心电图形态特征的识别及其在分类中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心电图(Electrocardiogram, ECG)是一种简单、有效、低成本的心脏电位活动的记录与检测技术。将计算机用于心电图的疾病诊断是模式识别领域中的一项经典任务。本文中,将有经验的医生采用的心电图形态特征引入到心电图自动分析的研究中。没有能够有效利用这种特征集合该是目前心电图自动诊断结果不理想的一个重要原因。
     标准心电图数据库是一种用于验证心电图特征提取和模式分类算法性能的测试数据库。目前主要有麻省理工学院(MIT)心率失常数据库、QT数据库、欧共体(CSE)多导联数据库和美国心脏协会(AHA)数据库这四种常用的标准数据库。随着采集设备和诊断方法的不断改进,这些数据库已逐步不能适应研究和应用的需要。为了验证面向临床应用的研究结果,构建了中国心血管疾病数据库(Chinese Cardiovascular Disease Database, CCDD or CCD Database)。该数据库包含了的12导联心电图记录、特征标注信息和心拍诊断结果,更重要的是引入了极具诊断价值的形态特征参数。CCDD是本文测试工作的基础。
     随后,提出了两种形态特征的识别方法。第一种基于一阶邻近-动态时间规整算法进行设计。依靠这种有效的时间序列相似度比较算法,结合系统模板库中的心电图数据段对比,实现了形态的识别。采用模板选择与压缩方法在原模板库中选择具有代表性的模板实例,减少了模板库中模板的数量,从而提高了算法的处理速度。系统最终运用原模板库中较少比例的模板实例,达到90.7%的识别准确率。在第二种识别方法中,将算法的实时性作为研究的重点。该方法的核心思想是模拟医生识别形态特征的思维过程,并运用动态时间规整算法进行辅助检查,识别准确率达到了91.7%。
     针对“为什么要使用形态特征”以及“如何使用形态特征”这两个问题,本文提出了四种形态特征表示方法,并作对比实验。五种经典分类器在使用形态特征与不使用形态特征情况下的实验结果变化表明,形态特征在心电图模式分类中确实起到了积极作用,经过特征选择算法的优化,分类的准确率有了进一步的提高。
     心电图形态特征的识别方法需要有待进一步研究和改进,并以其对实际分类效果的改善为最终目标。
The analysis of electrocardiogram (ECG) is a non-invasive, effective, simple and low-cost technique to detect the electrical heart activity. To detect and classify ECG diseases by computer is a classic pattern recognition task. Morphology features, which influence ECG diagnosis results, are introduced according to physicians'experiences and advice. Fail to utilize them should be one of the most important reasons for the underperformance of automatic ECG classification.
     Standard ECG databases are created for validating and comparing different algorithms on feature detection and disease classification. At present, there are four frequently used standard databases:MIT-BIH arrhythmia database, QT database, CSE multi-lead database and AHA database. With the development in equipment and diagnosis approach, these databases can not meet the requirements of further R&D works. Therefore Chinese Cardiovascular Disease Database (CCDD or CCD database), which contains 12-Lead ECG data, detailed annotation features and beat diagnosis result is constructed. It is advanced for not only improving the raw ECG data's technical parameters, but also introducing valuable morphology features which are utilized by experienced cardiologists effectively. All test works in this paper are based on CCDD.
     After that, two methods are presented for ECG morphology features recognition. The first one is based on 1 nearest neighbor classifier and dynamic time warping (INN-DTW). INN-DTW is a strong time series matching algorithm and used to compare the ECG segments with the templates stored in the system. Template selection and reduction is applied to accelerate the classification speed and cut down the templates volume as well. With the help of new proposed template reduction algorithm, an accuracy of 90.71% is acquired by using a small portion of the original template set. The second one is a real time algorithm focused on higher speed by simulating cardiologists' recognition procedure while using DTW algorithm for double checking. The accuracy of this method is 91.07%.
     In order to answer the "why" and "how" challenges of ECG morphological features' real utility, four kinds of representation method are proposed for morphological features, and experiments results are compared on 5 kinds of widely used classifiers between using morphological features and without morphological features. By utilizing feature selection algorithms, the performance is improved once again.
     The study of morphology features recognition on ECG should be investigated further to meet the requirements of clinical classification.
引文
[1].Borys Surawicz,Timothy Knilans.周氏实用心电图(第5版).北京:北京大学医学出版社,2004:1-4.
    [2].王志毅,高克俭.心电图形态诊断学.天津:天津科学技术出版社,2001:1-3.
    [3]. Willerson James T., Cohn Jay N., Wellens Hei J.J. and Holmes David R.. Cardiovascular Medicine (3rd version). Springer-Verlag London Limited,2007, pp.46-47.
    [4].刘霞.经典心电图图谱(第一版).上海:上海科技出版社,2011:8.
    [5]. Kors Jan A., Herpen Gerard van. The Coming of Age of Computerized ECG Processing:Can it Replace the Cardiologist in Epidemiological Studies and Clinical Trials?.10th World Congress on Medical Informatics (MEDINFO), London, UK,2001, pp.1161-1165.
    [6]. Dong Jun, Zhang Jia-wei. Experiences-based Intelligence Simulation in ECG Recognition. IEEE International Conference on Computational Intelligence for Modelling Control & Automation (CIMCA), Austria,2008, pp.796-801.
    [7].董军,徐淼,詹聪明,鲁魏峰.心电图识别与分类:方法、问题和新途径.生物医学工程学杂志,2007,24(6):1224-1229.
    [8]. Bemmel Jan H. Van. New Trends in Computer ECG analysis. Journal of Electrocardiology, Elsevier, 1996, vol.29, pp.1-4.
    [9].孟兆辉,张永红,白净.模糊算法在心律失常病类判别中的应用.电子学报,2001,29(9):1246-1248.
    [10]. Zhang Jia-wei, Wang Li-ping, Liu Xia, Zhu Honghai, Dong Jun. Chinese Cardiovascular Disease Database and its Management Tools. IEEE 10th International Conference on Bioinformatics & Bioengineering (BIBE), Philadelphia, Pennsylvania, USA,2010, pp.66-72.
    [11]. Zhang Jia-wei, Hu Xiao-juan, Liu Xia, Dong Jun. A Framework for ECG Morphology Features Recognition. IEEE 23rd International Symposium on Computer-based Medical System (CBMS), Perth, Australia,2010, pp.85-91.
    [12]. MIT-BIH arrhythmia database, http://www.physionet.org/physiobank/database/mitdb/,2011.
    [13]. Dong Jun, Zhu Hong-hai. Mobile ECG Detector through GPRS/Internet.IEEE 17th International Symposium on Computer-based Medical System (CBMS), Bethesda, Maryland, USA,2004, pp. 485-490.
    [14]. Dong Jun, Xu Miao, Zhu Hong-hai, Lu Wei-feng. Wearable ECG Recognition and Monitor. IEEE 18th International Symposium on Computer-based Medical System (CBMS), Dublin, Ireland, June,2005, pp.413-418.
    [15]. Thakor N.V., Webster J.G., Tompkins W.J. Estimation of QRS Complex Power Spectra for Design of a QRS Filter. IEEE Transactions on Biomedical Engineering,1984, vol.31(11), pp.702-706.
    [16]. Escalona Q.J., Mitchell R.H., Balderson D.E. and Harron D. W. G. Fast and Reliable QRS Alignment Technique for High-frequency Analysis of Signal-averaged ECG. Springer Medical and Biological Engineering and Computing,1993, vol.31(1), pp.137-146.
    [17]. Jane R., Rix H., Caminal P., et al. Alignment Methods for Averaging of High-resolution Cardiac Signals:A Comparative Study of Performance. IEEE Transactions on Biomedical Engineering,1991, vol.38(6),571-579.
    [18]. Clifford Gari D., Azuaje Franciso and McSharry Patrick E. Advanced Methods and Tools for ECG Data Analysis. ARTECH HOUSE, Boston, London, UK, pp.69,278.
    [19].季虎.心电信号自动分析关键技术研究.博十学位论文,国防科学技术大学,2006:2.
    [20]. Engelse W.A.H. and Zeelenberg C. A single scan algorithm for QRS-detection and feature extraction. Computers in Cardiology,1979,6, pp.37-42.
    [21]. Borjesson P.O, Pahlm O. Adaptive QRS detection based on maximum a posterior estimation. IEEE Transactions on Biomedical Engineering,1982, vol.29(6), pp.341-351.
    [22]. Kunt M., Rey H. Preprocessing of electrocardiograms by digital techniques. Signal Processing, Elsevier,1982, vol.4(1), pp.215-222.
    [23]. Wariar R. Inter-coefficient bandpass filter for the simultaneous removal of baseline wander 50Hz and 100Hz interference from the ECG. Medical and Biological Engineering and Computing, Springer, 1991, vol.29(3), pp.333-336.
    [24]. Pan J., Tompkins W.J. A real time QRS detection algorithm. IEEE Transactions on Biomedical Engineering,1985, vol.32(2), pp.6-30.
    [25]. Ahlstrom ML, Tompkins WJ. Digital filters for real-time ECG signal processing using microprocessors. IEEE Transactions on Biomedical Engineering,1985, vol.32(9), pp.708-716.
    [26]. Xue Q.Z., HuYuhen, Tompkins W.J. Neural-network-based adaptive matched filtering for QRS detection. IEEE Transactions on Biomedical Engineering,1992, vol.39(4), pp.317-324.
    [27]. Sun P., Wu Q.H., Weindling A.M., Finkelstein, A., Ibrahim, K. An improved morphological approach to background normalization of ECG signals. IEEE Transactions on Biomedical Engineering,2003, vol.50(1), pp.117-121.
    [28]. Sameni Reza, Shamsollahi Mohammad B., Jutten Christian, Clifford Gari D. A Nonlinear Bayesian Filtering Framework for ECG Denoising. IEEE Transactions on Biomedical Engineering,2007, vol.54(12), pp.2172-2185.
    [29]. McSharry P. E., Clifford Gari D., Tarassenko L., and Smith L. A. A dynamic model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering,2003, vol.50(3), pp.289-294.
    [30]. Manuel Blanco-Velasco, Weng Binwei, Barne Kenneth E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computer in Biology and Medicine, Elsevier, 2008, vol.38, pp.1-13.
    [31]. Wu Yunfeng, Rangayyan Rangaraj M, Zhou Yachao, Ng Sin-Chun. Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Medical Engineering and Physics,2009, vol.31, pp.17-26.
    [32]. Park K.L., Lee K.J., Yoon H.R. Application of a wavelet adaptive filter to minimize distortion of the ST-segment. Medical and Biological Engineering and Computing, Springer,1998, vol.36(5), pp. 581-586.
    [33]. Ercelebi E. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Computers in Biology and Medicine, Elsevier,2004, vol.34(6), pp.479-493.
    [34]. Afsarl Fayyaz A., Riaz M. S. and Arif M. A Comparison of Baseline Removal Algorithms for Electrocardiogram (ECG) based Automated Diagnosis of Coronory Heart Disease. The 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Beijing, China, 2009, pp.1-4.
    [35]. Laguna P., Mark R.G., Goldberg A., Moody G.B. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. IEEE 24th Computer in Cardiology (CinC), Indiana, USA,1997, pp.673-676.
    [36]. Willems J.L., Arnaud P., Bemmel Jan H. Van, et al. A reference data base for multilead electrocardiographic computer measurement programs. Journal of American College of Cardiology, 1987, vol.10, pp.1313-1321.
    [37]. AHA database, available at, http://www.physionet.org/physiobank/other.shtml,2011.
    [38]. AHA database DVD, available at, https://www.ecri.org/Products/Pages/AHA_ECG_DVD.aspx,2011.
    [39]. Jenkins J., Ann Arbor Electro gram Libraries, available at:http://electrogram.com/,2011.
    [40]. Taddei, A., Distante G., Emdin E., et al. The European ST-T Database:standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. European Heart Journal,1992, vol.13, pp.1164-1172.
    [41]. Jager F., Taddei A., Moody G.B., et al. Long-term ST database:a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Medical and Biological Engineering and Computing,2003, Springer, vol.41(2), pp. 172-183.
    [42]. Christov I.I., Dotsinsky I., Simova I., et al. Dataset of manually measured QT intervals in the electrocardiogram. BioMedical Engineering OnLine,2006, vol.5(31), pp.1-8.
    [43]. PTB Diagnostic ECG Database, available at, http://www.physionet.org/physiobank/database/ptbdb/, 2011.
    [44]. National Cardiovascular Disease Database, available at, http://www.acrm.org.my/ncvd/,2011.
    [45].(美)卡塔兰著,王红宇等译,心电图分析指南,山西:山西科学技术出版社,2003,pp.30-33.
    [46]. Rangayyan R.M. Biomedical Signal Analysis:A Case-Study Approach, Wiley-Interscience, New York, 2001, pp.178-179.
    [47]. Kohler Bert-Uwe, Henning Carsten, Orglmeister Reinhold. The Principles of Software QRS Detection: Reviewing and Comparing Algorithms for Detecting This Important ECG Waveform. IEEE Engineering in Medicine and Biology Magazine,2002, vol.21(1), pp.42-56.
    [48]. Friesen G.M., Jannett, T.C., Jadallah, M.A., et al. A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering,1990, vol.37(5), pp.85-91.
    [49]. Hamilton P.S. and Tompkins W.J. Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Trans on Biomedical Engineering,1986, vol.33(12), pp. 1157-1165.
    [50]. Chen Szi-wen, Chen Hsiao-chen, Chan Hsiao-lung. A real-time QRS detection method based on moving-averaging incorporating with wavelet denosing. Computer Methods and Programs in Biomedicine, Elsevier,2006, vol.82, pp.187-195.
    [51]. Christov Ivaylo I. Real time electrocardiogram QRS detection using combined adaptive threshold, BioMedical Engineering Online,2004, vol.3(28), pp.1-9.
    [52]. Yun-Chi Yeh and Wen-June Wang. QRS complexes detection of ECG signal:The Difference Operation Method. Computer Methods and Programs in Biomedicine, Elsevier,2008, vol.91, pp. 245-254.
    [53]. Ferdi Y., Herbeuval J.P., Charef A., Boucheham B. R wave detection using fractional digital differentation. ITBM-RBM, Elsevier,2003, vol.24, pp.273-280
    [54]. Benmalek M., Charef A. Digital fractional order operators for R-wave detection in electrocardiogram signal. ET Signal Processing,2009, vol.3(5), pp.381-391.
    [55]. Lin K.P., Chang W.H. Classification of QRS pattern by associative memory model. IEEE 11th Annual International Conference of Engineering in Medicine & Biology Society (EMBC), Seattle, USA,1989, pp.2017-2018.
    [56].王继成,吕维雪.基于回归神经网络的心电图分析.中国生物医学工程学报,1995,14(3):211-217.
    [57]. Szilagyi S.M., Szilagyi L. Comparison between neural-network-based adaptive filtering and wavelet transform for ECG characteristic point detection. IEEE 19th Annual International Conference of Engineering in Medicine & Biology Society (EMBC), Chicago, USA,1997, pp.272-274.
    [58].于学鸿,许小汉.基于神经网络的波形检测方法.生物医学工程学杂志,2000,7(1):59-62.
    [59].漆进,莫智文.基于改进的快速LADT和神经网络结合的QRS波检测方法.第三军医大学学报,2003,25(15):1365-1367.
    [60]. Senhadji. Wavelet analysis of E.C.G signals. IEEE 12rd Annual International Conference of Engineering in Medicine & Biology Society (EMBC),1990, pp.811-812.
    [61]. Mallat Stephane. Zero-Crossing of a Wavelet Transform. IEEE Transactions on Information Theory, 1991, vol37(4), pp.1019-1033.
    [62]. Mallat Stephane and Zhong Sifen. Characterization of Signals from Multiscale Edges., IEEE Transactions on Pattern Analysis and Machine Intelligence,1992, vol.14(7), pp.710-732.
    [63].李翠微,郑崇勋,袁超伟.ECG信号的小波变换检测方法.中国生物医学工程学报,1995,14(1):59-64.
    [64]. Martinez J.P., Almeida R., Olmos S., et al. A wavelet-based ECG delineator:evaluation on standard databases. IEEE Transactions on Biomedical Engineering,2004, vol.51(4), pp.570-581.
    [65]. Sahambi J.S., Tandon S.N., Bhatt R.K. Using wavelet transforms for ECG characterization:an on-line digital signal processing system. IEEE Engineering in Medicine and Biology Magazine,1997, vol.16(1), pp.77-83.
    [66].丁哨卫,张作生.基于自适应小波变换的QRS波检测算法.中国科学技术大学学报,1998,28(5):580-586.
    [67]. Afonso V.X., Tompkins W.J., Nguyen T.Q., Luo Shen. ECG Beat Detection Using Filter Banks. IEEE Transactions on Biomedical Engineering,1999, vol.46(2), pp.192-202.
    [68]. Joao P.V. Madeira, Cortez P.C., Oliveira F.I., Siqueira R.S. A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique. Medical Engineering & Physics, Elsevier, 2007, vol.29, pp.26-37.
    [69]. Trahanias P.E. An approach to QRS complex detection using mathematical morphology. IEEE Transactions on Biomedical Engineering,1993, vol.40(2), pp.201-205.
    [70]. Moraes J.C.T.B, Freitas M.M., Vilani F.N., Costa E.V. A QRS Complex Detection Algorithm Using Electrocardiogram Leads, IEEE 29th Computers in Cardiology (CinC), Memphis, USA,2002, pp. 205-208.
    [71].罗小刚,彭承琳,郑小林,郭兴明.ECG信号小波变换与峰谷检测算法的研究.北京生物医学工程,2003,22(3):168-171.
    [72]. Benitez D., Gaydecki P.A., Zaidi A., Fitzpatrick A.P. The use of the Hilbert transform in ECG signal analysis [J]. Computers in Biology and Medicine, Elsevier,2001, vol.31, pp.399-406.
    [73]. Arzeno N.M, Deng Zhi-De, Poon Chi-Shang, "Analysis of First-Derivative Based QRS Detection Algorithms", IEEE Transactions on Biomedical Engineering,2008, vol.55(2), pp.478-484.
    [74]. Chawla M.P.S., Verma H.K., Kumar V., "A new statistical PCA-ICA algorithm for location of R-peaks in ECG", International Journal of Cardiology,2008, vol.129, pp.146-148.
    [75]. Manikandan M.Sabarimalai and Soman K.P. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control, Elsevier,2011, Article in Press.
    [76]. Kohler B.-U., Henning C., Orglmeister R. QRS Detection Using Zero Crossing Counts. Progress in Biomedical Research,2003, vol.8(3), pp.138-145.
    [77]. Roschke J., Aldenhoff J. The dimensionality of human's electroencephalogram during sleep. Biological Cybernetics, Springer,1994, vol.64(4), pp.307-313.
    [78]. Benitez D.S., Gaydecki P.A., Zaidi A., Fitzpatrick, A.P. A new QRS detection algorithm based on the hilbert transform.27th Computers in Cardiology (CinC), Cambridge, USA,2000, pp.379-382.
    [79]. Panoulas K.I., Hadjileontiadis L.J., Panas S.M. Enhancement of R-wave detection in ECG data analysis using higher-order statistics. IEEE 23rd International Conference on Engineering in Medicine and Biology Society (EMBC), Istanbul, Turkey,2001, pp.344-347.
    [80]. Xue Qiuzhen, Reddy S. Algorithm for Computerized QT Analysis. Journal of Electrocardiology,1998, pp.181-186.
    [81]. Daskalov I.K., Christov I.I. Electrocardiogram signal preprocessing for automatic detection of QRS boundaries. Medical Engineering and Physics, Elsevier,1999, vol.21, pp.37-44.
    [82]. McLaughlin N.B., Campbell R.W., Murray A. Comparison of automatic QT measurement techniques in the normal 12 lead electrocardiogram. British Heart Journal,1995, vol.74(1), pp.84-89.
    [83]. Laguna P., Jane R., Caminal P. Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database. Computers and Biomedical Research, ACM,1994, vol.27(1), pp. 45-60.
    [84]. Daskalov I.K., Christov I.I. Automatic detection of the electrocardiogram T-wave end. Medical and Biological Engineering and Computing, Springer,1999, vol.37, pp.348-353.
    [85]. Christov I.I., Simova I.I. Fully Automated Method for QT Interval Measurement in ECG.33rd Computers in Cardiology (CinC), Valencia, Spain,2006, pp.321-324.
    [86]. Christov I.I, Simova I.I. Q-onset and T-end delineation:assessment of the performance of an automated method with the use of a reference database. Physiological Measurement, IOP,2009, vol.28, pp.213-221.
    [87]. Singh Y.N., Gupta P. A Robust Delineation Approach of Electrocardiographic P Waves. IEEE Symposium on Industrial Electronics and Application (ISIEA), Kuala Lumpur, Malaysia,2009, pp. 846-849.
    [88]. Schreier G., Hayn D., Lobodzinski S. Development of a new QT Algorithm With Heterogenous ECG Database. Journal of Electrocardiology, Elsevier,2003, vol.36, pp.145-150.
    [89]. Helfenbein E.D., Zhou S.H., Lindauer J.M., et al. An algorithm for continuous real-time QT interval monitoring. Journal of Electrocardiology, Elsevier,2006, vol.39, pp. S123-S127.
    [90]. Zhou S.H., helfenbein E.D., Lindauer J.M., et al. Philips QT Interval Measurement Algorithms for Diagnostic, Ambulatory, and Patient Monitoring ECG Applications. Annals of Noninvasive Electrocardiology, Wiley,2009, vol.14(1), pp. S3-S8.
    [91]. Zhu Kanjie, Wang Liping, Shen Mi, Dong Jun. An Experience-Based Multi-lead Decision Model for Electrocardiogram Wave Boundary Detection. IEEE 3rd International Conference on Biomedical Engineering and Informatics (EMEI), Yantai, China,2010, pp.735-739.
    [92]. de Chazal P., Celler B.G. Automatic measurement of the QRS onset and offset in individual ECG leads. IEEE 18th Annual International Conference of Engineering in Medicine & Biology Society (EMBC), Amsterdam, Netherlands,1996, pp.1399-1400.
    [93]. Sahambi J.S., Tandon S.N., Bhatt R.K.P. Using Wavelet Transforms for ECG Characterization:An On-line Digital Signal Processing System. IEEE Engineering in Medicine and Biology,1997, vol.16(1), pp.77-83.
    [94]. Matinez J.P., Olmos S., Laguna P. Evaluation of a Wavelet-Based ECG Waveform Detector on QT Database. IEEE 27th Computers in Cardiology (CinC), Cambridge, USA,2000, pp.81-84.
    [95].张永红,詹永麒.基于小波-相对幅度-曲率P波检测算法.中国医疗器械杂志,2003,27(2):104-106.
    [96]. Martinez J.P., Almeida R., Olmos S., et al. A Wavelet-Based ECG Delineator:Evaluation on Standard Databases. IEEE Transactions on Biomedical Engineering,2004, vol.51(4), pp.570-581.
    [97]. Chesnokov Y.C., Nerukh D., Glen R.C. Individually Adaptable Automatic QT Detector. IEEE 33rd Computers in Cardiology (CinC), Valencia, Spain,2006, pp.337-340.
    [98]. Chen Po-Ching, Lee Steven, Kuo Cheng-Deng Delineation of T-Wave in ECG by Wavelet Transform Using Multiscale Differential Operator. IEEE Transactions on Biomedical Engineering,2006, vol.53(7), pp.1429-1433.
    [99]. Boichat N. Khaled N., Rincon F. et al. Wavelet-Based ECG Delineation on a Wearable Embedded Sensor Platform. IEEE 6th International Workshop on Body Sensor Networks (BSN), California, USA, 2009, pp.256-261.
    [100]. Bsoul A.A.R.B, Ji Soo-Yeon, Ward K., et al. Detection of P, QRS and T Components of ECG Using Wavelet Transformation. ICME International Conference on Complex Medical Engineering (ICCME), Tempe, AZ,2009, pp.1-6.
    [101]. Dumont J., Hernandez A.I., Carrault G. Improving ECG Beats Delineation With an Evolutionary Optimization Process. IEEE Transactions on Biomedical Engineering, vol.57(3),2010, pp.607-615.
    [102]. Lim E.T., Chen X., Ho C.T., et al. Smart Phone-Based Automatic QT Interval Measurement. IEEE 34th Computers in Cardiology (CinC), Wuhan, China,2007, pp.645-648.
    [103]. Vitek M., Hrubes J., Kozumplik J. A Wavelet-Based ECG Delineation in Multilead ECG Signals: Evaluation on the CSE Database. World Congress on Medical Physics and Biomedical Engineering, Germany,2009, pp.177-180.
    [104]. Rincon F., Boichat N., Varbero V., et al. Multi-lead Wavelet-based ECG Delineation on a Wearable Embedded Sensor Platform, IEEE 36th Computers in Cardiology (CinC), Utah, USA,2009, pp. 289-292.
    [105]. Almeida R., Martinez J.P., Rocha A.P., Laguna P. Multilead ECG Delineation Using Spatially Projected Leads from Wavelet Transform Loops. IEEE Transactions on Biomedical Engineering,2009, vol.56(8), pp.1996-2005.
    [106]. Ghaffari A., Homaeinezhad M.R., Akraminia M. A robust wavelet-based multi-lead electrocardiogram delineation algorithm. Medical Engineering and Physics, Elsevier,2009, vol.31, pp.1219-1227.
    [107].罗小钢.心电信号处理和特征提取方法的研究及心电工作站的研制.重庆大学博士学位论文,2003.
    [108]. Tighiouart B., Rubel P., Bedda M. Improvement of QRS Boundary Recognition by Means of Unsupervised Learning, IEEE 30th Computers in Cardiology (CinC), Thessaloniki, Greece,2003, pp. 49-52.
    [109]. Mehta S.S., Lingayat N.S. Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram. Biomedical Signal Processing and Control, Elsevier, 2008, vol.3, pp.341-349.
    [110]. Sayadi O., Shamsollahi M.B. A model-based Bayesian framework for ECG beat segmentation. Physiological Measurement, IOP,2009, vol.30, pp.335-352.
    [111]. Mehta S.S, Lingayat N.S, Sanghvi S. Detection and delineation of P and T waves in 12-lead electrocardiograms. Expert Systems,2009, Wiley, vol.26(1), pp.125-143.
    [112]. Mehta S.S., Lingayat N.S. Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Computer Methods and Programs in Biomedicine, Elsevier,2009, vol.93, pp.46-60.
    [113]. Mehta S.S., Shete D.A., Lingayat N.S., Chouhan V.S. K-means algorithm for the detection and delineation of QRS-complexes in Electrocardiogram. IRBM, Elsevier,2010, vol.31, pp.48-54.
    [114]. Graja S., Boucher J.M. Hidden Markov Tree Model Applied to ECG Delineation. IEEE Transcations on Instrumentation and Measurement,2005, vol.54(6), pp.2163-2168.
    [115]. Sun Yan, Chan K.P., Krishnan S.M. Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders,2005, vol.5(28), pp.1-7.
    [116]. The CSE working party. Recommendations for measurement standards in quantitative electrocardiography. European Heart Journal,1985, vol.6, pp.815-825.
    [117].周群一,吕旭东,段会龙.ECG心搏模式识别.生物医学工程学杂志,2005,22(1):202-206.
    [118]. Tamil E.M., Kamarudin N.H., Salleh R., Tamil A.M. A Review on Feature Extraction & Classification Techniques for Biosignal Processing (Part Ⅰ:Electrocardiogram). IFMBE 4th Kuala Lumpur International Conference on Biomedical Engineering (Biomed), Kuala Lumpur, Malaysia,2008, pp. 107-112.
    [119].王丽苹,董军.心电图模式分类方法研究进展与分析.中国生物医学工程学报,2010,vol.29(6),pp.916-925.
    [120]. Rodriguez J., Goni A., Illarramendi A. Real-time classification of ECGs on a PDA. IEEE Transactions on Information Technology in Biomedicine,2005, vol.9(1), pp.23-34.
    [121]. Exarchos, T.P., Tsipouras M.G., Exarchos C.P., et al. A methodology for the automated creation of fuzzy expert systems for ischaemic and arrhythmic beat classification based on a set of rules obtained by a decision tree. Artificial Intelligence in Medicine, Elsevier,2007, vol.40(3), pp.187-200.
    [122].段会龙,冯靖祎,洪玮.基于模板匹配和特征识别相结合的心室期前收缩波形分类算法.航天医学与医学工程,2002,15(2):98-102.
    [123]. Christov I.I, Jekova I., Bortolan G. Premature ventricular contraction classification by the Kth nearest-neighbours rule. Physiological Measurement, IOP,2005, vol.26, pp.123-130.
    [124]. Christov I.I, Omez-Herrero GE, Krasteva V, et al. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Medical Engineering & Physics, Elsevier, 2006, vol.28(9), pp.876-887.
    [125]. Muirhead R.J., Puff R.D. A Bayesian classification of heart rate variability data. Physica A:Statistical and Theoretical Physics,2004, vol.336(3-4), pp.503-513.
    [126]. Arafat M.A., Sieed J., Hasan M.K. Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory. Computers in Biology and Medicine, Elsevier,2009, vol.39(11), pp.1051-1057.
    [127]. Dong Jun, Tong Jia-fei, Liu Xia. The Abnormal vs. Normal ECG Classification Based on Key Features and Statistical Learning.5th International Conference on Hybird Artificial Intelligence Systems (HAIS), June, Spain, Springer,2010, pp.136-143.
    [128]. Uyar A., Guregn F. Arrhythmia classification using serial fusion of support vector machines and logistic regression. IEEE 4th Workshop on Intelligent Data Acquisition and Advanced Computing Systems:Technology and Applications (IDAACS), Dortmund, Germany,2007, pp.560-565.
    [129]. Osowski S., Hoai L.T., Markiewicz T. SVM-Based Expert System for Reliable Heartbeat Recognition. IEEE Transactions on Biomedical Engineering,2004, vol.51 (4), pp.582-589.
    [130]. Polat K., Akdemir B., Gunes S. Computer aided diagnosis of ECG data on the least square support vector machine. Digital Signal Processing,2008, vol.18(1), pp.25-32.
    [131]. Polat K., Gunes S. Detection of ECG arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine. Applied Mathematics and Computation,2007, vol.186(1), pp.898-906.
    [132]. Acir N. Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm. Neural Computation & Application, Springer,2005, vol.14(4), pp.299-309.
    [133]. Shyu L.Y., Wu Y.H., Hu W. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Transactions on Biomedical Engineering,2004, vol.51(7), pp.1269-1273.
    [134]. Ozbay Y., Ceylan R., Karlik B. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine, Elsevier,2006, vol.36(4), pp.376-388.
    [135]. Ceylan R., Ozbay Y. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Systems with Applications, Elsevier,2007, vol.33(2), pp.286-295.
    [136]. Ceylan R, Ozbay Y., Karlik B. A novel approach for classification of ECG arrhythmias:Type-2 fuzzy clustering neural network. Expert Systems with Applications, Elsevier,2009,36 (3, Part 2), pp. 6721-6726.
    [137]. Engin M. ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters, Elsevier, 2004, vol.25(15), pp.1715-1722.
    [138]. Hosseini H.G., Luo D., Reynolds K.J. The comparison of different feed forward neural network architectures for ECG signal diagnosis. Medical Engineering & Physics, Elsevier,2006, vol.28(4), pp. 372-378.
    [139]. Acir Nurettin, A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Systems with Applications, Elsevier,2006.31(1), pp.150-158.
    [140]. Yu, S. and Chou K. A switchable scheme for ECG beat classification based on independent component analysis. Expert Systems with Applications", Elsevier,2007, vol.33(4), pp.824-829.
    [141]. Yu, S. and Chou K. Selection of significant independent components for ECG beat classification. Expert Systems with Applications, Elsevier,2009.36(2, Part 1), pp 2088-2096.
    [142]. Yu, S. and Chen Y. Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components. Artificial Intelligence in Medicine, Elsevier,2009, vol.46(2), pp.165-178.
    [143]. Shaharm M, Nayebi K. Classification of multichannel ECG signals using a cross-distance analysis, IEEE 23rd Annual International Conference of Engineering in Medicine & Biology Society (EMBC), Istanbul, Turkey,2001, pp.2182-2185.
    [144]. Lagerholm M., Peterson C., Braccini G., et al. Clustering ECG Complexs Using Hermite Functions and Self-Organizing Maps. IEEE Transcations on Biomedical Engineering,2000, vol.47(7), pp. 838-848.
    [145]. Talbi M.L., Charef A. PVC discrimination using the QRS power spectrum and self-organizing maps. Computer Methods and Programs in Biomedicine, Elsevier,2009, vol.94(3), pp.223-231.
    [146]. Fisch D., Gruber T., Sick B. SwiftRule:Mining Comprehensible Classification Rules for Time Series Analysis, IEEE Transcations on Knowledge and Data Engineering,2011, vol.23(5), pp.774-787
    [147]. Wen C., Yeh M.F., Chang K.C. ECG beat classification using GreyART network. Signal Processing, IET,2007. vol.1(1), pp.19-28.
    [148]. Wen, C., Lin T.C., Chang K.C., et al. Classification of ECG complexes using self-organizing CMAC. Measurement, Elsevier,2009, vol.42(3), pp.399-407.
    [149]. Koski A. Modelling ECG signals with hidden Markov models. Artificial Intelligence in Medicine, Elsevier,1996, vol.8 (5), pp.453-471.
    [150]. Andreao R.V., Dorizzi B., Boudy J. ECG signal analysis through hidden Markov models. IEEE Transactions on Biomedical Engineering,2006, vol.53(8), pp.1541-1549.
    [151]. Amine N.A. Chapter:Statistical Models Based ECG Classification in Advanced Biosignal Processing (1st version), Springer-Verlag Berlin Heideberg,2009, pp.71-93.
    [152]. Chang P.C., Hsieh J.C., Li J.J., et al. A Hybrid System with Hidden Markov Models and Gaussian Mixture Models for Myocardial Infarction Classification with 12-Lead ECGs. IEEE list International Conference on High Performance Computing and Communications (HIPCC), Seoul, Korea,2009, pp. 110-116.
    [153]. Wang Liping, Shen mi, Tong Jiafei, Dong Jun. An uncertainty reasoning method for abnormal ECG detection. IEEE 2nd International Symposium on IT in Medicine & Education (ITIME), Jinan, China, 2009, pp.1091-1096.
    [154]. Martis R.J., Chakraborty C, Ray A.K. A two-stage mechanism for registration and classification of ECG using gaussian mixture model. Pattern Recognition, Elsevier,2009, vol.42(11), pp.2979-2988.
    [155]. Yeh Y.C., Wang W.J., Chiou C.W. Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement, Elsevier,2009, vol.42(5), pp.778-789.
    [156]. Lin C. Analysis of unpredictable components within QRS complex using a finite-impulse-response prediction model for the diagnosis of patients with ventricular tachycardia. Computers in Biology and Medicine, Elsevier,2010, vol.4(7), pp.643-649.
    [157]. Roopaei M., Sarvestani R.R., Taghavi M.A., et al. Chaotic based reconstructed phase space features for detecting ventricular fibrillation. Biomedical Signal Processing and Control, Elsevier,2010, vol.5(4), pp.318-327.
    [158]. Mishra A.K., Raghav S. Local fractal dimension based ECG arrhythmia classification. Biomedical Signal Processing and Control, Elsevier,2010, vol.5, pp.114-123.
    [159]. Guler Inan, Ubeyli E.D. ECG beat classifier designed by combined neural network model. Pattern Recognition, Elsevier,2005; 38:199-208.
    [160]. Guler Inan, Ubeyli E.D. A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence, Elsevier,2005, vol.18, pp. 845-856.
    [161]. Meau, Y.P., Lbrahima F., Narainasamy S.A.L., et al. Intelligent classification of electrocardiogram (ECG) signal using extended Kalman Filter (EKF) based neuro fuzzy system. Computer Methods and Programs in Biomedicine, Elsevier,2006, vol.82(2), pp.157-168.
    [162]. Zaunseder S., Huhle R., Malberg H. CinC Challenge-Assessing the Usability of ECG by Ensemble Decision Trees. IEEE 38th Computer in Cardiology (CinC), Hangzhou, China, Article in Press.
    [163]. Kutlu Y., Kuntalp D. A multi-stage automatic arrhythmia recognition and classification system. Computers in Biology and Mecdicine, Elsevier,2011, vol.41(1), pp.37-45.
    [164]. Osowski S., Siwek K., Siroic R. Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Computers in Biology and Medicine, Elsevier,2011, vol.41(3), pp.173-180.
    [165]. Kim J., Shin H.S., Shin K., et al. Robust algorithm for arrhythmia classification in ECG using extreme learning machine. BioMedical Engineering Online,2009, vol.8(31), pp.1-12.
    [166]. Fayn J., Rubel P. Toward a Personal Health Society in Cardiology. IEEE Transactions on Information Technology in Biomedicine,2010, vol.14(2), pp.401-409.
    [167]. Winkler S., Axmann C. Schannor B. Diagnostic accuracy of a new detection algorithm for atrial fibrillation in cardiac telemonitoring with portable electrocardiogram devices. Journal of Electrocardiology, Elsevier,2011, vol.44(4), pp.460-464.
    [168]. Sankari Z., Adeli H. HeartSaver:A mobile cardiac monitoring system for auto-detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block. Computers in Biology and Medicine, Elsevier,2011, vol.41(4), pp.211-220.
    [169]. Huang B. and Kinsner W. ECG Frame Classification Using Dynamic Time Warping. IEEE 22nd Canadian Conference on Electrical and Computer Engineering (CCECE), Newfoundland and Labrador, Canadian,2002, pp.1105-1110.
    [170]. de Chazal P., O'Dwyer M., Reilly R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering,2004, vol.51(7), pp. 1196-1206.
    [171]. Tuzcu Volkan, Nas Selman. Dynamic Time Warping As a Novel Tool in Pattern Recognition of ECG Changes in Heart Rhythm Disturbances. IEEE 18th International Conference on Systems, Man and Cybernetics (ICSMC), Waikoloa, Hawaii, USA,2005, pp.182-186.
    [172]. de Chazal P., Reilly R.B. Automatic classification of ECG beats using waveform shape and heart beat interval features. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hongkong, China,2003, pp.269-272.
    [173]. de Chazal P., Reilly R. B. A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features. IEEE Transactions on Biomedical Engineering,2006, vol.53(12), pp. 2535-2543.
    [174]. Syeda-Mahmood Tanveer, Beymer David, Wang Fei. Shape-based Matching of ECG Recordings. IEEE 29th Annual International Conference of Engineering in Medicine & Biology Society (EMBC), Lyon, France,2007, pp.2012-2018.
    [175]. Maier C., Dickhaus H., Bauch M., Penzel T. Comparison of heart rhythm and morphological ECG features in recognition of sleep apnea from the ECG. IEEE 30th Computers in Cardiology (CinC), Thessaloniki, Greece,2003, pp.311-314.
    [176]. Holmqvist Fredrik, et al. Signal-averaged P wave analysis for delineation of interatrial conduction-Further validation of the method. BMC Cardiovascular Disorders,2007, vol.7(29), pp.1-8.
    [177]. Herreros Alberto, Baeyens E., Johansson R. Analysis of changes in the beat-to-beat P-wave morphology using clustering techniques. Biomedical Signal Processing and Control, Elsevier,2009, vol.4(4), pp.309-316.
    [178]. Syed Z., Sung P., Scirica B.M., et al. Spectral Energy of ECG Morphologic Differences to Predict Death. Cardiovascular Engineering, Springer,2009, vol.9, pp.18-26.
    [179]. Xue Joel, Chen Yao, Han Xiaodong, Gao Weihua. Electrocardiographic morphology changes with different type of repolarization dispersions. Journal of Electrocardiology,2010, vol.43, pp.553-559.
    [180]. Yeh Y.C., Wang W.J., Chiou C.W. Feature selection algorithm for ECG signals using Range-Overlaps Method. Expert Systems with Applications, Elsevier,2010, vol.37, pp.3499-3512.
    [181]. Zadeh A.E., Khazaee A., Ranaee V. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Computer Methods and Programs in Biomedicine, Elsevier,2010, vol.99, pp.179-194.
    [182]. Madias J.E., Attari M., Bravidis D. Giant R-Waves in a Patient With an Acute Inferior Myocardial Infarction. Journal of Electrocardiology,2001, vol.34, pp.173-177.
    [183]. Sternick E.B., Timmermans C, Sosa E., et al. The Electrocardiogram During Sinus Rhythm and Tachycardia in Patients With Mahaim Fibers, The Importance of an "rS" Pattern in Lead Ⅲ. Journal of the American College of Cardiology,2004, vol.44(8), pp.1626-1635.
    [184]. Chatterijee S., Changawala N. Fragmented QRS Complex:A Novel Marker of Cardiovascular Disease. Clinical Cardiology, Wiley,2010, vol.32(2), pp.68-71.
    [185]. Das M.K., Michael M.A., Suradi H., et al. Usefulness of Fragmented QRS on a 12-Lead Electrocardiogram in Acute Coronary Syndrome for Predicting Mortality. The American Journal of Cardiology, Elesiver, vol.l04(12),2010, pp.1631-1637.
    [186]. Korhonen P., Husa T., Konttila T., et al. Fragmented QRS in Prediction of Cardiac Deaths and Heart Failure Hospitalizations after Myocardial Infarction. Annals of Noninvasive Electrocardiology, Wiley, 2010, vol.15(2), pp.130-137.
    [187]. Katsuno T., Hirao K., Kimura S., et al. Diagnostic Significance of a Small Q Wave in Precordial Leads V2 or V3. Annals Noninvasive Electrocardiology, Wiley,2010, vol.15(2), pp.116-123.
    [188]. Magnani J.W., Johnson V.M., Sullivan L.M., et al. P-Wave Indices:Derivation of Refence Vaules from the Framingham Heart Study. Annals of Noninvasive Electrocardiology, Wiley,2010, vol.15(4), pp. 244-352.
    [189]. Bruce Foster D. Twelve-Lead Electrocardiography Theory and Interpretation (2nd Edition). Springer London,2009, pp.9.
    [190]. Kusumoto F. ECG Interpretation:From Pathophysiology to Clinical Application (2nd Edition). Springer US,2009, pp.24.
    [191]. Chen Lin. Topological structure in visual perception. Science,1982, vol.218(4573), pp.699.
    [192].董董军.人工智能哲学.北京:科学出版社,2011:112-113.
    [193].田颖,杨新春.碎裂QRS——还有多少谜团有待解开?,心血管病学进展,2010,31(4):489-492.
    [194]. Das M.K., Khan B., Jacob S., et al. Significance of a fragmented QRS complex vs a Q wave in patients with coronary artery disease. Circulation, American Heart Associate,2006, vol.113, pp. 2495-2501.
    [195]. Norman J.E., The Coming of Age of Computerized ECG processing:Can it Replace the Cardiologist i, et al. NHLBI workshop on the utilization of ECG databases:Preservation and use of existing ECG databases and development of future resources. Journal of Electrocardiology,1998, vol.31(2), pp. 83-89.
    [196]. Health informatics-Standard communication protocol-Computer assisted electrocardiography ICS: 35.240.80 IT applications in health care technology. reference number:EN 1064:2005+A1:2007 and ISO/DIS 11073-91064.
    [197]. Mandellos G.J., Koukias M.N., Lymberopoulos D.K. Structuring the e-SCP-ECG+ protocol for multi vital-sign handling. IEEE 8th International Conference on Bioinformatics & Bioengineering (BIBE), Athens, Greece,2008, pp.1-6.
    [198].12-Lead ECG monitor product, available at http://www.ecgonline.cn/product_view.asp?cid=23&id=33, 2011.
    [199]. http://www.ecgonline.cn/server_view.asp?id=6,2011
    [200]. http://www.ecgonline.cn/server_view.asp?id=5,2011
    [201]. http://www.ecgonline.cn/server_view.asp?id=7,2011
    [202]. MySQL, available at http://www.mysql.com,2011.
    [203]. Wang Hai-yin, Azuaje F., Jung B. and Black N. A markup language for electrocardiogram data acquisition and analysis (ecgML). BMC Medical Informatics and Decision Making,2003, vol.3, pp. 4-17.
    [204]. Lu Xu-dong, Duan Hui-long and Zheng Hui-ying Z. XML-ECG:An XML-Based ECG Presentation for Data Exchanging. IEEE 1st International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Wuhan, China,2007, pp.1141-1144.
    [205]. Mitchell T.M机器学习(第一版).北京:机械工业出版社,2008:165-166,113-136.
    [206]. Cover T. M., Hart P. E. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory,1967, vol.13(1), pp.21-27.
    [207]. Ding Hui, Trajcevski G., Scheuermann P., et al. Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. ACM 34th International Conference on Very Large Databases (VLDB), Auckland, New Zealand,2008, vol.1(2), pp. 1542-1552.
    [208]. Berndt D. J. and Clifford J. Using dynamic time warping to find patterns in time series. AAAI KDD workshop,1994, pp.359-370.
    [209]. Meinard Muller. Information Retrieval for Music and Motion (1st version). Springer-Verlag New York, 2007, pp.69-84.
    [210]. Xi Xiao-peng, Keogh E., Shelton C, Li Wei, Ratanamahatana C. A. Fast Time Series Classification Using Numerosity Reduction.23rd International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, USA,2006, pp.1033-1040.
    [211]. Rattani A., Biagio F., Marchialis G.L., et al. Template Update Methods in Adaptive Biometric Systems: A Critical Review. IAPR/IEEE 3rd International Conference on Biometrics (ICB), Alghero, Italy,2009, Springer LNCS 5558, pp.847-856.
    [212]. Freni Biagio, Roli Fabio, et al. Template Selection by Editing Algorithms:A Case Study in Face Recognition. IAPR 12th Joint International Workshops on Structural and Syntactic Pattern Recognition and Statistical Techniques in Pattern Recognition (S+SSPR), Orlando, Florida, USA, 2008, Springer LNCS 5342, pp.745-754.
    [213]. Uludag Umut, Ross Arun, Jain Anil. Biometric template selection and update:a case study in fingerprints. Pattern Recognition, Elsevier,2004, vol.37(7), pp.1533-1542.
    [214]. Manning Christopher D., Raghavan P and Schutze H. An Introduction to Information Retrieval (1st version). Cambridge University Press, England,2008, pp.378-388, also available at: [http://nlp.stanford.edu/IR-book/information-retrieval-book.html]
    [215]. Tan Pang-Ning, Steinbach M. and Kumar Vipin. Introduction to Data Mining (1st version). Addison Wesley, US,2005, pp.186-188.
    [216]. Li Q., Mark R.G., Clifford G.D. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiological Measurement, IOP,2008, vol.29, pp.15-32.
    [217]. Philips 12导联算法医师手册(第一版),Koninklijke Philips Electronics N.V.,2003:1-7. [http://incenter.medical.philips.com/doclib/getdoc.aspx?func=11&objid=3325463&objaction=open]
    [218]. Tsoumakas G., Katakis I. Multi-Label Classification:An Overview. International Journal of Data Warehousing & Mining, IGI Global,2007, vol.3(3), pp.1-13.
    [219]. Han Jiawei, Kamber M. Data Mining: Conceptes and Techniques (English,2nd edition)北京:机械工业出版社:2007:315-319.
    [220]. Neapolitan Richard E. Learning Bayesian Networks (1st edition). Prentice Hall,2004, pp.123-224, 293-425.
    [221]. Korb K.B., Nicholson A.E. Bayesian Artificial Intelligence (1st edition). Chapman & Hall,2003, pp. 31-32,197-219.
    [222]. Cooper G. F., Herskovits E. A Bayesian method for constructing Bayesian belief networks from databases.7th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Los Angeles, USA, 1991, pp.86-94.
    [223]. Cover T.M., Hart P.E. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory,1967, vol.13(1), pp.21-27.
    [224]. Breiman L. Classification and regression trees (1st edition). Chapman & Hall,1998, pp.130-171, 318-324.
    [225]. Boser B.E., Guyon I.M., Vapnik V. A Training Algorithm for Optimal Margin Classifers.5th Annual ACM Workshop on Computational Learning Theory (COLT), Pittsburgh, USA,1992, pp.144-152.
    [226]. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning, Springer, vol.20(3),1995, pp. 273-297
    [227]. Support vector machine, available at:http://en.wikipedia.org/wiki/Support_vector_machine,2011.
    [228]. Theodoridis S., Koutroumbas K.,李晶皎等译.模式识别(第三版).北京:电子工业出版社,2006:108-111.
    [229]. Moavenian M., Khorrami H. A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification. Expert Systems with Applications, Elsevier, vol.37(4), pp.3008-3093.
    [230]. Dash M., Liu H. Feature Selection for Classification. Intelligent Data Analysis,1997, vol.1, pp. 131-156.
    [231]. Huang Chenn-Jung, Liao Wei-Chen. A Comparative Study of Feature Selection Methods for Probabilistic Neural Networks in Cancer Classification. IEEE 15th International Conference on Tools with Artificial Intelligence (ICTAI), California, USA,2003, pp.451-458.
    [232]. Hall M.A. Correlation-based Feature Subset Selection for Machine Learning. PhD Thesis, Waikato University, New Zealand,1999, pp.69-70.
    [233]. Liu H., Setiono R. Chi2:Feature Selection and Discretization of Numeric Attributes. IEEE 7th International Conference on Tools with Artificial Intelligence (ICTAI), Herndon, Virginia,1995, pp. 338-391.
    [234]. Holte R.C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, Springer, vol.11(1), pp.63-91.
    [235]. I. Kononenko. Estimating attributes:Analysis and extension of RELIEF. European Conference on Machine Learning (ECML), April 6-8, Catania, Italy,1994, pp.171-182.
    [236]. Kira K., Rendell L.A. A practical approach to feature selection.9th International Conference on Machine Learning (ICML), Scotland, UK,1992, pp.249-256.
    [237]. John G.H., Kohavi R., Pfleger K. Irrelevant features and the subset selection problem.11th International Conference on Machine Learning (ICML), New Brunswick, USA,1994, pp.121-129.
    [238]. Weka, available at:http://www.cs.waikato.ac.nz/ml/index.html,2011.
    [239]. Witten I.H., Frank E. Data Mining:Practical Machine Learning Tools and Techniques (English,2nd edition)北京:机械工业出版社,2005.
    [240]. Chang Chih-Chung, Lin Chih-Jen. LIBSVM:A library for support vector machines. ACM Transactions on Intelligent Systems and Technology,2011, vol.2(3), pp.1-27.
    [241]. Libsvm, available at:http://www.csie.ntu.edu.tw/-cjlin/libsvm/,2011.
    [242]. Tenenbaum J.B., Griffiths T.L., Kemp C. Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, Elsevier,2006, vol.10(7), pp.309-318.
    [243]. Steyvers M., Griffiths T.L., Dennis S. Probailistic inference in human semantic memory. Trends in Cognitive Sciences, Elsevier,2006, vol.10(7), pp.327-335.
    [244]. Goodman N.D., Griffiths T.L., Feldman J., et al. A Rational Analysis of Rule-based Concept Learning. Cognitive Science, Wiley,2008, vol.32(1), pp.108-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700