most deleterious species of harmful algal blooms. The environmental factors such as temperature, illumination, pH, zinc, iron, nitrogen and phosphorus were studied to determine their effect on the growth and microcystins production of M. aeruginosa. And in this paper, a new rapid method for toxin extraction was provided based on boiling water bath/liquid-liquid extraction.
     The results indicate that: M. aeruginosa grew well on the condition that the temperature was 29℃, illumination was 4000Lx, pH was 9.0, Zn~(2+) concentration was 100nmol/L, Fe~(3+) concentration was 10000nmol/L, P concentration was 7.0mg/L, N/P was 30:1. The effects of P concentration on the growth rate of M. aeruginosa under simulative equipment can be described using the Monod equation and Droop equation. The max growth rateμ_(max)=0.173/d. The P half saturation constant for algae growth K_s=0.275mg/L. The P subsistence quota of algae Q_0=3.803μg/mg(dw). The P half saturation constant for algae growth was 4.990mg/L. The N subsistence quota of algae was 62.137μg/mg(dw). The max growth rate was 0.173/d.
     The results about the effects of nutrients on the growth of M. aeruginosa and environment factors in simulative equipment of experiment were as flows: The last development of M. aeruginosa growth was phosphorus limitation. With imput of extragenous phosphorus, M. aeruginosa was not limited by phosphorus. When the biomass reached a certain value, the growth of M. aeruginosa translated to light limitation. The growth of M. aeruginosa could be improved by increasing the phosphorus concentration gradually as additional stimuli. M. aeruginosa was luxury phosphorus uptake to cope with phosphorus deficiency when the water environment was breakout of algal blooms. Diurnal changes in the simulative equipment of pH and DO were displayed with the growth of M. aeruginosa.
     The adsorption and extraction of MCs in M. aeruginosa was studied from the selection of different organic solvents and different time of boiling water bath. The results showed that the extraction was best when used CCl_4 as organic solvent and selected 15min as the time of boiling water bath. Comparing with the traditional extraction methods ,the comparative error of MC-RR and MC-LR were 3% and 9.3%, and the recovery of MC-RR and MC-LR were 94.6% and 95.3%.
     Effects of growth on M. aeruginosa production of MCs were as flows: The ability of M. aeruginosa to product toxin was related to the developmental stage. The concentration of MCs were significantly higher in the increased logarithmic phase. The M. aeruginosa achieved advantage of competition which exude MCs to inhibit the growth of other species so as to breakout of water bloom.
引文
1 Beasley V R.Algae intoxication in livestock and waterfowl.Vet Clin North Am Food Anim Pract. 1989,5(2):345~61
    2 Carmichael W W. Algal toxins and waterbased disease. CRC Critical Rev Environ Control. 1985,(15):275~313
    3大连水产学院主编.海水化学. 1986,农业出版社, 116
    4 V M Vasconcelos and E Pereita. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Wat.Res.. 2001,35,1354-1357
    5 S Pflugmacher, C Wiegand, A Oberemm, et al. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR; the first step of detoxication. Biochimicaet Biophysica Acta. 1988,1425,527-533
    6 A Boudrez, K Evens, M Beullens, et al. Identification of MYPT1 and NIPP1 as subunits of protein phosphatase 1 in rat liver cytosol. FEBS Letters. 1999,455,175-178
    7 S Pouria, A de Andrade, J Barbosa, et al. Fatal microcystin intoxication in haemodialysis unit in Carusru.Brazil.The Lancet. 1998,352,21-26
    8 A R Humpage and I R Falconer. microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology. 1999,14,61-75
    9孟紫强主编.环境毒理学基础.北京:高等教育出版社, 2003
    10 OECD. Eutrophication of Waters. Monitoring, Assessment and Control. FinalReport, OECD Cooperatixe Program on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD, Paris. 1982.154
    11黄漪平主编.太湖水环境及其污染控制.北京:科学出版社. 2001
    12陈宇炜,高锡云.西太湖北部微囊藻时空分布及其与光温等环境因子关系的研究.见:蔡启铭主编.太湖环境生态研究(一).北京:气象出版社. 1998.142~148
    13华锦彪,宗志祥.洋河水库“水华”发生的实验研究,北京大学学报(自然科学版). 1994,30:476~484
    14范成新,张路,秦伯强等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D辑). 2003, 33:760-768
    15张运林,秦伯强,陈伟民等.太湖水体光学衰减系数的分布及其变化特征,水科学进展. 2003,14:447~453
    16张民,史小丽,蒋丽娟等.两种外源性磷及振荡对铜绿微囊藻生长的影响,应用与环境生物学报. 2002,8:507
    17秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理.北京:科学出版社. 2004.200~201
    18 Steinberg C.E.W. and Hartmann H.M. Planktonic bloom forming cyanobacteria and the eutrophication of lake and rivers. Freshwater Bio1.. 1988,20:279~287
    19 Schindler D W. Evolution of phosphorus limitation in lakes. Science. 1977,195:260~262
    20 Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue green algae in lake phytoplankton. Science. 1983,221:669~671
    21 Xie L., Xie P., Li S. The low TN : TP ratio, a cause or a result of Microcystis blooms. Wrater Res.. 2003,37:2073~2080
    22 Paerl H. W., Tucker J. and Bland P. F. Carotenoid enhancement and its role in maintaining blue—green (Microcystis aeruginosa) surface blooms. Limno1. Oceanogr. 1983,28:847~857
    23王淑英.水体富营养化的危害与防治.河南水产. 2005(1):28~29
    24朱浩然.中国淡水藻志-色球藻纲.中国科学出版社. 1991,11-18
    25 C. S. Reynolds. Seasonal Variations in the vertical Distribution and Buouancy of Microstis Aeruginosa Kutz. Emend. Elenkin in Rostherne Mere. England. Hydrobiologia. 1976,48(1):17~23
    26 N. L mamuara. Studies on the Waterbloom in Lake Kasumigaure. Verh. Int. Angew. Limnol. 1981,652-658
    27 Takamura N, Iwakumar T and Yasuno M. Uptake of 13C and 14N by Microcystis In Lake Kasumigaura. J Plankton Res. 1987,9:151~168
    28杨清心.太湖水华成因及控制途径初探.湖泊科学. 1996,8(1):67~74
    29杨清心.太湖藻类水华盛发期水质富营养化状况的Fuzzy聚类分析.南京林业大学学报. 1991,15:121~328
    30 Jones, G. J. . Cyanobacterial Research in Australia. Aust. J. mar. Freshwat. Re s. 1994,45:731~915
    31 Pizzolon, C. Prosperi and J. M. Guerrero. Cyanobacterial blooms in Argentinean inland waters. Lakes & Reservoirs. 1999,4:101~105
    32 Robarts, R. S., Hypertrophy. A consequence of development. Int. J. envir. Stud. 1985,12:72~89
    33董云仙.洱海蓝藻水华研究.云南环境科学. 1999,18(4):28-31
    34张涛.滇池草海蓝藻清除应急措施总体方案.云南环境科学. 2000,19(1):38-39
    35吴为梁.滇池富营养化与藻类资源.云南环境科学. 2000,19(1):35-37
    36谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁.科学出版社. 2006:5
    37刘东艳,孙军,巩品等.不同氮磷比例对球等鞭金藻的生长的影响.海洋水产研究. 2000, 23(1):9-32
    38金相灿.铜绿微囊藻生长特性研究.环境科学研究. 2004,17(增刊):52-61
    39金相灿.中国湖泊富营养化.北京:中国环境科学出版社, 1990,109
    40 Gibson C E and Fitzsimons A G.. Periodicity and morphology of planktonic blue-green algae in an unstratified lake(Lough Neagh, Northern Ireland), Int. Rev. Ges. Hydrobiol. 1982, 67:471
    41 Foy RH and Gibson CE. Photosynthetic characteristics of planktonic blue-green algae: the respone of twenty strains grown under high and low light. Br Phycol J. 1982, 17:169-182
    42 Paerl HW, Fulton RS, Moisander PH, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacterial. Sci World. 2001, 1:76-113
    43 Reynolds CS and Walsby AE. Water-blooms. Biological Reviews. 1975, 50:437-481
    44 Skulber Mo , Codd Ga. Toxic blue2green algae blooms in Europe : a growing problem. Ambio , 1984, 13:244-247
    45 Geoffrey A. Codd, Cyanobacterial Toxins, the Perception of Water Quality, and the Prioritization of Eutrophication Control. Ecological Engineering. 2000, 16:51-60
    46 G. A. Codd. Cyanobacterial Toxins: Occurrence, Proper-ties and Biological Significance. Water Sci. Technol. 1995, 32:149-156
    47 W. W. Carmichael. The Cyanotoxins. In: J. A. Callow. Advances in Botanical Research. AcademicPress, London. 1997,27:211-256
    48 K. Sivonen. Cyanobacterial Toxins and Toxin Production. Phycologia. 1996,35(6):12-24
    49 Watanabe M. F., Tsuji K., Watanabe Y., et al.. Release of heptapeptide toxin (microcystin) during the decomposition process of Microcystisaeruginosa. Nat. Toxins. 1992(a), 1:48–53
    50 Oh H.M., Lee S. J., Kim J.H., et al. Seasonal Variation and Indirect Monitoring of Microcystin Concentrations in Daechung Reservoir, Korea. Applied and Environ. Microbio1.. 2001,67(4):1484~1489
    51 Jang M. Ha K., Lucas M. C., et al. 2004. Change in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquatic Toxicology. 68:51-59
    52 Kaya K., Sano T. A photodetoxification mechanism of the cyanobacterial hepatotoxin microcystin-LR by ultraviolet irradiation. Chem Res Toxicol. 1998,11(3):159-63
    53 Rivasseau C., Martins S., Hennion M.C.. Determination of some physiochemical param eters of microcystins (cyan bacterial toxins)and trace level analysis in environmental samples using liquid chromatography. J.of Chromatography. 1998,799:155~169
    54 Harada K-I. Chemistry and detection of Microcystins. In: Toxic Microcystis. Watanabe M F, et al. Boca Raton: CRC Press. 1996,117
    55 Dawson R M. The toxicology of Microcystins. Toxicon. 1998,36(7):953-962
    56 Beanie K. Applications and performance assessment of a commercially-available ELISA kit for microcystins. 4th International Conference on Toxic Cyanobacteria. 1998, 18
    57 Poon G K. Liquid chromatography-electrospray ionization-mass spectrometry of cyanobacterial toxins. J. Chromatogr.. 1993, 628:215
    58 Harada K I. Improved method for purification of toxic peptide produced by cyanobacteria. Toxicon. 1988a,26:43
    59 Sano T. A method for micro-detection of microcystin content in waterloom of cyanobacteria (blue-green algae).Int. J. Environ.Anal.Chem. 1992,49:163
    60 Harada K I. Mass spectrometric screening method for microcystins in cyanobacteria. Toxicon. 1996, 34:701-710
    61 Erhard M. Detection in minutes and structure determination in hours of cyanobacterial peptides using MALDI TOF Mass Spectrometry. 4th International Conference on Toxic Cyanobacteria. 1998, 28
    62 Reynolds, C. S.. Growth and Buoyancy of Microcystis areuginosa Kuti emend. Elenkin in a Shallow Eutrophic Lake. Proc. Roy. Soc. Lond. B.. 1973, 29, 184
    63 Sirenko, L. A.. Fctors of Mass Development of Blue-green Algae. Hydrobioiogia. 1976,1 7.48
    64 Maclachlan. Effects of PH and Nitrogen Sources on Growth of Microcystis aeruginosa kuti Can. Jour. Microbiol. . 1962,1,8
    65 Huisman J. Population dynamics of light-limited phytoplankton:Microcosm experiments. Ecology. 1999, 80:202-210
    66金相灿.湖泊富营养化调查规范.北京:中国环境科学出版社. 1990.
    67陈德辉.生物饵料培养.北京:农业出版社.1995, 69-75
    68国家环保总局《水和废水的监测分析方法》编委会, 2002.水和废水的监测分析方法.中国环境科学出版社
    69 John Caperon and Judith Meyer. Nitrogen-limited growth of marine phytoplankton-I Changes in population characteristics with steady-state growth rate. Deep-Sea Research. 1972, 19:601-618
    70 John Caperon and Judith Meyer. Nitrogen-limited growth of marine phytoplankton-II. Changes in population characteristics with steady-state growth rate. Deep-Sea Research. 1972, 19:619-632
    71 Droop M. R. .Inhibition Vitamin B12 and marine ecology-IV. The kinetics of uptake, growth, and inhibition in monochrysis luther. J. Mar. Biol. Ass. U. K. . 1968, 48:689-733
    72 Droop M. R. . The ntrient status of algal cells in continuous culture. J. Mar. Biol. Ass. U. K. . 1974, 54:825-855
    73高月香,张永春.水文气象因子对藻华爆发的影响.水科学与工程技术. 2006, 2, 10-11
    74余德辉.中国湖泊富营养化防治状况及存在的问题.中国湖泊富营养化及其防治国际学术研讨会专家论文集.北京:国家环境保护总局. 2000. 207-214.
    75 Boyer G L, Brand L E. Trace elements and harmful algal blooms. In: Anderson D M, Cembella A D, Hallegraeff G M, ed. Physiological Ecology of Harmful Algal Blooms. Berlin: Springer Verlag. 1998, 489-508
    76张铁明.微量元素-锌、铁、锰对淡水浮游藻类增殖的影响.首都师范大学硕士学位论文. 2006:2
    77 Marvan P. Algal Assay and Monitoring Eutrophication Stuttgart. E. Schiveizerbart sche. Verlagsbuchhandlung .1979, 175-222
    78 Maestrini S Y. Droop M R. Bonin D J. Test algae as indicators of sea water quality. Prospect. In: Algae as Ecological indicators. E. Shubert (ed). London: Academic Press.1984, 133-188
    79 Reynolds C S. The ecology of freshwater phytoplankton London: Cambridge University Press. 1984, 192-224_
    80陈德辉,章宗涉,陈坚.藻类批量培养中的最大比增长率.水生生物学报. 1998, 22(1):28-32
    81马祖友.蓝藻的生长生理特征及其竞争优势研究.西北农林科技大学硕士学位论文. 2005:33
    82 Okado M, R Sudo. Nutrient absorption and growth characteristics of Microcystis aeruginosa Res. Rep. From the National Inst for Enviro Studies. 1979, 6:293-302
    83 Chorus I. Cyanotoxins: Occurrence Causes, Consequences. Springer, berlin. 2001
    84 Sivonen K.. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 1990,56(9): 2658-2666
    85 Vézie C., Brient L., Sivonen K., et al. Variation of MC content of cyanobacterial blooms and isolated strains in lake GrandLieu(France). Microb Ecol. 1998, 35: 126-135
    86 Metcalf J S, Codd G. Microwave oven and boiling waterbath extraction of hepatotoxins from cyanobacterial cells. FEMS Microbiol. Lett. .2000, 184:241—246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700