低维Bose系统中孤子幅度的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1999年人们在准一维(雪茄型)凝聚体中观察到暗孤子以来,有关玻色-爱因斯坦凝聚体(BECs)中的孤立子动力学性质的研究就成为凝聚态物理、低温物理等领域里的研究热点之一。BEC处于不同的外部势阱中会导致不同的非线性现象,如BEC局限在谐振外势阱中,粒子间为相互排斥作用会产生暗孤子,吸引作用下出现亮孤子;然而,当BEC处于双曲函数外势阱中,即使粒子间为相互排斥作用凝聚体中却形成亮孤子,吸引作用下却产生暗孤子。迄今为止,实验上已经可以利用Feshbach共振来调控凝聚体中粒子的散射长度,从而粒子之间的相互作用对BEC中孤立子动力学的影响也成为一个有趣的课题。本文基于平均场理论框架下描述BEC一系列物理性能的Gross-Pitaevskii方程,利用非线性微扰理论解析地研究了准一维、二维凝聚体中的孤立子行为,得到了一系列有意义的结果。全文结构如下:
     第1章简要介绍了BEC的基本理论、国内外的研究动态和科研意义及本文的研究内容和方法。
     由于实验上已利用Feshbach共振调控凝聚体中粒子的散射长度,从而控制粒子间的相互作用强度。因此,在第2章,我们解析地研究了粒子间的相互作用对准一维凝聚体中孤立子动力学的影响。结果表明,通过Feshbach共振使散射长度随时间增加时,凝聚体中的黑孤子会演化成稳定的灰孤子;当散射长度随时间减少时,凝聚体中的灰孤子将向黑孤子演化。同时我们基于现有的实验条件设计了一套具体的实验方案,实现黑孤子和灰孤子之间的稳定转化。
     第3章,我们研究了准二维凝聚体中的非线性动力学性质。结果表明,当原子间为相互排斥作用时,凝聚体中首先会出现暗孤子;而这种暗孤子不稳定,会随时间演化成振幅较小的暗孤子环;形成的浅暗孤子环具有动力学稳定性。
     最后是我们对本文研究工作的一个简要的总结和对以后的研究工作的展望。
Since the dark soliton in a quasi-one dimensional (cigar-shaped) condensate was observed in 1999, the study of dynamics properties of solitons in Bose Einstein condensates (BECs) has become one of the hot subjects in science region, such as condensate physics, low-temperature physics and so on. BEC trapped in different external potential will result in different nonlinear phenomena. For example, BEC trapped in external harmonic potential, there exists dark soliton in condensates with interatomic repulsive interaction, and there occurs bright soliton when interatomic interaction is attractive. If the condensate is trapped in hyperbolic functions potential, there exhibits dark soliton in condensates when interatomic interaction is attractive, and there appears bright soliton when interatomic interaction is repulsive. So far, it has been realized that controlling the scattering length of atoms in condensate via Feshbach resonance. Thereby it is an interesting subject that the effect of interatomic interaction on dynamics properties of solitons is considered in BEC. Based on the Gross-Pitaevskii equation which can describe a number of properties of BEC under the mean-field approximate, we have studied analytically the behaviors of soliton in quasi-one and quasi-two dimensional condensate in the thesis, by use of the nonlinear perturbation theory, and obtained series of significative result. The article is organized as follows:
     In chapter 1, we introduce the basic theory, the general study situation, the scientific sense of BEC and the method and the content which we study in article.
     It has been realized that the scattering length of atoms in condensate can be controlled by Feshbach resonance, consequently the interatomic interaction can also been controlled. So in chapter 2, we study analytically the effect of scattering length on the dynamics of soliton in quasi-one dimensional BEC. It is shown that, when the scattering length increased via Feshbach resonance, the black soliton transforms into the stable gray soliton in condensates; and when the scattering length decreased by Feshbach resonance, the gray soliton turns into the black soliton. Base on currently experimental conditions, we propose experimental protocols to realize the stable exchange between black and gray solitons.
     In chapter 3, we study the nonlinear dynamics of a quasi-two dimensional condensate. It is found that, there is a dark soliton in condensate when the interatonic interaction is repulsive; the dark soliton is instability with the time, it evolves into ring dark soliton with a small amplitude; the shallow ring dark soliton will become dynamic stabilization.
     Finally, we give a simple summary and prospect about solitons of BEC.
引文
[1] Bose S N. Planck’s Law and the light quantum hypothesis. Phys Z, 26(1924)178-191.
    [2] Einstein A. Quantentheorie des einatomigen idealen gases. Sitzber. Kgl. Preuss. Akad. Wiss. (1924) 261-267.
    [3] Einstein A. Quantentheorie des einatomigen idealen gases. Sitzber. Kgl. Preuss. Akad. Wiss. (1925) 3-14.
    [4]冯端,金国钧,凝聚态物理学[M],北京,高等教育出版社, 2002
    [5] London F. Theλ-Phenomenon of Liquid Helium and the Bose-Einstein Degeneracy[J]. Nature, 1938.141:643-644.
    [6] Ginzburg V L , Pitaevskii L P. On the theory of superfluidity[J]. Sov. Phys.JETP, 1958, 7: 858-861.
    [7] Gross E P. Structure of a quantized vortex in boson systems[J]. Nuovo Cimento, 1961, 20: 454-477.
    [8] Pitaevskii L P. Vortex lines in an imperfect Bose gas. Sov[J]. Phys.JETP, 1961, 13: 451-454.
    [9] Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[J].Science, 1995,269: 198-201.
    [10] Bradley C C, Sackett C A, Tollett J J , et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [J]. Phys. Rev. Lett., 1995, 75:1687-1690.
    [11] Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein Condensation in a Gas of Sodium Atoms[J]. Phys. Rev. Lett., 1995,75:3969-3973.
    [12]周蜀渝,龙全,周善钰,付海翔,王育竹,玻色-爱因斯坦凝聚在中国科学院上海光机所实现[J].物理,2002,31:481.
    [13] Wang Yuzhu, Zhou Shuyu, Long Quan, et al. Evidence for a Bose-Einstein Condensate in Dilute Rb Gas by Absorption Image in a Quadrupole and Ioffe Configuration Trap[J]. Chin. Phys. Lett., 2003, 20(6): 799-801.
    [14] Engels. P, Atherton. C and Hoefer. M. A. Observation of Faraday Waves in a Bose-Einstein condensate[J]. Phys. Rev. Lett., 2007, 98, 095301.
    [15] Hagley E W, Deng L, Kozuma M, et al., A well-collimated quasi-continuous atom laser[J]. Science, 1999,283:1706-1709.
    [16] Kozuma M, Suzuki Y, Torii Y, et al., Phase-coherent amplification of matter waves[J]. Science, 1999,286:2309-2312.
    [17] Deng L, Hagley E W, Denschlag J, et al., Temporal, matter-wave-dispersion Talbot essect[J]. Phys. Rev. Lett., 1999, 83: 5407-5411.
    [18] Kozuma M, Deng L, Hagley E W, et al. Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction[J]. Phys. Rev. Lett., 1999, 82: 871-875.
    [19] Denschlag J, Simsarian J E, Feder D L, et al. Generating solitons by phase engineering of a Bose-Einstein condensate[J]. Science, 2000,287:97-101.
    [20] Ensher J R, Jin D S, Matthews M R, et al. Bose-Einstein condensation in a dilute gas: Measurement of energy and ground-state occupation[J]. Phys. Rev. Lett., 1996, 77: 4984-4987.
    [21] Fried D G, Killia T C, Willmann L, et al. Bose-Einstein Condensation of Atomic Hydrogen[J]. Phys. Rev. Lett., 1998,81:3811.
    [22] Robert A, Sirjean O, Browaeys A, et al. A Bose-Einstein Condensate of Metastable Atoms[J]. Science, 2001,292:461-464.
    [23] Pereira F, Santos D, Leonard J, et al. Bose-Einstein condensation of Metastable Helium[J], Phys. Rev. Lett., 2001, 86: 3459-3462.
    [24] Takasu Y, Maki K, Takahashi K, et al. Spin-Single Bose-Einstein Condensate of Two-Electron Atom[J]. Phys. Rev. Lett., 2003, 91: 040404.
    [25] Modugno G, Ferrari G, Roati G, et al. Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling [J].Science ,2001,294:1320-1322 (钾).
    [26] Weber T, Herbig J, Mark M, et al. Bose-Einstein Condensation of Cesium[J].Science, 2003,299:232-235(铯).
    [27] Griesmaier A, Werner J, Hensler S, et al. Bose-Einstein Condensation of Chromium[J]. Phys. Rev. Lett., 2005,94:160401.
    [28] Butov L V, Lai C W, Ivanov A L, et al. Towards Bose–Einstein condensation of excitons in potential traps[J]. Nature, 2002,417: 47-52
    [29] Jochim S, Bartenstein M, Altmeyer A, et al. Bose-Einstein Condensation of Molecules [J].Science, 2003, 302:2101-2103.
    [30] Zwierlein M W, Stan C A, Ketterle W, et al. Observation of Bose-Einstein Condensation of Molecules[J].Phys. Rev. Lett., 2003, 91: 250401.
    [31] Greiner M, Regal C A, Jin D S. Emergence of a molecular Bose–Einstein condensate from a Fermi gas[J]. Nature, 2003, 426:537-540.
    [32] Regal C A, Greiner M, Jin D S. Observation of Resonance Condensation of Fermionic Atom Pairs[J]. Phys. Rev. Lett., 2004, 92: 040403.
    [33] Zwierlein M W, Stan C A, Ketterle W, et al. Condensation of Pairs of Fermionic Atom near a Feshbach Resonance[J]. Phys. Rev. Lett., 2004, 92: 120403.
    [34] Barrett M D, Sauer J A, Chapman M S. All-Optical Formation of an Atomic Bose-Einstein Condensate[J], Phys. Rev. Lett., 2001, 87(1): 010404.
    [35] Thomas N R, Wilson A C. Double-well magnetic trap for Bose-Einstein condensates [J], Phys. Rev. A, 2005, 65: 063406.
    [36] Tiecke T G, Kemmann M, Ch Buggle, et al. Bose–Einstein condensation in a magnetic double-well potential[J].J. Opt. B: Quant Semielass Opt, 2003 5:s119-s123.
    [37] Hommelhoffp H W, Hansch T W, et al. Bose–Einstein condensation on a microelectronic chip[J]. Nature, 2001, 413:498-501.
    [38] Ott H, Fortagh J, Zimmermann C, et al. Bose-Einstein Condensation in a surface Microtrap[J]. Phys. Rev. Lett., 2001, 87: 230401.
    [39] Ho T L. Spinor Bose Condensates in Optical Traps. Phys. Rev. Lett., 1998, 81: 742– 745.
    [40] Gorlitz A, Vogels J M, Ketterle W, et al. Realization of Bose-Einstein Condensation in Low Dimensions[J]. Phys. Rev. Lett., 2001, 87(13): 130402.
    [41] Rychtarik D, Engeser B, Grimm R, et al. Two-Dimensional Bose-Einstein Condensate in an Optical Surface Trap[J].Phys. Rev. Lett., 2004, 92: 173003.
    [42] Miesner H J, Stamper K D M, Ander M R, et al. Bosonic Stimulation in the Formaion of a Bose-Einstein condensate[J]. Science, 1998, 279:1005-1007.
    [43] Gerton J M, Stekalov D, Prodan I, et al. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions[J]. Nature(London), 2000, 408:692-695.
    [44] K?hl M, Davis M J, Gardiner C W, et al. Growth of Bose-Einstein Condensates from Thermal Vapor [J]. Phys. Rev. Lett., 2002, 88(8):080402.
    [45] Liu C, Dutton Z, Behroozi C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001,409:490-493.
    [46] Andrews M R, Townsend C G, Miesner H J, et al. Observation of Interference Between Two Bose Condensates[J]. Science, 1997, 275: 637-641.
    [47] Burger S, Bongs K, Dettmer S, et al. Dark soliton in Bose-Einstein condensates[J]. Phys. Rev. Lett., 1999, 83, 5198-5201.
    [48] Anderson B P, Haljan P C, Regal C A, et al. Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensates[J]. Phys. Rev. Lett., 2001, 86(14): 2926-2929.
    [49] Denschlag J, Simsarian J E, Feder D L, et al. Generating Solitons by Phase Engineering of a Bose-Einstein condensate[J]. Science, 2000, 287: 97-101.
    [50] Khaykovich L, Schrek F, Ferrari F, et al. Formation of a Matter-Wave Bright Soliton [J]. Science, 2002,296:1290-1293.
    [51] Strecker K E, Partrage G B, Truscott A G, et al. Formation and Propagation of matter-wave soliton trains[J]. Nature, 2002, 417: 150.
    [52] Abo-Shaeer J R, Raman C, Vogels J M, et al. Observation of Vortex Lattices in Bose-Einstein Condensates [J].Science,2001, 292:476-479.
    [53] Abo-Shaeer J R, Raman C, Ketterle W. Formation and Decay of Vortex Lattices in Bose-Einstein Condensates at Finite Temperatures[J]. Phys. Rev. Lett., 2002,88: 070409.
    [54] Engels P, Coddington I, Haljan P C,. Observation of Long-Lived Vortex Aggregates in Rapidly Rotating Bose-Einstein Condensates[J].Phys. Rev. Lett., 2003, 90, 170405.
    [55] Leanhardt A E, Shin Y, Kielpinski D, et al.Phys. Rev. Lett., 2003,90:140403.
    [56] Deng L, Hagley E W, Wen J, et al. Four-wave maxing with matter-waves[J]. Nature, 1999, 398:218-220.
    [57] Modngno G, Ferro G, Rosh G. Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling[J] .Science, 2001, 294:1320.
    [58] Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415:39-44.
    [59] Cornish S L, Claussen N R, Roberts J L, et al. Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions[J]. Phys. Rev. Lett.,2000, 85: 1795- 1798.
    [60] Trucott A G, Shecker K E, McAlexander W I, Partridge G B, Hulet R G.Observation of Fermi Pressure in a Gas of Trapped Atoms. Science. 2001, 291:2570-2572.
    [61] Baym G, Pethick C J.Ground-State Properties of Magnetically Trapped Bose-Condensed Rubidium Gas[J].Phys. Rev. Lett.,1996,76:6-9;
    [62] Dalfovo F, Stringari S. Bosons in anisotropic traps: Ground state and vortices[J]. Phys. Rev. A, 1996, 53: 2477-2485.
    [63] Wang S J, Jia C L, Zhou D, et al. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. A, 2003,68: 015601.
    [64] Nayfeh A H著,宋家骕译,摄动方程导引[M],上海翻译出版社,1990;刘式适,刘世达,物理学中的非线性方程,北京大学出版社,2000.
    [65] Feshbach, H. New York: wiley, 1992;尹澜.玻色-爱因斯坦凝聚领域Feshbach共振现象研究进展[J].物理, 2004,33:558-561.
    [66] Tiesinga E, Verhaar B J, Stoof H T C. Threshold and resonance phenomena in ultracold ground-state collisions[J].Phys. Rev. A, 1993, 47:4114-4122.
    [67] Inouye S, Ander M R, Stenger J, et al. Observation of Feshbach resonances in a Bose-Einstein condensate[J]. Nature(London), 1998, 392:151-154.
    [68] Abdullaev F K, Kamchatnov A M, Konotop V V, et al. Phys. Rev. Lett. 2003, 90:230402.
    [69] Liang Z X, Zhang Z D, Liu W M. Phys. Rev. Lett. ,2005,94: 050402.
    [70] Flach S, Willis C R. Discrete breathers[J].Phys. Rep., 1998,295:181-264.
    [71] Andersen J D, Kenkre V M. Self-trapping and time evolution in some spatially extended quantum nonlinear systems: Exact solutions[J]. Phys. Rev. B, 1993, 47: 11134-11142.
    [72] Peyrard M, Dauxois T, Hoyet H, et al. Biomolecular dynamics of DNA: statistical mechanics and dynamical models[J]. Phys. D, 1993, 68: 104-115.
    [73] Sun C L, Hang C, Huang G X, et al. Investigation of Four-Wave Mixing of Matter Waves in Bose–Einstein Condensates. Mod. Phys. Lett. B, 2004, 18:375-383.
    [74] Huang G X, Szeftel J, Zhu S H. Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates [J].Phys. Rev. A, 2002,65: 053605.
    [75] Liang Z X, Zhang Z D, Liu W M. Bright Solitons Managed by Feshbach Resonance in Bose–Einstein Condensates. Mod. Phys. Lett. A, 2006,21: 383-397.
    [76] Wang D L, Yan X H, Wang F J. Dynamical Stability of Gap Soliton of One-Dimensional Condensate in Optical Lattices with Strong Interatomic Interaction[J]. Chin. Phys. Lett., 2007, 24:1817-1820.
    [77] Hong W, Jung Y D. Auto-B?cklund transformation and analytic solutions for general variable-coefficient KdV equation[J] .Phys. Lett. A, 1999,257: 149-152.
    [78] Dalfovo F, Stringari S. Bosons in anisotropic traps: Ground state and vortices. Phys. Rev. A, 1996,53: 2477-2485.
    [79] Gardner J R, Cline R A, Miller J D, et al. Collisions of Doubly Spin-Polarized, Ultracold 85Rb Atoms[J].Phys. Rev. Lett., 1995, 74: 3764-3767.
    [80] Volz T, D?urr S, Ernst S, et al. Characterization of elastic scattering near a Feshbach resonance in 87Rb[J]. Phys. Rev. A, 2003,68:010702(R).
    [81] Xu Z, Zhou S Y, Qu Q Z, et al. Direct observation of Bose-Einstein condensation transition in 87Rb atomic gases in tightly confinement QUIC trap[J]. Acta Phys. Sin. 2006 ,55: 5643 (in Chinese) [徐震,周蜀渝,屈求智,等. QUIC阱中紧束缚状态下87Rb原子气体的玻色-爱因斯坦凝聚体相变的直接观测.物理学报,2006,55: 5643]
    [82] Theocharis G, Schmelcher P, Oberthaler M K, Kevrekidis P G, Frantzeskakis D J 2005 Phys. Rev. A 72 023609
    [83] He Z M, Wang D L. Evolvement between bright and dark soliton of condensates[J]. Acta Phys. Sin. 2007, 56: 3088-3091 (in Chinese) [何章明,王登龙.凝聚体中亮孤子和暗孤子的交替演化[J],物理学报,2007, 56: 3088-3091].
    [84] Li Z D, He P B, Li L , et al. Magnetic soliton and soliton collisions of spinor Bose-Einstein condensates in an optical lattice [J].Phys. Rev. A, 2005,71: 053611.
    [85] Abdullaev F K, Kamchatnov A M, Konotop V V, et al. Adiabatic Dynamics of Periodic Waves in Bose-Einstein Condensates with Time Dependent Atomic Scattering Length[J]. Phys. Rev. Lett., 2003, 90, 230402.
    [86] Zhang X F, Yang Q, Zhang J F, et al. Phys. Rev. A, 2008,77: 023613; Li H M. Dynamics of solitons in Bose-Einstein condensate with time-dependent atomic scattering length[J].Chin. Phys., 2006,15: 2216-2222.
    [87] G?rlitz A, Vogels J M, Leanhardt A E, et al. Realization of Bose-Einstein Condensates in Lower Dimensions [J].Phys. Rev. Lett., 2001,87: 130402.
    [88] Saito H, Ueda M. Dynamically Stabilized Bright Solitons in a Two-Dimensional Bose-Einstein Condensate[J]. Phys. Rev. Lett. ,2003,90: 040403.
    [89] Huang G X, Makarov V A, Velarde M G. Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap[J].Phys. Rev. A,2003, 67: 023604.
    [90] Huang G X, Zhu S H. Dark Lump Excitation in Bose-Einstein Condensate[J].Chin. Phys. Lett. ,2002, 19: 17.
    [91] Theocharis G, Frantzeskakis D J, Kevrekidis P G, et al. Ring Dark Solitons and Vortex Necklaces in Bose-Einstein Condensates[J].Phys. Rev. Lett.,2003,90: 120403.
    [92] Yang S J, Wu Q S, Zhang S N, et al. Generating ring dark solitons in an evolving Bose-Einstein condensate[J].Phys. Rev. A, 2007, 76: 063606.
    [93] Carr L D, Clark C W. Vortices and ring solitons in Bose-Einstein condensates [J],Phys. Rev. A ,2006,74: 043613.
    [94] Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases[J].Rev. Mod. Phys. 1999,71:463-512.
    [95] Leggett A J. Bose-Einstein condensation in the alkali gases: Some fundamental concepts[J].Rev. Mod. Phys., 2001,73: 307-356
    [96] Xue J K , Peng P. Head-on collision of ring dark solitons in Bose--Einstein condensates [J].Chin. Phys., 2006,15: 1149-1153.
    [97] Yang H J,Shi Y R,Duan W S,LüK P 2006 Journal of Northwest Normal University 42 42杨红娟,石玉仁,段文山,吕克璞.柱KdV方程和球KdV方程的解析解[J]..2006西北师范大学学报42 42]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700