心电波形检测与心率变异性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心电信号和心率变异信号蕴含着丰富的心脏及其神经系统活动信息,对这些信息的提取和处理在心脏疾病的预防、诊断和治疗等方面具有重要的意义。论文在前人研究成果的基础上,开展了心电信号预处理、心电特征波检测及心率变异性分析的研究工作。
     本文简要阐述了ECG信号及HRV信号的生理机理、典型特征信息及其临床诊断意义,综述了目前心电信号预处理、心电特征波形识别及特征信息提取、HRV信号分析的国内外研究现状。针对典型的ECG和HRV分析方法存在的一些不足,采用新的信号分析手段,在改进和创新ECG和HRV分析方法上进行了研究尝试,取得了一些有价值的研究成果,对于开发研制新型心电分析系统有重要意义。论文主要的研究成果包括以下几个方面:
     1)针对小波变换的阀值去噪易在心电信号的Q、S波处出现Gibbs振荡现象及消除基线漂移时可能导致T波、ST段波形形态失真的问题,提出了将平稳小波变换和自适应滤波方法相结合的一次性ECG消噪方法。算法在低尺度分量上通过阈值去噪方法滤除心电的工频和肌电等干扰,在高尺度分量上引入自适应滤波算法滤除基线漂移,重构后很好地保持了ECG的波形形态,达到了一次性消噪的目的。仿真实验表明算法有效地克服了Gibbs震荡现象,降低了心电信号T波、ST段波形滤波后的失真度,为提取准确的心电特征信息奠定了基础。
     2)提出了非线性能量算子和小波分解相结合的R波检测算法。该算法采用Marr小波为基本小波,通过检测3尺度分量的极值点标定R波的位置,既有效地抑制了噪声干扰的影响,又克服了传统样条小波变换R波检测需定位过零点的不便。对3尺度分量引入平滑非线性能量算子运算,突出了R波尖峰,抑制了高大T波、大P波对R检测的影响,与传统小波变换的R波检测算法相比,算法的检测率高、抗干扰能力强、计算量小、实时性好,对MIT-BIH的心律失常数据库的实际心电数据的仿真实验表明了算法的有效性。
     3)提出了基于Hilbert时频谱的HRV信号的时频分析方法。通过分析不同生理病理状况下HRV信号的Hilbert时频谱的差异,依据短时程HRV信号的频域指标,在不同生理频带上绘制Hilbert能量棒形图,提取了各频带能量特征作为定量评价心率变异性的时频特征,分析了心率改变和时频特征的相关性,指出心率改变是HRV信号分析应考虑的一个重要因素。通过对年轻人和老年人、健康人和心衰病人样本数据的统计分析表明提取的时频特征有很好的区分性能,准确地反映了心脏的交感和迷走神经系统的调控作用及受损状况。
     4)采用改进的HHT分析方法对室速或室颤事件的发生进行预测分析。首先,将心脏复律除颤器存储的室速或室颤事件发作前的RR间期序列变换为瞬时心率信号,利用小波包变换将其预分解为几个窄带信号,然后对各窄带分量信号进行EMD分解,通过相关性阈值判别剔除虚假模态分量后获取瞬时心率信号的Hilbert边际谱,并提取各生理频段幅值特征作为室速或室颤事件预测特征。仿真实验表明室速或室颤事件发作前瞬时心率信号的高频、甚高频幅值及总幅值较正常窦性心率信号显著升高,而低高频幅值比显著降低。提示室速或室颤事件发作前心脏交感和迷走神经活动均有所增强,以迷走神经活动增强更为显著,引起心脏自主神经系统调节失衡。统计分析结果显示改进的HHT方法谱特征的区分性能明显优于传统的HHT方法。
     5)提出了HHT的边际谱熵及能量谱熵的概念及分析方法。通过对混有不同程度白噪声的常规信号和混沌时间序列复杂性的分析,显示出边际谱熵和能量谱熵在刻画信号复杂度变化、抗脉冲干扰性能优于传统复杂度和熵分析方法,应用于年轻人、老年人及房颤病人的HRV信号分析,两种频域谱熵能从HRV信号中敏感地检测出生理和病理状态的变化,分析性能优于传统的功率谱熵的方法。
     6)提出了基于分频段Hilbert时频谱熵的HRV信号的分析方法。通过提取不同生理频段的Hilbert谱熵作为心率变异性的特征评价指标。Hilbert谱熵特征反映了HRV信号能量在时频域分布的不确定性,而按频段适当分离各种生理因素的Hilbert谱熵和不同的生理病理机理联系紧密,有利于表征心脏自主神经系统的调控规律。通过对年轻人、老年人及房颤病人和健康人、充血性心力衰竭病人的HRV信号的仿真分析表明,算法有效地区分了各样本组,准确反映了不同生理病理状况下的心脏交感神经和迷走神经调节的变化规律。
     论文最后对课题的研究工作进行了总结,并对今后研究提出了设想。
A large amount of information about heart function and its nervous activity is containedin ECG and HRV signal. Therefore, it is greatly significant to extract and process theinformation for the prevention, diagnosis and therapy etc. of heart disease. The thesis mainlydiscusses the ECG preprocessing, feature analysis and heart rate variability, which is based onthe predecessors’ research results and literature material.
     The physiologic principle and mechanism, typical feature and clinical diagnostic value ofECG and HRV signal are briefly illustrated in this thesis; the present developing status ofpreprocess methods of ECG signal and the methods of feature waveform recognition of ECGsignal and HRV analysis methods are summarized. According to the existing deficiencies ofthe typical analysis algorithm, some studies have been tried to improve and innovate theanalysis methods of ECG and HRV signal based on the new signal analysis methods, andsome research outcomes have been obtained, which turns out to be significant to develop newECG automatic analysis system. It mainly includes the following research works:
     1) As to the de-noising method of wavelet threshold, Gibbs oscillatory phenomena easilyoccurs in Q,S waveform of ECG signal and the serious distortion for T waveform and STsegment waveform of ECG signal can be easily caused when baseline drift is eliminated. Tosolve this problem, the one-off denoising method of ECG signal combining stationary wavelettransform and adaptive filter is proposed. The power-line interference and EMG noise iseliminated based on the de-noising method of wavelet threshold in low scale decompositioncomponent, and the adaptive filter is introduced so as to eliminate baseline drift in large scaledecomposition component,the ECG waveform form remain well after the reconstruction, theone-off denoising is achieved. Simulation and comparison test result shows that thissynthetical filter can avoid Gibbs oscillatory phenomena effectively and reduce the distortionfor T waveform and ST segment waveform of ECG signal, which laid foundation for accuratefeature information extraction of ECG signal.
     2) The combination algorithm of wavelet transform and nonlinear energy operator isproposed for R waveform detection of ECG signal, which uses Marr wavelet as wavelet basis.Through demarcating the location of R waveform by the extreme value point on3scalecomponent of wavelet decomposition, the effect of noise is effectively restrains,and thedisadvantage that the location of zero-crossings are needed for R waveform detection byspline wavelet transform is overcome. Smooth nonlinear energy operator is operated on3scale component so as to protrude R waveform peak and suppress high T waveform and Pwaveform. In comparison with the R waveform detection method of traditional wavelet transform, the method shows high detection rate, better ability to anti-interference, much lesscomputation and good real-time performance. Simulation test shows that the method iseffective for actual ECG data in the MIT/BIH arrhythmia data.
     3) A time-frequency analysis method is proposed for HRV signal based on Hilberttime-frequency spectrum. The method analyzes the difference of Hilbert time-frequencyspectrum for HRV signal under different physiological or pathological conditions, and theHilbert energy bar chart of HRV signal is plotted in the different physiological frequency bandby the characteristic index of short-time HRV signal in the linear frequency domain,theenergy features are extracted in the different physiological frequency band as thetime-frequency feature of quantitative evaluating for heart rate variability, the correlationbetween the heart rate change and the time-frequency features is studied in this paper, andpoints out that the change of heart rate is a important factor considered in HRV signalanalysis.Simulation tests to HRV signal of the young, old and heart failure patients show thatthe new time-frequency features have good differentiating performance, and can accuratelyreflect the regulatory function and damage of sympathetic and vagal nervous system of heart.
     4) The ventricular tachycardia (VT) and ventricular fibrillation (VF) event is predictedbased on improved HHT method. Firstly, the RR interval series preceding the onset of VT/VFevents is transformed instantaneous heart rate (IHR) series, and it is pre-decomposed into aseries of narrow-bands signal by wavelet packet transform, then EMD decomposition iscarried out for each narrow-band component, the undesirable components are removed by thecorrelation threshold identification, the new intrinsic mode function (IMF) components andHilbert marginal spectrum of IHR series are obtained, the amplitude features of differentphysiological frequency band are extracted to be used for prediction features of VT/VF events.Simulation test shows that high frequency amplitude, very high frequency amplitude and totalamplitude of IHR series preceding the onset of VT/VF are significantly higher than that ofnormal sinus rhythm, and low-to-high frequency amplitude ratio is significantly lower thanthat of normal sinus rhythm. It suggests that the activity of sympathetic and vagal nerveappears to increase preceding the onset of VT/VF event, and the activity of vagal nerve ismore marked, which causes imbalance of the sympathetic and vagal nerve activity.Simulation test is carried out for the improved HHT method and the traditional HHT, thestatistical analysis show that the differentiated performance of the improved HHT is morebetter than that of traditional HHT.
     5) The conception of HHT marginal spectrum entropy and energy spectrum entropy andthe analysis method of HRV signal are proposed. The complexity analysis is processed for theconventional signal with some degree of white noise and chaotic time series. The results show that the method is superior to the analysis method of the traditional complexity and entropy indepicting signal complexity and anti-pulse interference. Applying the new approach to HRVsignal of the young, older and atrial fibrillation patients, the results show that the two entropyof frequency domain can sensitively detect the physiological and pathological changes fromHRV signal, and its analytical performace is better than that of the traditional power spectrumentropy method.
     6) The new method of HRV signal analysis is proposed based on the Hilbert spectrumentropy dividing frequency range. the Hilbert spectrum entropy of HRV signal in differentfrequency range is calculated, which is used as the characteristic evaluation index of heart ratevariability. The Hilbert spectrum entropy can reflect the uncertainty of HRV signal energy ontime-frequency distributions, the Hilbert spectrum entropy features of HRV signal based onappropriate separation for various physiological factors by dividing frequency range are moreclosely linked to different physiological and pathological functions and more conducive tomanifest the regulation law of autonomic nervous system of heart. The results of thesimulation test to HRV signal of the sample group for the young, elder and patients with atrialfibrillation, and the sample group for health person and congestive heart failure(CHF) patientsshow that this method can effectively differentiate different sample group, and can accuratelyreflect the regulation law of sympathetic and vagal nervous system of heart in differentphysiological and pathological functions.
     At last, the dissertation sums up the research of this project and makes the expectationabout the development direction of the assignment.
引文
[1]汪春丽.我国心血管病负担日益加重—《中国心血管病报告2010》正式发布.中华医学信息导报,2011年8月27日.
    [2]杨福生,吕扬生.生物医学信号的处理和识别.天津:天津科技翻译出版公司,1997,378-379.
    [3]侯应龙,Sunny Po.自主神经系统与室性心律失常.中国心脏起搏与心电生理杂,2009,23(1):1-5.
    [4] The relationship of autonomic imbalance, heart rate variability and cardiovascular disease riskfactors,2010,141(2):122-131.
    [5]胡大一,郭成军,李瑞杰.心率变异性一测量标准,生理释义与临床应用—续一:心率变异性的生理研究.中国医疗器械信息,1998,4(1):29-32.
    [6]吴学勤.动态心电图技术与应用.合肥:中国科学技术出版社,1998,22-25.
    [7]吕可诚,王继业,常树心等.心率变异性的非线性分析—人体心搏的混沌特性.南开大学学报,1997,30(1):20-25.
    [8] Malik M. Heart rate variability: standards of measurement, physiological interpretation and clinical use.Circulation,1996,93(5):1043–1065.
    [9] Bansal D, Khan M, Salhan AK. A Review of Measurement and Analysis of Heart Rate Variability.International Conference on Computer and Automation Engineering, Bangkok, Thailand,2009,243-246.
    [10] Bigger JT Jr, Fleiss JL,Steinman RC, et a1.Correlations among time and frequency domain measuresof heart period variability two weeks after acute myocardial infarction.Am J Cardiol,1992,69(9):89l-898.
    [11] Kleiger RE,Bigger JT Jr,Bosner MS,et a1.Stability over time of variables measuring heart ratevariability in normal subjects.Am J Cardilo,1991,68(6):626-630.
    [12]张文博,张晓梅.心电图诊断手册.北京:人民军医出版社,1997,1-4.
    [13]周群一.ECG心拍建模与分析识别:[浙江大学博士学位论文].浙江:浙江大学生物医学工程与仪器科学学院,2004,5-10
    [14]方丕华.中国心电图经典与进展.北京:人民军医出版社,2010,569-574.
    [15] Algra A,Tissen JGP, Roelandl JRTC,et al.Heart rate variability from24hour electrocardiography andthe2-year risk for sudden death.Circulation,1993,88:180-85.
    [16] Kleiger RE, Miller ZP, Bigger JT, et al. Decreased heart rate variability and its association withincreased mortality after acute myocardial infarction. Cardiol,1987,59(4):256-262.
    [17] Shusterman V, Aysin B, Weiss R, et al. Dynamics of low frequency R-R interval oscillations precedingspontaneous ventricular tachycardia. Am Heart J,2000,139(1):126-33.
    [18]张冬颖,王昆鹏,王俊科.心率变异性的临床应用和研究进展.麻醉与监护论坛,2008,1:20-23.
    [19] Kubota N,Lee JD,Shimizu H, et a1.Disturbed autonomic activity precedes ischemic episodes inpatients with variant angina.Ann Noninvasive Electrocardiol,1997,2(4):313-318.
    [20] Inazumi T, Shimizu H, Mine T, et al.Changes in autonomic nervous activity prior to spontaneouscoronary spasm in patients with variant angina.Jpn.Circ. J,2000,64(3):197-201.
    [21] Casolo G, Balli E, Fazi A,et al. Twenty-four-hour spectral analysis of heart rate variability incongestive heart failure secondary to coronary artery disease. Am J Cardiol,1991,67(13):1154-1158.
    [22]陈琛,何梦,陈劢.慢性心力衰竭患者的心率变异性分析.心电学杂志,2007,26(2):79-81.
    [23] Galinier M, Pathak A, Fourcade J,et al. Depressed low frequency power of heart rate variability as anindependent predictor of sudden death in chronic heart failure. European Heart Journal,2000,21:475-482.
    [24]中华心血管病杂志编委会心率变异性对策专题组.心率变异性检测临床应用的建议.中华心血管病杂志,1998,26(4):253-255.
    [25] Dekker JM,Crow RS,Folsom AR,et al.Low heart rate variability in a2-minute rhythm strip predictsrisk of coronary heart disease and mortality from several causes:the ARIC Study.Atherosclerosis RiskIn Communities.Circulation,2000,102(11):1239-1244.
    [26]张毅霞,王晓琪,关英涛飞.行员心率变异系数的测定及其意义.临床军医杂志,2009,39(3):526-527.
    [27] Earnest CP, Jurca R, Church TS, et al. Relation between physical exertion and heart rate variabilitycharacteristics in professional cyclists during the Tour of Spain,2004,38(5):568-575.
    [28] Alste VJA. Removal of base-line wander and power-line interference from the ECG by an efficientFIR filter with a reduced number of taps. IEEE Trans, BME,1985,32(12):1052~1062.
    [29] Warlar R. Integer Coefficient Bandpass Filter for the Simultaneous Removal of baseline wander50Hzand100Hz interference from the ECG. Med.&Biol., Eng.&Comp.,1991,29(3):333-336.
    [30] Sander A., Voss A., Griessbach G., An Optimized Filter System for Eliminating50Hz Interferencefrom High Resolution ECG, Biomed Tech Berl.,1995,40(4):82-87.
    [31] Levkov C,Michov G, Ivanov Ret al. Subtraction of50Hz interference from the electrocardiogram.Med.&Biol., Eng.&Comp.,1984,22(4):371-373.
    [32]孙京霞,白延强,杨玉星.一种抑制心电信号50Hz工频干扰的改进Levkov方法.航天医学与医学工程,2000,13(3):196-199.
    [33] Li Gang, et.al. A new adaptive coherent model algorithm for removal of power line interference. Clin.Engin.,1995,20(5):147-150.
    [34]纪跃波,秦树人,唐宝平.零相位数字滤波器.重庆大学学报.2000,23(6):4~7.
    [35] Kaur M, Arora A.S..Combination Method for Powerline Interference Reduction in ECG. InternationalJournal of Computer Applications,2010,1(14):10-16.
    [36] McManus. Estimation and removal of baseline drift in the ECG. Comp.Biomed.Res.1985,18(1):1-9.
    [37]夏恒超,詹永麟.一种新的基于三次样条插值技术的心电图基线漂移消除方法.生物医学工程学杂志.2003,20(3):524-526.
    [38] Keselbrener L.Nonlinear high pass filter for R-wave detection in ECG signal.Med.Eng. Phys.1997,19(5):481-484.
    [39] Xue Q.Z,Hu Y.H,Tompkins W.J.Neural-network-based adaptive matched filtering for QRS detection.IEEE Trans.Bio.med.Eng.,1992,39(4):317-324.
    [40]李小燕,王涛,冯焕清等.基于小波变换的自适应滤波器消除ECG中的基线漂移.中国科学技术大学学报.2000,30(4):450-454.
    [41] Barati, Z., Ayatollahi, A.. Baseline Wandering Removal by Using Independent Component Analysis toSingle-Channel ECG Data, IEEE Conference on Biomedical and Pharmaceutical Engineering,2006,152-156.
    [42] Zhao ZD, Chen YQ. A New Method for Removal of Baseline Wander and Power Line Interference inECG Signals. IEEE Conferences on Machine Learning and Cybernetics,2006,4342-4347.
    [43]毛玲,孙即祥,张国敏等.基于形态滤波的心电信号基线矫正算法.信号处理,2008,24(4):582~585.
    [44] Donoho D L.De-noising by soft-thresholding.IEEE Transactions on Information Theory.1995.41(3):613-627.
    [45]高清维,李海鹰.基于平稳小波变换的心电信号噪声消除方法.电子学报.2003,31(2):1-3.
    [46] Thakor N V, ZhuY S.Applicacion of adaptive filtering to ECG analysis:noise caIlcellation andarrythmia detection.IEEE Transactions on Biomedical Engineering.1991,38(8):785-793.
    [47]罗小刚,彭承琳.基于小波变换与形态学运算的ECG综合检测算法的研究.生物医学工程学杂志.2004,21(5):788-790.
    [48]吴明宝,朱凌云,卓豫等.远程心电监护系统及动态心电信号自动分析的研究进展.中国医疗器械杂志,2006,30(5):352-365.
    [49] Ahlstrom M, Tompkins WJ, et.al. Automatched high-speed analysis of Holter tapes withmicrocomputer,IEEE Trans on BME.1983,30(10):651-657.
    [50] Pande VN, Verma HK, Mukhopadhyay P.Bedside ECG Monitor Using a Microcomputer.Med. Boil.Eng. Comput.1985,23(5):487-492.
    [51] Lund K,Christianen E H,Lund B,et.al. Recovery of beat-to-beat variation of QRS. Med.Biol.Eng..Comput,1998,36(9):438-447.
    [52] Pan J, Tompkins WJ, Willis J, et.al. A Real-Time QRS Detection Algorithm.IEEE Trans. onBME,1985,32(3):230-236.
    [53] Collins SM, Arzbaecher RC.An efficient algorithm for waveform analysis using the correlationcoefficient. Comput. Biomed. Res.1981,14(4):381-389.
    [54]王磊,郑崇勋,叶继伦等.一种高效的QRS波实时检测方法.北京生物医学工程,1998,17(4):217-222.
    [55]范宝林,彭屹.小波变换用于心电信号消噪及QRS波检测的研究进展,北京生物医学工程,2005,24(2):147-150.
    [56] Cuiwei Li, Chongxun Zheng, Changfeng Tai. Detection of ECG characteristic points using wavelettransforms.IEEE Trans on BME,1995,42(1):21~28.
    [57] Kadambe S, Murray R.Wavelet transform based QRS complex detector.IEEE Trans. BME,1999,46(7):838-848.
    [58]丁哨卫,张作生,冯焕清.基于自适应小波变换的QRS波检测算法.中国科学技术大学学报.1998,28(5):580-586.
    [59]刘少颖,卢继来等.基于数学形态学和小波分解的QRS波群检测算法.清华大学学报.2004,44(6):852-855.
    [60]邱雅竹,丁显峰,冯俊等.基于Mexican-hat小波的QRS检测新方法,生物医学工程学杂志.2006,23(6):1347-1349.
    [61] Xue QZ, Hu YH,Tompkins WJ.Neural-network-based adaptive matched filtering for QRS detection.IEEE Trans.Biomed.Eng.,1992,39(4):317-324.
    [62] Trahanias PE. An approach to QRS complexess detection using mathematical morphology. IEEE.Trans.Biomed. Eng.1993,40(2):201-205.
    [63]冯焕清,张更生,张作生等.心电计算机辅助诊断中的波形检测和识别方法研究[J].中国科学技术大学学报,1991,21(1):47-52.
    [64]万相奎,秦树人,梁小容等.基于“小波-幅值-斜率”的P波检测新方法,生物医学工程学杂志,2006,23(4):722~725.
    [65]田立军,王爱莉.一种检测与分析QRS波的算法.中国医疗器械杂志,1992,16(3):140-143.
    [66] Nygards ME, Hulting J. Recognition of vertricular fibrilation utilizing the power spectrum of theECG.Computers in Cardiology.IEEE Comput.Sco.Press.1997,393-397.
    [67]李向军,陈裕泉.QRS波群时频检测方法的新进展国外医学生物医学工程分册,2005,28(5):281-286.
    [68]行鸿彦,黄敏松.基于Hilbert-Huang变换的QRS波检测算法研究,仪器仪表学报,2009,30(7):1469-1475.
    [69]朱伟芳,赵鹤鸣,俞一彪.基于经验模态分解和Hilbert变换的QRS综合波波检测算法,中国生物医学工程学报,2010,29(3):358-362.
    [70]王步青,王卫东.心率变异性分析方法的研究进展.北京生物医学工程,2007,26(5):552-554.
    [71] Cerutti S, Goldberger AL, Yamamoto Y. Recent advances in heart rate variability signal processingand interpretation[J]. IEEE Trans. Biomed. Eng.,2006,53(1):1-3.
    [72]王星,彭屹.时频分析在心率变异性研究中的应用,生物医学工程研究,2006,2:122-126.
    [73]卢金婧,迟鑫姝.基于复杂度的心率变异性分析研究进展,现代电生理学杂志,2009,16(3):155-157.
    [74] Chemla D, Young J, Badilini F, et al. Comparison of fast Fourier trans-formand autoregressivespectral analysis for the study of heart rate variability in diabetic patients. Int. J.Cardiol,2005,104(3):307-313.
    [75]季忠,秦树人.微弱生物医学信号特征提取的原理与实现.北京:科学出版社,2007,74-157.
    [76] Chan HL, Huang HH, Lin JL. Time-frequency analysis of heart rate variability during transientsegment. Ann. Biomed. Eng.,2001,29(11):983-996.
    [77] Martinmaki K, Rusko H, Saalasti S, et al. Ability of the short-time FourierTransform method to detecttransient changes in vagal effects on the heart: a pharmacological blocking study. Am. J PhysiolHeart Circ. Physiol.,2005,290(6):2582-2589.
    [78] Chan HL, Lin JL, Du CC, et al. Time-frequency distribution of heart rate variability below0.05Hz byWigner-Ville spectral analysis in congestive heart failure patients.Med.Eng.Phys.,1997,19(6):581-587.
    [79] Kuusela TA, KailaTJ, KahonenM. Fine structure of the low-frequency spectra of heart rate and bloodpressure. BMC Physiol,2003,3(11):1-11.
    [80] Gamero LG,Vila J, Palacios F. Wavelet transform analysis of heart rate variability during myocardialischaemia. Med. Biol. Eng. Comput.,2002,40(1):72-78.
    [81] Vigo DE, Guinjoan SM, Scaramal M, et al. Wavelet transform shows age-related changes of heart ratevariabilitywithin independent frequency components. Auton. Neurosci,2005,123(1-2):94-100.
    [82] Burri H, Chevalier P, Arzi M, et al. Wavelet transform for analysis of heart rate variability precedingventricular arrhythmias in patients with ischemic heart disease. Int.J. Cardiol,2006,109(1):101-107.
    [83]李程,汤大侃,方勇.心率变异性谱成分的非线性本质.物理学报,2009,58(2):1348-1352.
    [84]徐秋萍,朱建华,陈君柱等.冠心病患者心率变化的混沌动力学研究.中华心律失常学杂志,2001,5(3):174-175.
    [85] Irurzun IM, Bergero P,Cordero MC,et a1. Nonlinear properties of R-R distributions as a measure ofheart rate variability. Chaos,Solitons and Fractals,2003,16(5):699-708.
    [86]廖旺才,胡广书,杨福生.心率变异性的复杂性与分形维数分析.清华大学学报,1996,36(5):1-6.
    [87] Remzi SEKER. Validity test for a set of nonlinear measures for short data length with reference toshort-term heart rate variability signal.Journal of Systems Integration,2000,10(3):412-53.
    [88]刘心东,蒋江民,蒋大宗.利用Lyapunov指数提取心电动态生理及病理信息的研究.生物医学工程学杂志.1995,12(3):249~253.
    [89] Pincus SM.Approximate entropy (ApEn)as a compleity measure, Chaos,1995,5(1):110-117.
    [90] Ferrario M, Signorini MG, Magenes G, et a1.Comparison of entropy-based regularity estimators:application to the fetal heart rate signal for the identification of fetal distress.IEEE Trans. Biomed.Eng.,2006,53(1):119-125.
    [91]杨福生,廖旺才.近似熵一种适用于短数据的复杂性度量.中国医疗器械杂志,1997,21(5):283-286.
    [92]刘慧,和卫星,陈晓平.生物时间序列的近似熵和样本熵方法比较.仪器仪表学报,2004,25(4):806-807.
    [93] Borowska M, Oczeretko E, Mazurek A, et a1. Application of the Lempel-Ziv complexity measure tothe analysis of biosignals and medical images. Annual proceedings of Medical Science,2005,50(Suppl2):29-30.
    [94]张红煊,朱贻盛,王自明等.基于复杂度心动过速和心室纤颤检测.中国生物医学工程学报,2001,20(5):423-432.
    [95]胡江和,张佃中.心电RR间期序列的近似熵与Lempel-Ziv复杂度分析.中国医学物理学杂志,2007,24(6):448-449.
    [96]叶志前,周庆利,周海燕.麻醉期心率变异的复杂度研究.生物医学工程学杂志.2004,21(4):554-557.
    [97]刘克钦,张凯.心率变异性的三维Lorenz图量化分析.北京生物医学工程,2009,28(4):363-367.
    [98] Oka T,Nakatsu T,Kusachi S, et a1. Double-sector Lorenz plot scattering in an R-R interval analysis ofpatients with chronic atrial fibrillation:incidence and characteristics of the doublesector scattering.Journal of Electrocardiology,1998,31(3):227-235.
    [99]庞兴梅.PhysioNet信息资源解析及利用.医学信息学杂志,2010,31(7):28-30.
    [100]宋喜国,邓亲恺.MIT-BIH心率失常数据库的识读及应用.中国医学物理学杂,2004,21(4):230-232.
    [101] Clifford GD, Azuaje F, Mcsharry PE. Advanced methods and tools for ECG data analysis. London:Artech House,2006,115-127.
    [102]曹细武,邓亲恺.心电图各波的频率分析.中国医学物理学杂志,2001,18(1):46-48.
    [103]万相奎.心电信号分析与虚拟式心电自动分析仪的开发:[重庆大学博士学位论文].重庆:重庆大学机械电子工程,2005,16-17.
    [104]覃景繁,欧阳景正.一种新的变步长自适应滤波算法.数据采集与处理,1997,12(3):171-194.
    [105]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析.电子学报.2001,29(8):1094-1097.
    [106]潘泉,孟晋丽,张磊.小波滤波方法及应用.电子与信息学报,2007,29(1):236-242.
    [107] Nason, GP,Silverman BW.The stationary wavelet transform and some statistical applications. LectureNotes in Statistics,1995,103:281-299.
    [108] Zhang L, Bao P, Pan Q.Threshold analysis in wavelet-based de-noising.IEE Electronics Letters.2001,37(24):1485-1486.
    [109] Xu YS,Weaver JB,and Healy DM,et al..Wavelet transform domain filters:A spatially selective noisefiltration technique.IEEE Trans.on Image Proc.,1994,3(6):747-758.
    [110] Mallat S, Hwang W L.Singularity detection and processing with wavelets.IEEE Trans.on Inform.Theory,1992,38(2):617-643.
    [111] Mukhopadhyay S, Ray GC. A New Interpretation of Nonlinear Energy Operator and Its Efficacy inSpike Detection. IEEE Trans. on Biomed. Eng.,1998,45(2):180-187.
    [112] Maragos P., Kaiser JF., Quatieri TF.On Amplitude and Frequency Demodulation Using EnergyOperators. IEEE Trans. on Signal Proc.,1993,41(4):1532-1550.
    [113] Joo-Man Han, Hae-Jeong Park, Kwang Suk Park, et al. ESTIMATION OF RHYTHMICVANATIONS IN R-R INTERVAL USING NONLINEAR ENERGY OPERATOR DUFUNGSLEEP.Proceedings of the20th Annual International Conference of the IEEE Engineering inMedicine and Biology Society,1998:151-153.
    [114] Kyung Hwan Kim,Sung June Kim Neural Spike Sorting Under Nearly0-dB Signal-to-Noise RatioUsing Nonlinear Energy Operator and Artificial Neural-Network Classifier. IEEE Trans. onBiomed. Eng.,2000,47(10):1406-1411.
    [115]王宏禹,陈喆.非平稳随机信号分析与处理.北京:国防工业出版社,2008,1-218.
    [116]刘庆云,李志舜,刘朝晖.时频分析技术及研究现状.计算机工程,2004,30(1):171-173.
    [117]董建华,顾汉明,张星.几种时频分析方法的比较及应用.工程地球物理学报,2007,4(4):132-136.
    [118]邹红星,周小波,李衍达.时频分析:回溯与前瞻.电子学报,2000,28(9):73-84.
    [119]盖强.局域波时频分析方法的理论研究与应用:[大连理工大学博士学位论文].大连:大连理工大学机械电子工程,2001,17-69.
    [120] Kodera K, Gendrin R, Villedary CD.Analysis of time-varying signals with small BT values, IEEETrans. Acoust. Speech Signal Process.,1986,26(1),64-76.
    [121] Baraniuk RG, Jones DL.Signal dependent time-frequency analysis using a radially Gaussian kernel.Signal Processing,1993,32(3):263-284.
    [122]金梁,殷勤业,姚敏立.瞬时频率和时频分布.电子科学学刊,1998,20(5):597-603.
    [123] HUANG NE., WU Z H, LONG SR. ON INSTANTANEOUS FREQUENCY. Advances in AdaptiveData Analysis,2009,1(2):177-229.
    [124]陈平,李庆民,赵彤.瞬时频率估计算法研究进展综述.电测与仪表.2007,43(487):1-7
    [125] Patrick JL, Berkant T.Comments on the Interpretation of Instantaneous Frequency. IEEE SIGNALPROCESSING LETTERS,1997,4(5):123-125.
    [126] Huang NE, Zheng S, Long SR, et al. The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of Royal Society,1988,454:903-995.
    [127]谭善文,秦树人,汤宝平.Hilbert-Huang变换的滤波特性及其应用.重庆大学学报(自然科学版),2004,27(2):9-12.
    [128]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题.自然科学进展,2003,13(10):1054-1059.
    [129]钱振华,宋汉文.经验模式分解方法(EMD)研究综述.上海市国际工业博览会第三届上海市“工程与振动”科技论坛论文集,2005.
    [130]钟佑明,秦树人,汤宝平.希尔伯特-黄变换中边际谱的研究.系统工程与电子技术,2004,26(9):1323-1326.
    [131]于德介,程军圣.基于小波变换的时-能密度分析.振动工程学报,2001,14(1):109-112.
    [132]盖强,张海勇,徐晓刚.Hilbert-Huang变换的自适应频率多分辨分析研究.电子学报,2005,33(3):563-566.
    [133]张志新,马孝江,苗刚.采样频率对局域波分解的影响.上海交通大学学报,2006,11:1976-1979.
    [134] Anthony N, Laskovski. Biomedical Engineering, Trends in Electronics, Communications andSoftware. InTech,2011,482-504.
    [135]李永勤,王清,邓亲恺.EMD及其在生物医学信号处理中的应用研究.生物医学工程学杂志,2005,22(5):1058~1062
    [136] Li HL, Kwong S, Yang LH, et al.Hilbert-Huang Transform for Analysis of Heart Rate Variability inCardiac Health. IEEE Trans. on Computational Biology and Bioinformatics,2011,8(6):1557-1567.
    [137] Hossen A, Ghunaimi BA, Hassan MO. Subband decomposition soft-decision algorithm for heart ratevariability analysis in patients with obstructive sleep apnea and normal controls. Signal Processing,2005,85(1):95-106.
    [138] Wessel N, Voss A, Malberg H, et al. Nonlinear analysis of complex phenomena in cardiological data.Herzschrittmachertherapie und Elektrophysiologie,2000,11(3):159-173.
    [139] Piccirillo G, Bucca C, Bauco C, et al. Power spectral analysis of heart rate in subjects over a hundredyears old. International Journal of Cardiology,1998,63(1):53-61.
    [140] Bonnemeier H, Richardt G, Potratz J,et al.Circadian profile of cardiac autonomic nervous modulationin healthy subjects: differing effects of aging and gender on heart rate variability. Journal CardiovascElectrophysiol,2003,14(8):791-799.
    [141]杨林.心率变异性信号频域及人工神经网络分析:[华中科技大学硕士学位论文].武汉:华中科技大学,2006,10-21.
    [142] Karemaker JM. Autonomic integration:the physiological basis of cardiovascular variability.Journal ofPhysiology,1999,1(4):517-316.
    [143] Migliar ER, Contreras P, Bech S, et al. Relative influence of age, resting heart rate and sedentary lifestyle in short-term analysis of heart rate variability.Brazilian Journa of medical and biologicalresearch,2001,34(4):493-500.
    [144] Tsuji H, Venditti FJ, Manders ES. Determinants of heart rate variability.Journal of the AmericanCollege of Cardiology,1996,28(6):1539-1546.
    [145] Myerburg RJ.Implantable cardioverter defibrillator safter myocardial infarction, N. Engl. J. Med.,2008,359:2245-2253.
    [146] Epstein AE, Dimarco JP, Ellenbogen KA et al.. ACC/AHA/HRS2008guidelines for device basedtherapy of cardiac rhythm abnormalities: executive summary, HeartRhythm,2008,51:934-955.
    [147] Battipaglia I, Barone L, Mariani L et al.. Relationship between cardiac autonomic function andsustained ventricular tachyarrhythmias in patients with an implantable cardioverter defibrillators,Europace,2010,12(12):1725-1731.
    [148] Lombardi F, Porta A, Marzegalli M et al.. Heart rate variability patterns before ventriculartachycardia onset in patients with an implantable cardioverter defibrillator. Am J Cardiol2000,86(9):959-963.
    [149] Shusterman V, Aysin B, Weiss R et al.. Dynamics of low frequency R-R interval oscillationspreceding spontaneous ventricular tachycardia. Am Heart J,2000,139(1):126-133.
    [150] Vybiral T, Glaeser DH, Goldberger AL et al.. Conventional heart rate variability analysis ofambulatory electrocardiographic recordings fails to predict imminent ventricular fibrillation, J AmColl Cardiol,1993,22(2):557-565.
    [151] Burri H, Chevalier P, Arzi M et al.. Wavelet transform for analysis of heart rate variability precedingventricular arrhythmias in patients with ischemic heart disease, Int J Cardiol,2006,109(1):101-107.
    [152] Kheder G, Kachouri A, Samet M.Efficient HRV analysis using wavelet package transform. Circuits,Systems and Signals, Marathon Beach, Attica, Greece,2008.
    [153] Thonet G, Pruvot E, Vesin JM et al.. New insights into ventricular tachyarrhythmia onset using heartrate signal decomposition, Proc19th Ann Int Conf IEEE Eng Med Biol Soc,1997.
    [154] Pruvot E, Thonet G, Vesin JM et al.. Heart rate dynamics at the onset of ventricular tachyarrhythmiasas retrieved from implantable cardioverter defibrillators in patients with coronary artery disease,Circulation,2000,101(20):2398-2404.
    [155] Reed MJ, Robertson CE, Addison PS.Heart rate variability measurements and the prediction ofventricular arrhythmias, Q J Med,2005,98(2):87-95.
    [156] Rong J, Hong Y.Studies of spectral properties of short genes using the wavelet subspaceHilbert_Huang transform (WSHHT), Physica A,2008,387(16-17):4223-4247.
    [157]胡柏炅,李明.Hilbert-Huang变换改进算法的实现与分析.中国科技论文在线, http://www.paper.edu.cn.
    [158] Mani V, Wu X, Wood MA et al., Variation of spectral power immediately prior to spontaneous onsetof ventricular tachycardia/ventricular fibrillation in implantable cardioverter defibrillator patients, JCardiovasc Electrophysiol,1999,10(12):1586-1596.
    [159] Gorenek B, Kudaiberdieva G, Birdane A et al., Initiation of monomorphic ventricular tachycardia:Electrophysiological,clinical leatures, and drug therapy in patients with implantable defibrillators, JElectrocardiol,2003,36(3):213-221.
    [160] Makikallio TH, Koistinen J, Jordaens L, et at., Heart rate dynamics before spontaneous onset ofventricular fibrillation in patients with healed myocardial infarcts, Am. J. Cardiol.,1999,83(6):880-884.
    [161] Kantz H, Schreiber T.非线性时间序列分析,北京:清华大学出版社,2000:173-194.
    [162] Cerutti S, Carrult G, Cluitmans PJM,et al. Nonlinear algorithm for processing biological signals.Computer Methods and Programs in Biomedicine,1996,51(1-2):51-73.
    [163] Balli T,Palaniappan R.Classification of biological signals using linear and nonlinear features.Physiol.Meas.2010,31(7):903-920.
    [164]范影乐,李轶.基于非线性动力学方法的时间序列处理.复杂系统与复杂性科学,2004,1(3):70-75.
    [165]张佃中,谭小红,王智等.基于等概率粗粒化的复杂度算法及其应用.系统仿真学报,2008,20(15):4096-4098.
    [166] Lempel A, Ziv J. On the Complexity of Finite Sequences. IEEE Trans. on Information Theory,1976,22(1):75-81.
    [167] Wackerbauer R, Witt A, Atmanspacher H,et al. A comparative classification of complexity measures.Chaos, Solitons&Fractals,1994,4(1):133-173.
    [168]王彬.熵与信息.西安:西北工业大学出版社,1993:1-36.
    [169]张小鹏,范影乐,杨勇.基于奇异谱熵的脑电意识任务识别方法的研究.计算机工程与科学,2009,31(12):117-120.
    [170] Rezek IA, Roberts SJ. Stochastic complexity measures for physiological signal analysis. IEEE Trans.Biomed. Eng.1998,45(9):1186-1191.
    [171]李宏坤,张志新,马孝江,等.基于Hilbert谱熵的柴油机故障诊断方法研究.大连理工大学学报,2008,48(2):221-224.
    [172] He ZY, Chen XQ, Qian QQ.A Study of Wavelet Entropy Measure Definition and Its Application forFault Feature Pick-up and Classification. Journal of Electronics(China),2007,24(5):628-634.
    [173]赵贵兵,石炎福,段文峰,等.从混沌时间序列同时计算关联维和Kolmogorov熵.计算物理.1999,15(3):309-315.
    [174] Grassberger P, Procaccia I. Estimation of Kolmogorov entropy form a chaotic signal.Physical ReviewA.1983,28(4):2591-2593.
    [175] Richman JS,Moorman JR.Physiological time series analysis using approximate entropy and sampleentropy. Am J Physiol.2000,283(3):789-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700