激光雷达精细探测大气气溶胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶是研究大气物理及气候变化的一个非常重要的参数,其吸收、散射以及密度分布直接影响地球辐射平衡,大气气候环境变化以及空气质量污染指数。精细探测及研究气溶胶的产生,输送及其光学和物理特性的时空变化规律,对研究大气环境变化及提高自然灾害的预警预报能力,特别是研究全球气候变暖问题,沙尘暴的预警预报及城市气溶胶的物理光学特性具有重要的研究意义和社会效益。
     米散射激光雷达具有较高的时空探测分辨率,以及结构简单、易于操作等优点,已经成为实时探测气溶胶光学特性的强力工具之一。然而,由于一般的米散射激光雷达反演大气气溶胶光学特性时,需要对大气状态进行假设,从而限制了其测量精度。
     本论文主要针对现有米散射激光雷达存在的问题,提出并设计了利用拉曼散射及瑞利散射精细探测气溶胶光学特性的激光雷达技术,并通过实验及数值仿真对系统设计进行验证。
     拉曼散射激光雷达技术主要是利用大气分子的拉曼散射信号与气溶胶消光系数的依存关系,实现气溶胶消光系数的精确探测。系统分别选用Nd:YAG脉冲激光器的三倍频输出355nm和口径250mm的卡塞格林式望远镜作为发射和接收系统,高光谱分辨率的平面反射光栅结合由窄带反射镜组组建的滤波器,分离中心波长为387nm的大气氮气的振动拉曼散射回波信号。同时利用激励波长355nm的光栅一级衍射光作为米散射探测通道,用来验证拉曼激光雷达系统的可行性。两路探测通道都是由模拟探测方式下带有前置运放的光电倍增管进行光电探测。初步实验表明,在脉冲激光能量250mJ,探测时间为8分钟(约10000次脉冲累积平均)的情况下,设计的拉曼激光雷达系统具有对3km以下气溶胶光学特性精细探测的能力。
     高光谱分辨率激光雷达技术主要是通过设计高光谱分辨率分光器,分离大气气溶胶引起的米散射及大气分子引起的瑞利散射,从而实现气溶胶的精细探测。本系统选择具有种子注入技术的单频脉冲激光器的紫外输出355nm作为光源,高光谱分辨率闪耀光栅在空间上分离太阳背景光及激光大气回波信号,保证白天测量的需要,高光谱分辨率的Fabry-Perot标准具分离气溶胶米散射及大气分子瑞利散射信号,从而实现气溶胶及云光学特性的精细探测。系统利用标准大气模型对系统进行数值仿真结果表明,在太阳背景光能量密度0.3×10~9Wm~(-2)sr~(-1)nm~(-1)的白天情况下,激光能量150mJ,探测时间1分钟的条件下,对气溶胶光学特性的有效探测高度可以达到10km以上。
Atmospheric aerosol is one of the important parameters for investigating the atmospheric physics and climate change,because its absorption,scattering and distribution of density influence the balance of Earth's radiation,atmospheric climate conditions and air pollution index directly.Fine-detection of the production,the transportation,optics and the physical property of aerosols as well as investigation of its space-time change rule have the significant research meaning and the social benefit to study the atmospheric environment,enhance early warning forecast ability of the natural disaster,especially to investigate the problem of global climate warming and the sand storm early warning forecast and the urban aerosol physical optics properties.
     Mie scattering lidar is one of the powerful tools for detection of the optical characteristics of aerosol with real-time because of its compactness,relatively low cost and easy of operation. However,because the retrieval of the optical properties of aerosol from the Mie lidar retum signal needs some assumption of weather conditions,which limits its measurement accuracy, therefore,the measurement uncertainty is still an intrinsic problem of the Mie lidar.
     In order to overcome the shortage of the Mie scattering lidar,in this paper,two kinds of lidar techniques which are based on Raman scattering and Rayleigh scattering,respectively,are proposed for fine-detection of aerosol profiles,and the feasibility of those lidar systems are confirmed by use of the experimental observation and the numerical simulation.
     Raman scattering lidar technique utilizes the dependence relationship between Raman scattering signal of atmospheric molecular and extinction coefficient of aerosol for fine detection of aerosol extinction profiles:A tripled Nd:YAG pulsed laser and a 250-mm-diameter Cassegrainian telescope are employed as transmitter and receiver respectively,a high-resolution plane reflection grating separates the vibrational Raman signal of N_2 at a central wavelength of 387nm.The first order of the grating(355nm)is used as Mie lidar to verify the feasibility of Raman method and to retrieve the aerosol extinction coefficient.The two scattering signals are detected by two photomultiplier tubes with a pre-amplifier in analog detection mode and recorded by analog-digital conversion.Preliminary experiments show that the Raman lidar system has the capability of fine-detection of aerosol profiles up to a height of 3km with 250mJ of laser energy and 8 minute integration time.
     High-spectral-resolution lidar(HSRL)technique separates the Mie-scattering signal caused by aerosol and Rayleigh-scattering signal caused by molecular by using the high-spectral-resolution spectroscopic filter,and then achieves accurate measurement of aerosol optical properties.An injection seeded single frequency pulsed Nd:YAG laser at 355nm is employed as the transmitter,a high-resolution blazed grating and a Fabry-Perot etalon filter are used to block the solar background and to separate the Rayleigh- and Mie-scattering components respectively.As a result,the aerosol extinction and lidar ratio can be obtained accurately without needs of assumption condition.The numerical simulation based on a standard atmospheric model shows that the lidar system has the capability of measuring the aerosols with a signal to noise ratio of more than 10 up to a height of 10km at daytime with 0.3×10~9Wm~(-2)sr~(-1)nm~(-1)solar irradiance.
引文
[1]盛裵轩,毛节泰,李建国,张霭琛,桑建国,潘乃先.大气物理学[M].北京:北京大学出版社,2003:25-29
    [2]Hobbs P.V.,Aerosol-Cloud-Climate Interactions,Academic Press,San Diego,1993
    [3]孙景群.激光探测大气污染[M].北京:科学出版社,1990:158-174
    [4]吴健,杨春平,刘建斌.大气中的光传输理论[M].北京:北京邮电大学出版社,2005:33-57
    [5]毛节泰,张军华,王美华.中国大气气溶胶研究综述[J].气象学报,2002,60(5):625-634
    [6]http://saga.pmel.noaa.gov/aceasia/meetings/kunming.meeting.html,ACE-ASIAMeeting Reports,kunming,China,11-13 November,1999
    [7]全浩.关于中国西北地区沙尘暴及其黄沙气溶胶高空传输路线的探讨[J].环境科学,1993,14(5):60-65
    [8]刘君,华灯鑫,李言.紫外域激光雷达探测西安城区上空大气气溶胶时空剖面[J].光子学报,2007,36(8):1534-1537
    [9]刘君,华灯鑫,李言,徐黎明.小型米散射激光雷达系统设计[J].西安理工大学学报,2007,23(1):1-5
    [10]阎吉祥,龚顺生,刘智深.环境监测激光雷达[M].北京:科学出版社,2001
    [11]G.G.Goyer and R.Watson.The laser and its application to meteorology[J].Bull.Amer.Meteorol.Soc.,1963,44(9):564-570.
    [12]G.Fiocco and L.D.Smullin.Detection of scattering layers in the upper atmosphere(60-140km)by optical radar[J].Nature,1963,199:1275-1276
    [13]G.Fiocco and G.Grams,Observation of the aerosol layer at 20km by optical radar[J].J.Atmos.Sci.,1964,21(3):323-323
    [14]M.G.H.Ligda.Meteorological observations with pulsed laser radar[C].Proc.Ⅰ~(st)Conf.On Laser Tech.,U.S.Navy,1963:63-72
    [15]T.T.H.Collis and M.G.H.Ligda.Laser radar echoes from the clear atmosphere[J].Nature,1964,203:508
    [16]T.T.H.Collis,F.G.Femald and M.G.H.Ligda.Laser radar echoes from a stratified clear atmosphere[J].Nature,1964,203:1274-1275
    [17]中国科学院大气物理研究所探测臭氧和气溶胶多波长激光雷达研制课题组.探测臭氧和气溶胶多波长激光雷达研制报告[R].2001.11:2-3
    [18]胡顺星,胡欢陵,吴永华,周军,张寅超,岳古明,戚福第.L625差分吸收激光雷达探测对流层臭氧[J].光学学报,2004,24(5):597-601
    [19]吴永华,胡欢陵,周军,胡顺星,张民.L625激光雷达探测平流层气溶胶[J].光学学报,2001,21(8):1012-1015
    [20]周军,岳古明,金传佳,戚福第,易维宁,李陶,陈毓红,熊黎明.探测对流层气溶胶的双波 长米氏散射激光雷达[J].光学学报,2000,20(10):1412-1417
    [21]Albert Ansmann,Maren Riebesell,and Claus Weitkamp.Measurement of atmospheric aerosol extinction profiles with a Raman lidar[J].Optics Letters,1990,15(13):746-748
    [22]D.N.Whiteman,S.H.Melfi,and R.A.Ferrare.Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere[J].Applied Optics,1992,31(16):3068-3082
    [23]Davie N.Whiteman.Examination of the traditional Raman lidar technique.Ⅰ.Evaluating the temperature-dependent lidar techniques[J].Applied Optics,2003,42(15):2571-2592
    [24]Davie N.Whiteman.Examination of the traditional Raman lidar technique.Ⅱ.Evaluating the temperature-dependent lidar techniques[J].Applied Optics,2003,42(15):2593-2608
    [25]J.E.M.Goldsmith,Forest H.Blair,Scott E.Bisson,and David D.Turner.Turn-key Raman lidar for profiling atmospheric water vapor,clouds and aerosols[J].Applied Optics,1998,37(21):4979-4990
    [26]Fiocco,G.and J.B.DeWolf.Frequency spectrum of laser echoes from atmospheric constituents and determination of aerosol content of air[J].J.Atm.Sci.,1968,25(3):488-496
    [27]Schwiesow,R.L.and L.Lading.Temperature profiling by Rayleigh-scattering lidar[J].Applied Optics,1981,20:1972-1979
    [28]Shipley,S.T.,D.H.Tracy,E.W.Eloranta,J.T.Trauger,J.T.Sroga,F.L.Roesler,and J.A.Weinman.High resolution lidar to measure optical scattering properties of atmospheric aerosols.1.Theory and instrumentation[J].1983,22(23):3716-3724
    [29]Sorga,J.T.,E.W.Eloranta,S.T.Shipley,F.L.Roesler and P.J.Tryon.High spectral resolution lidar to measure optical scattering properties of atmospheric aerosol.2.Calibration and data analysis[J].Applied Optics,1983,22(23):3725-3732
    [30]H.S.Shimizu,A.Lee and C.Y.She.High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters[J].Applied optics,1983,22(9):1373-1381
    [31]C.Y.She,R.J.Alvarez Ⅱ,L.M.Caldwell and D.A.Krueger.High spectral resolution Rayleigh-Mie lidar measurements of aerosol and atmospheric profiles[J],Optics Letters,1992,17(7):541-543
    [32]P.Piironen and E.W.Eloranta.Demonstration of a high-spectral resolution lidar based on an iodine absorption filter[J],optics Letters,1994,19(3):234-236
    [33]Ansmann,A.U.Wandinger,M.Riebesell,C.Weitkamp,and W.Michaelis.Independent measurements of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J].Applied Optics,1992,31:7113-7131
    [34]Masaharu Imaki,Yoshihiro Takegoshi and Takao Kobayashi.Ultraviolet high-spectral-resolution lidar with Fabry-Perot filter for accurate measurement of extinction and lidar ratio[J].Japanese Journal of Applied Physics,2005,44(5A):3063-3067
    [35]John A Reagan,M.Patrick McCormick,James D.Spinhirne.Lidar sensing of aerosols and clouds in the troposphere and stratosphere[J].Proceedings of the IEEE,1989,77(3):433-447
    [36]G.Mie.A contribution to the optics of turbid media,especially colloidal metallic suspensions[J].Ann.Physik,1908,25:377-445
    [37]D.Deirmendijian.Electromagnetic scattering on polydispersions[M].New York,NY:Elsevier,1969:11-55
    [38]周秀骐等编著.高等大气物理学(上册)[M].北京:气象出版社,1900
    [39]R.M.Measures.Laser Remote Sensing Fundamentals and Applications[M],Malabar,Florida:Krieger publishing company,1992:1-77
    [40]贺应红,郑玉臣等.米氏散射激光雷达近场距离校正函数曲线拟合法修正[J].光学学报,2005,25(3):289-292
    [41]James R.Jenness et al.Design ofa lidar receiver with fiber-optic output[J].Applied Optics,1997,36(18):4278-4284
    [42]胡克伟,李松等.激光大气雷达系统中重合系数的计算[J].红外与激光工程,2005,25(3):289-292
    [43]张改霞,张寅超等.激光雷达几何重叠因子及其对气溶胶探测的影响[J].量子电子学报,2005,22(2):299-304
    [44]R.T.H.Collis and P.B.Russell.Lidar measurement of particles and gases by elastic backscattering and differential absorption[J].Laser monitoring of the atmosphere,E.D.Hinkley,ed.(Springer-Verlag,Berlin,1976)
    [45]石顺祥,张海兴,刘劲松.物理光学与应用光学[M].西安电子科技大学出版社,西安,2000:155-170
    [46]CrownTech,Inc.CVI Laser Optics & Coatings[M].www.Crowntech-inc.com
    [47]F.G,Fernald.Analysis of atmospheric lidar observations:some comments[J].Applied Optics,1984,23(5):652-653
    [48]James D.Klett.Stable analytical inversion solution for processing lidar returns[J].Applied Optics,1981,20(2):211-220
    [49]G.Mie.A contribution to the optics of turbid media,especially colloidal metallic suspensions[J].Ann.Physik,1908,25:377-445
    [50]A.T.Young.Rayleigh scattering[J].Physics Today,Jan,1982:42-48
    [51]郭金家,刘智深,孙大鹏,宋小全,朱金山.高光谱碘分子和双边缘多普勒测风激光雷达技术比较[J].中国海洋大学学报,2004,34(3):489-496
    [52]孙东松,钟志庆,王邦新,夏海云,董晶晶,周小林,周军.基于FP标准具的直接探测多普勒测风激光雷达[J].量子电子学报,2006,23(3):303-306
    [53]朱金山,刘智深,郭金家.高光谱分辨率激光雷达大气温度测量模拟[J].中国海洋大学学报,2005,35(5):863-867
    [54]刘金涛,陈卫标,刘智深.高光谱分辨率激光雷达同时测量大气风和气溶胶光学性质的模拟研究[J].大气科学,2003,27(1):115-122
    [55]Yuri Arshinov,Sergey Bobrovnikov,llya Serikov.Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J].Applied Optics,2005,44:3592-3603.
    [56]迟如利,刘东,钟志庆,孙东松,周军,胡欢陵.双Fabry-Perot标准具在直接测风激光雷达系统中的应用与分析[J].强激光与粒子束,2007,19(2):202-206
    [57]夏海云,孙东松,董晶晶,沈法华.入射光斑对双F-P标准具测风激光雷达的影响[J].红外与激光工程,2007,36(3):377-381
    [58]丁红星,孙东松,杨昭,顾江.测风激光雷达光束发散角对测量精度的影响[J].激光与红外,2004,34(1):18-20
    [59]Dengxin Hua,Masaru Uchida,and Takao Kobayashi.Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere[J].Applied Optics,2005,44(7):1305-1314
    [60]Masaharu Imaki and Takao Kobayashi.Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties[J].Applied Optics,2005,44(28):6023-6030

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700