基于层次因子图的心电图自动诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心电图是心脏生物电活动随时间变化的记录,是临床上诊断心血管疾病的重要工具之一。研究心电图自动诊断,对于提高心电图诊断的正确性、实时性,减轻医务人员的劳动强度,具有十分重要的意义。在分析心电图诊断问题特点及现有方法缺陷的基础上,本文提出了一种基于层次因子图的心电图自动诊断方法,并围绕层次因子图的基本理论,心电图自动诊断层次因子图的建模与推理,以及心电图自动诊断中的心电信号预处理、特征提取、疾病诊断等关键问题展开研究。
     论文主要工作及研究成果总结如下:
     (1)提出一种新的知识表示和处理模型——层次因子图,并对层次因子图的推理和建模方法进行了研究。层次因子图是标准因子图的扩展模型,它不但具备现有概率图模型的各种优良特性,还具有如下重要特点:①模型采用局部函数对问题域中变量之间的关系进行描述,不但能够表达更多的独立性关系,还能将各种不同类型的知识纳入到一个整体框架中统一处理;②模型采用层次式拓扑结构表达问题领域的结构化知识,为实现复杂系统的层次化建模与推理提供了一条方便有效的途径。层次因子图的推理可通过将层次因子图转化为标准的因子图,再应用因子图推理方法进行实现。论文给出了层次因子图转化为因子图的具体方法,并在研究现有因子图推理算法的基础上,提出了基于和积算法的任意多变量边缘函数计算方法,用于层次因子图推理的实现。
     (2)对心电图自动诊断层次因子图的建模与推理方法进行了研究。首先,针对心电图自动诊断问题的特点,提出领域知识与样本数据相结合的建模策略,并采用自顶向下的分级建造方法,进行心电图自动诊断层次因子图的构建。然后,以心电图自动诊断流程为基础,对心电图自动诊断所涉及主要变量及变量之间的关系进行分析,由此确定心电图自动诊断层次因子图的基本拓扑结构,并给出心电图自动诊断层次因子图中局部函数的确定方法。最后,依据心电图自动诊断层次因子图的基本拓扑结构,对心电图自动诊断层次因子图推理过程进行分析,确定心电图自动诊断层次因子图推理的主要任务及实现方法。
     (3)对基于噪声层次因子图的心电信号预处理方法进行了研究。以构建噪声层次因子图为目标,对心电信号预处理所涉及变量及变量间关系进行分析,确定了心电信号预处理的主要任务。重点研究了形态学滤波方法在ECG信号预处理中的应用,提出了一种基于多种形态滤波运算的ECG信号基线校正算法,和一种基于形态学滤波和自适应阈值的肌电干扰消除算法。基于本文提出的心电信号预处理方法,构建了噪声层次因子图,完成推理了所需相关消息的计算。
     (4)对基于特征层次因子图的心电图特征提取方法进行了研究。以构建特征层次因子图为目标,分析并确定了心电图特征提取的主要任务。重点研究了心电图中QRS波群、ST-T段和P波的检测、定位及特征提取方法:对于QRS波群,提出了一种带反馈修正的多结构元形态学QRS波检测算法,和一种基于曲线分析的QRS波群特征点定位及形态自动分析算法;对于ST-T段,提出了一种基于局部距离变换的T波特征点定位算法,和一种ST段形态分析方法;对于P波,提出了一种基于位置估计和识别后处理的P波检测定位算法。基于本文提出的心电图特征提取方法,构建了特征层次因子图,完成了推理所需相关消息的计算。
     (5)对基于疾病层次因子图的心电图疾病诊断方法进行了研究。针对心电图可诊断疾病类别的复杂性特点,提出了基于分解思想的疾病层次因子图建模与求解策略。分别研究了心电图疾病诊断的知识获取方法,变量及其取值确定方法,疾病层次因子图拓扑结构与局部函数的确定方法,具体构建了正常心电图和心肌梗死心电图诊断所需的疾病层次因子图。分析并确定了疾病层次因子图中相关消息计算以及心电图自动诊断因子图推理实现的方法。最后,采用PTB诊断心电数据库真实心电记录作为诊断实例进行验证,结果表明,本文提出的基于层次因子图的心电图自动诊断方法能够正确解决正常心电图诊断、心肌梗死心电图诊断等心电图诊断问题,为心电图自动诊断的真正实现提供了一条有效的途径。
Electrocardiogram (ECG) is the record of variation of bioelectric potential with respect to time as heart beats. It is one of the most important tools for diagnosis of cardiovascular diseases in clinical applications. Research of automated ECG diagnosis is significant for improving quality of accuracy and real time of ECG diagnosis and reducing labour intensity of physicians. On the basis of analysis of the characteristics of ECG diagnosis problem and the limitations of existing methods, a novel method based on hierarchical factor graph (HFG) is proposed for automated ECG diagnosis in this thesis. And works focus on several critical issues, including basic theory of HFG, HFG construction and inference for automated ECG diagnosis, and ECG signal preprocessing, feature extraction and diagnosis during the course of automated ECG diagnosis.
     The main contributions of this thesis are summarized as follow:
     (1) A novel model for knowledge representation and processing, namely, hierarchical factor graph, is proposed. Methodologies for HFG inference and construction are also studied. HFG is an extention of stardard factor graph. It has all merits of existing probabilistic graphical models and important characteristics as follows: First, local functions are introduced to describe relationships among variables in problem domain, so that more independence relationships can be represented in this model and different kinds of knowledge can be brought into an entire framework and dealt with uniformly. Second, hierarchical structure is introduced in this model to represent structural knowledge in problem domain, which provides a convenient and effective approach for modeling and inferring of complex system hierarchically. HFG inference can be performed by transforming HFG to standard factor graph and applying inference algorithms of factor graph. Methods for transforming HFGs to factor graphs are presented in this thesis. On the basis of study on the exiting inference algorithms of factor graph, a approach based on sum-product algorithm is proposed for computing marginal functions of arbitrary multi-variables in HFG inference.
     (2) The methodologies of HFG construction and inference for automated ECG diagnosis are studied. Firstly, according to the characteristics of ECG diagnosis, a strategy for model construction with combination of domain knowledge and sample data is proposed and hierarchical construction method based on top-down idea is adopted to construct HFG for automated ECG diagnosis. Then, on the basis of flow of automated ECG diagnosis, the basic structure of HFG for automated ECG diagnosis is identified by analyzing the main variables in automated ECG diagnosis and the relationships among them. Methods to specify local functions in HFG for automated ECG diagnosis are also proposed. Finally, main tasks and plans to perform inference in HFG for automated ECG diagnosis are identified by analyzing the process of inference according to the basic structure of HFG for automated ECG diagnosis.
     (3) Noise HFG based methods are studied for ECG signal preprocessing. With the goal of constructing noise HFG, the variables and their relationships are analyzed, and main tasks are identified in ECG signal preprocessing. Then, studies focus on the application of morphological filter methods to ECG signal preprocessing. A method based on multi morphological filter operations is presented for removing baseline drift in ECG signal. Another method based on morphological operations and adaptive threshold is presented for denoising electromyogram noise in ECG signal. Noise HFG is constructed based on the proposed methods for ECG signal preprocessing and the messages involved in inference are computed.
     (4) Feature HFG based methods are studied for ECG feature extraction. Main tasks in ECG feature extraction are analyzed and identified according to the goal of constructing feature HFG. Feature extraction methods for QRS complex, ST-T segment, and P wave are studied respectively. For QRS complex, a multi-structuring-element morphological approach with feedback correction is brought forward for QRS detection, and a method based on curve analysis is proposed for characteristic point location and morphological automatic analysis. For ST-T segment, a method for characteristic point location of T wave based on local distance transform and a method for ST segment shape analysis are proposed. For P wave, a novel method based on location estimation and recognition post-processing is proposed for P wave detection and location. Feature HFG is constructed based on the proposed methods for ECG feature extraction and the messages involved in inference are computed.
     (5) Disease HFG based methods are studied for ECG disease diagnosis. Due to the complexity of diseases, a strategy based on decomposition idea is presented for model construction and problem resolution of disease HFG. Methods are studied respectively for knowledge acquisition, identification of variables and their values, and identification of topological structure and local functions of disease HFG. And disease HFGs for normal ECG diagnosis and myocardial infarction ECG diagnosis are constructed completely. Methods are discussed and determined for computing messages in Feature HFG and performing inference in HFG for automated ECG diagnosis. Finally, real ECG records of PTB diagnostic ECG database are utilized as diagnostic instances to validate the proposed models and methods in this thesis. Experimental results show that the automated ECG diagnosis method based on HFG proposed in this thesis can solve ECG diagnosis problem correctly and efficiently.
引文
[1]黄大显.现代心电图学[M].北京:人民军医出版社, 1997.
    [2]黄宛.临床心电图学[M].北京:人民卫生出版社, 2005.
    [3]张开滋,刘海洋,吴杰.心电信息学[M].北京:科学技术文献出版社, 1998.
    [4]杨钧国,李治安.现代心电图学[M].北京:科学出版社, 1997.
    [5] R. H. Hongo, N. Goldschlager. Overreliance on Computerized Algorithms to Interpret Electrocardiograms[J]. The American Journal of Medicine, 2004, 117: 706-708.
    [6] M. E. Guglin, D. Thatai. Common Errors in Computer Electrocardiogram Interpretation[J]. International Journal of Cardiology, 2006, 106: 232-237.
    [7] K. Poon. Diagnostic Performance of a Computer-Based ECG Rhythm Algorithm[J]. Journal of Electrocardiology, 2005, 38(3): 235-238.
    [8]孟兆辉,张永红,白净.模糊算法在心律失常病类判别中的应用[J].电子学报, 2001, 29(9): 1246-1248.
    [9]叶文宇.心电自动诊断技术的研究[D].天津:天津大学, 2003.
    [10]周群一. ECG心拍建模与分析识别[D].浙江大学, 2004.
    [11]罗小刚.心电信号处理和特征信息提取方法的研究及心电工作站的研制[D].重庆:重庆大学, 2003.
    [12]季虎.心电信号自动分析关键技术研究[D].长沙:国防科技大学, 2006.
    [13]苏丽.远程心电监护系统心电信号处理方法研究[D].哈尔滨:哈尔滨工程大学, 2006.
    [14]莫智文. Fuzzy有限态自动机的最小化及其在心电图(ECG)识别中的应用[D].成都:西南交通大学, 2005.
    [15]郭继鸿教授专访:普及心电图为百姓造福-心脏病学. http://www.daifumd.com/_daifumd/blog/html/421//css.html, 2008, 9.
    [16] P. Trahanias, E. Skordalakis. Syntactic Pattern Recognition of the ECG[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 648-657.
    [17] M. L. Ahlstrom, W. J. Tompkins. Digital Filters for Real-Time ECG Signal Processing Using Microprocessors[J]. IEEE Transactions on Biomedical Engineering, 1985, BME-32(9): 708-713.
    [18] L. Sornmo. Time-Varying Digital Filtering of ECG Baseline Wander[J]. Medical & Biological Engineering & Computing, 1993, 31(5): 503-508.
    [19] P. S. Hamilton. Comparison of Adaptive and Nonadaptive Filters for Reduction of Power Line Interference in the ECG[J]. IEEE Transactions on BiomedicalEngineering, 1996, 43(1): 105-109.
    [20] S. M. M. Martens, M. Mischi, S. G. Oei et al. An Improved Adaptive Power Line Interference Canceller for Electrocardiography[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(11): 2220-2231.
    [21] A. K. Ziarani, A. Konrad. A Nonlinear Adaptive Method of Elimination of Power Line Interference in ECG Signals[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(6): 540-547.
    [22] P. Lander, E. J. Berbari. Time-Frequency Plane Wiener Filtering of the High-Resolution ECG: Background and Time-Frequency Representations[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(4): 247–255.
    [23] X. Hu, V. Nenov. A Single-Lead ECG Enhancement Algorithm Using a Regularized Data-Driven Filter[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(2): 347-351.
    [24] S.-C. Pei, C.-C. Tseng. Elimination of Ac Interference in Electrocardiogram Using Iir Notch Filter with Transient Suppression[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(11): 1128-1132.
    [25] N. V. Thakor, Y.-S. Zhu. Applications of Adaptive Filtering to ECG Analysis: Noise Cancellation and Arrhythmia Detection[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(8): 785-794.
    [26] S.-C. Pei, C.-C. Tseng. Adaptive Iir Notch Filter Based on Least Mean P-Power Error Criterion[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1993, 40(8): 525-529.
    [27] J. S. Paul, M. R. Reddy, V. J. Kumar. A Transform Domain Svd Filter for Suppression of Muscle Noise Artefacts in Exercise ECG’s[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(5): 654-663.
    [28] N. Nikolaev, A. Gotchev, K. Egiazarian et al. Suppression of Electromyogram Interference on the Electrocardiogram by Transform Domain Denoising[J]. Medical and Biological Engineering and Computing, 2001, 39(6): 649-655.
    [29] E. Ercelebi. Electrocardiogram Signals De-Noising Using Lifting-Based Discrete Wavelet Transform[J]. Computers in Biology and Medicine 2004, 34: 479-493.
    [30] M. Kotas. Projective Filtering of Time-Aligned ECG Beats[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1129-1139.
    [31] B.-U. K?hler, C. Hennig, R. Orglmeister. The Principles of Software QRS Detection[J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(1): 42-57.
    [32] J. Pan, W. J. Tompkins. A Real-Time QRS Detection Algorithm[J]. IEEE Transactions on Biomedical Engineering, 1985, 32(3): 230-236.
    [33] M. Okada. A Digital Filter for the QRS Complex Detection[J]. IEEE Transactions on Biomedical Engineering, 1979, 26(12): 700-703.
    [34] P. Laguna, N. V. Thakor, P. Caminal et al. Low-Pass Differentiators forBiological Signals with Known Spectra: Application to ECG Signal Processing[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(4): 420-425.
    [35] G. M. Friesen, T. C. Jannett, M. A. Jadallah et al. Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(1): 85-98.
    [36] C. W. Li, C. X. Zheng, C. F. Tai. Detection of ECG Characteristic Points Using Wavelet Transforms[J]. IEEE Transactions on Biomedical Engineering, 1995, 42(1): 21-28.
    [37] S. Kadambe, R. Murray, G. F. Boudreaux-Bartels. Wavelet Transform-Based QRS Complex Detector[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(7): 838-848.
    [38] J. P. Martinez, R. Almeida, S. Olmos et al. A Wavelet Based ECG Delineator: Evaluation on Standard Databases[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(4): 570-581.
    [39] Q. Z. Xue, Y. H. Hu, W. J. Tompkins. Neural-Network-Based Adaptive Matched Filtering for QRS Detection[J]. IEEE Transactions on Biomedical Engineering, 1992, 39(4): 317-329.
    [40] Y. Suzuki. Self-Organizing QRS-Wave Recognition in ECG Using Neural Networks[J]. IEEE Transactions on Neural Networks, 1995, 6(6): 1469-1477.
    [41] P. Trahanias, E. Skordalakis. Bottom-up Approach to the ECG Pattern-Recognition Problem[J]. Medical & Biological Engineering & Computing, 1989, 27(3): 221-229.
    [42] A. Koski, M. Juhola, M. Meriste. Syntactic Recognition of ECG Signals by Attributed Finite Automata[J]. Pattern Recognition, 1995, 28(12): 1927-1940.
    [43] T. Last, C. D. Nugent, F. J. Owens. Multi-Component Based Cross Correlation Beat Detection in Electrocardiogram Analysis[J]. BioMedical Engineering Online, 2004, 3: 14.
    [44] M. E. Nygards, L. Sornmo. Delineation of the QRS Complex Using the Envelope of the E. C. G[J]. Medical & Biological Engineering & Computing, 1983, 21(5): 538-547.
    [45] S. Suppappola, Y. Sun. Nonlinear Transforms of ECG Signals for Digital QRS Detection: A Quantitative Analysis[J]. IEEE Transactions on Biomedical Engineering, 1994, 41(4): 397-400.
    [46] F. Gritzali. Towards a Generalized Scheme for QRS Detection in ECG Waveforms[J]. Signal Processing, 1988, 15(2): 183-192.
    [47] C. Meyer, J. F. Gavela, M. Harris. Combining Algorithms in Automatic Detection of QRS Complexes in ECG Signals[J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(3): 468-475.
    [48] J. P. V. Madeiro, P. C. Cortez, F. I. Oliveira et al. A New Approach to QRSSegmentation Based on Wavelet Bases and Adaptive Threshold Technique[J]. Medical Engineering and Physics, 2007, 29(1): 26-37.
    [49] L. Senhadji, F. Wang, A. I. Hernandez et al. Wavelets Extrema Representation for QRS-T Cancellation and P Wave Detection[C]. Computers in Cardiology, Memphis, TN, United States, 2002, 37-40.
    [50] K. Freeman, A. Singh. P Wave Detection of Ambulatory ECG[C]. Proceedings of the Annual Conference on Engineering in Medicine and Biology, Orlando, FL, USA, 1991, 647-648.
    [51] P. Laguna, R. Jane, P. Caminal. Automatic Detection of Wave Boundaries in Multilead ECG Signals: Validation with the Cse Database[J]. Comput Biomed Res, 1994, 7(1).
    [52] A. Goutas, Y. Ferdi, J.-P. Herbeuval et al. Digital Fractional Order Differentiation-Based Algorithm for P and T-Waves Detection and Delineation[J]. ITBM-RBM, 2005, 26: 127-132.
    [53] Z. Yang, L. Li, J. Ling. Approach to Recognition of ECG P Waves Based on Approximating Functions[J]. Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 1998, 15(2): 120-122.
    [54] B. R. S. Reddy, P. E. Elko, D. W. Christenson et al. Detection of P Waves in Resting ECG: A Preliminary Study[C]. Computers in Cardiology, London, UK, 1992, 87-90.
    [55] C. Vasquez, A. I. Hernandez, G. Carrault et al. Feasibility of Neural Network Based QRS-T Cancellation Schemes for P-Wave Detection[C]. Computers in Cardiology, London, UK, 1998, 625-628.
    [56] J. S. Paul, M. R. S. Reddy, V. J. Kumar et al. Computer Detection of P-Waves from Wide QRS Type Arrhythmia Recordings[C]. Computers in Cardiology, London, UK, 1998, 621 -624.
    [57] F. Castells, J. J. Rieta, J. Millet et al. Spatiotemporal Blind Source Separation Approach to Atrial Activity Estimation in Atrial Tachyarrhythmias[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2): 258-267.
    [58] P. Langley, J. J. Rieta, M. Stridh et al. Comparison of Atrial Signal Extraction Algorithms in 12-Lead ECGs with Atrial Fibrillation[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(2): 343-346.
    [59] E. Soria-Olivas, M. Martinez-Sober, J. Calpe-Maravilla et al. Application of Adaptive Signal Processing for Determining the Limits of P and T Waves in an ECG[J]. IEEE Transactions on Biomedical Engineering, 1998, 45(8): 1077-1080.
    [60] J. A. Vila, Y. Gang, J. M. R. Presedo et al. A New Approach for Tu Complex Characterization [J]. IEEE Transactions on Biomedical Engineering, 2000, 47(6): 764-772.
    [61] P. Strumillo. Nested Median Filtering for Detecting T-Wave Offset inECGs[J]. Electronics Letters, 2002, 38(14): 682-683.
    [62] Q. Zhang, A. I. Manriquez, C. Medigue et al. An Algorithm for Robust and Efficient Location of T-Wave Ends in Electrocardiograms[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2544-2552.
    [63] E. Skordalakis. Recognition of the Shape of the ST Segment in ECG Waveforms[J]. IEEE Transactions on Biomedical Engineering, 1986, BME-33(10): 972-974.
    [64] X.-S. Zhang, Y.-S. Zhu, N. V. Thakor et al. Detecting Ventricular Tachycardia and Fibrillation by Complexity Measure[J]. IEEE Transactions on Biomedical Engineering, 1999, 46(5): 548-555.
    [65] J. J. Rieta, F. Castells, C. Sanchez et al. Atrial Activity Extraction for Atrial Fibrillation Analysis Using Blind Source Separation[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1176-1186.
    [66] S. Wu, Y. Qian, Z. Gao et al. A Novel Method for Beat-to-Beat Detection of Ventricular Late Potentials[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(8): 931-935.
    [67] D. E. Gustafson, A. S. Willsky, J. Y. Wang et al. ECG/VCG Rhythm Diagnosis Using Statistical Signal Analysis Em Dash 1. Identification of Persistent Rhythms[J]. IEEE Transactions on Biomedical Engineering, 1978, BME-25(4): 344-353.
    [68] D. E. Gustafson, A. S. Willsky, J. Y. Wang et al. ECG/VCG Rhythm Diagnosis Using Statistical Signal Analysis Em Dash 2. Identification of Transient Rhythms[J]. IEEE Transactions on Biomedical Engineering, 1978, BME-25(4): 353-361.
    [69] I. S. N. Murthy, U. C. Niranjan. Component Wave Delineation of ECG by Filtering in the Fourier Domain[J]. Medical & Biological Engineering & Computing, 1992, 30(2): 169-176.
    [70] N. Acir. Classification of ECG Beats by Using a Fast Least Square Support Vector Machines with a Dynamic Programming Feature Selection Algorithm[J]. Neural Computing & Applications, 2005, 14(4): 299-309.
    [71] N. Acir. A Support Vector Machine Classifier Algorithm Based on a Perturbation Method and Its Application to ECG Beat Recognition Systems[J]. Expert Systems with Applications, 2006, 31(1): 150-158.
    [72] A. I. Rasiah, Y. Attikiouzel. Syntactic Recognition of Common Cardiac Arrhythmias[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, Baltimore, MD, USA, 1994, 155-156.
    [73] S. Osowski, L. T. Hoai, T. Markiewicz. Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(4): 582-589.
    [74] I. S. Sahambi, S. N. Tandon, R. K. P. Bhatt. Using Wavelet Transforms for ECG Characterization[J]. IEEE Engineering in Medicine and Biology Magazine, 1997, 16(1): 77-83.
    [75] L.-Y. Shyu, Y.-H. Wu, W. Hu. Using Wavelet Transform and Fuzzy Neural Network for Vpc Detection from the Holter ECG[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1269-1273.
    [76] M. G. Jafari, J. A. Chambers. Fetal Electrocardiogram Extraction by Sequential Source Separation in the Wavelet Domain[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(3): 390-400.
    [77] P.-C. Chen, S. Lee, C.-D. Kuo. Delineation of T-Wave in ECG by Wavelet Transform Using Multiscale Differential Operator[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(7): 1429-1433.
    [78] O. T. Inan, L. Giovangrandi, G. T. A. Kovacs. Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507-2515.
    [79] F. Jager. Feature Extraction and Shape Representation of Ambulatory Electrocardiogram Using the Karhunen-Loeve Transform[J]. Elektrotehniski Vestnik/Electrotechnical Review, 2002, 69(2): 83-89.
    [80] C. Kamath, T. V. Ananthapadmanabhayuyu. Modeling QRS Complex in DECG[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(1): 156-158.
    [81] F. Odille, C. Pasquier, R. Abacherli et al. Noise Cancellation Signal Processing Method and Computer System for Improved Real-Time Electrocardiogram Artifact Correction During Mri Data Acquisition[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(4): 630-640.
    [82]葛丁飞,侯北平,项新建. ECG信号自动诊断中回归建模法特征提取的研究[J].自动化学报, 2007, 33(5): 462-466.
    [83] M. Engin. ECG Beat Classification Using Neuro-Fuzzy Network[J]. Pattern Recognition Letters, 2004, 25(15): 1715-1722.
    [84] A. Smrdel, F. Jager. Diurnal Changes of Heart Rate and Sympathovagal Activity for Temporal Patterns of Transient Ischemic Episodes in 24-Hour Electrocardiograms[J]. Eurasip Journal on Advances in Signal Processing, 2007, 2007: 32386.
    [85] M. Engin, M. Fedakar, E. Z. Engin et al. Feature Measurements of ECG Beats Based on Statistical Classifiers[J]. Measurement: Journal of the International Measurement Confederation, 2007, 40(9-10): 904-912.
    [86] T. P. Exarchos, M. G. Tsipouras, C. P. Exarchos et al. A Methodology for the Automated Creation of Fuzzy Expert Systems for Ischaemic and Arrhythmic BeatClassification Based on a Set of Rules Obtained by a Decision Tree[J]. Artificial Intelligence in Medicine, 2007, 40(3): 187-200.
    [87] S. Mitra, M. Mitra, B. B. Chaudhuri. A Rough-Set-Based Inference Engine for ECG Classification[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2198-2206.
    [88] M. Kundu, M. Nasipuri, D. K. Basu. Knowledge-Based ECG Interpretation: A Critical Review[J]. Pattern Recognition, 2000, 33(3): 351-373.
    [89] G. Bortolan, W. Pedrycz. Fuzzy Descriptive Models: An Interactive Framework of Information Granulation[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(6): 743-755.
    [90] J. Presedo, J. Vila, S. Barro et al. Fuzzy Modelling of the Expert's Knowledge in ECG-Based Ischaemia Detection[J]. Fuzzy Sets and Systems, 1996, 77(1): 63-75.
    [91] K. Polat, B. Akdemir, S. Gunes. Computer Aided Diagnosis of ECG Data on the Least Square Support Vector Machine[J]. Digital Signal Processing: A Review Journal, 2008, 18(1): 25-32.
    [92] R. Silipo, C. Marchesi. Artificial Neural Networks for Automatic ECG Analysis[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1417-1425.
    [93] T. Stamkopoulos, K. Diamantaras, N. Maglaveras et al. ECG Analysis Using Nonlinear Pca Neural Networks for Ischemia Detection[J]. IEEE Transactions on Signal Processing, 1998, 46(11): 3058-3067.
    [94] S. Osowski, T. H. Linh. ECG Beat Recognition Using Fuzzy Hybrid Neural Network[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(11): 1265-1271.
    [95] I. Guler, E. D. Ubeyli. ECG Beat Classifier Designed by Combined Neural Network Model[J]. Pattern Recognition, 2005, 38(2): 199-208.
    [96] Y. Ozbay, R. Ceylan, B. Karlik. A Fuzzy Clustering Neural Network Architecture for Classification of ECG Arrhythmias[J]. Computers in Biology and Medicine, 2006, 36(4): 376-388.
    [97] E. D. Ubeyli. Wavelet/Probabilistic Neural Networks for ECG Beats Classification[J]. Neural Network World, 2007, 17(3): 255-267.
    [98] P. De Chazal, R. B. Reilly. A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2535-2543.
    [99] P. De Chazal, M. O'Dwyer, R. B. Reilly. Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1196-1206.
    [100] M. I. Owis, A. H. Abou-Zied, A.-B. M. Youssef et al. Study of Features Based on Nonlinear Dynamical Modeling in ECG Arrhythmia Detection and Classification[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(7): 733-736.
    [101] E. D. Ubeyli. ECG Beats Classification Using Multiclass Support VectorMachines with Error Correcting Output Codes[J]. Digital Signal Processing, 2007, 17(3): 675-684.
    [102] I. Guler, E. D. Ubeyli. A Modified Mixture of Experts Network Structure for ECG Beats Classification with Diverse Features[J]. Engineering Applications of Artificial Intelligence, 2005, 18(7): 845-856.
    [103] I. Guler, E. D. Ubeyli. Feature Saliency Using Signal-to-Noise Ratios in Automated Diagnostic Systems Developed for ECG Beats[J]. Expert Systems with Applications, 2005, 28(2): 295-304.
    [104] N. Maglaveras, T. Stamkopoulos, K. Diamantaras et al. ECG Pattern Recognition and Classification Using Non-Linear Transformations and Neural Networks: A Review[J]. International Journal of Medical Informatics, 1998, 52(1-3): 191-208.
    [105] D. Scolari, R. D. R. Fagundes, T. Russomano et al. Comparative Study between Dd-Hmm and Rbf in Ventricular Tachycardia and Ventricular Fibrillation Recognition[J]. Medical Engineering and Physics, 2008, 30(2): 213-217.
    [106] S. Papadimitriou, S. Mavroudi, L. Vladutu et al. Ischemia Detection with a Self-Organizing Map Supplemented by Supervised Learning[J]. IEEE Transactions on Neural Networks, 2001, 12(3): 503-515.
    [107] G. Bortolan, W. Pedrycz. An Interactive Framework for an Analysis of ECG Signals[J]. Artificial Intelligence in Medicine, 2002, 24(2): 109-132.
    [108] H. F. Kwok, A. Giorgi, A. Raffone. Improving Interpretability: Combined Use of Lvq and Artmap in Decision Support[J]. Journal of Telecommunications and Information Technology, 2005, 9(4): 129-132.
    [109] F. M. Ham, S. Han. Classification of Cardiac Arrhythmias Using Fuzzy Artmap[J]. IEEE Transactions on Biomedical Engineering, 1996, 43(4): 425-430.
    [110] E. D. Ubeyli, I. Guler. Detection of Electrocardiographic Changes in Partial Epileptic Patients Using Lyapunov Exponents with Multilayer Perceptron Neural Networks[J]. Engineering Applications of Artificial Intelligence, 2004, 17(6): 567-576.
    [111] A. K. Jain, R. P. W. Duin, J. Mao. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
    [112] M. Stridh, L. Sornmo, C. J. Meurling et al. Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(1): 100-114.
    [113] P. Gomis, D. L. Jones, P. Caminal et al. Analysis of Abnormal Signals within the QRS Complex of the High-Resolution Electrocardiogram[J]. IEEE Transactions on Biomedical Engineering, 1997, 44(8): 681-693.
    [114] M. C. MacLachlan, B. F. Nielsen, M. Lysaker et al. Computing the Size and Location of Myocardial Ischemia Using Measurements of St-Segment Shift[J]. IEEETransactions on Biomedical Engineering, 2006, 53(6): 1024-1031.
    [115] G.-Y. Jeong, K.-H. Yu. Design of Ambulatory ECG Monitoring System to Detect St Pattern Change[C]. 2006 SICE-ICASE International Joint Conference, Busan, South Korea, 2006, 5873-5877.
    [116] B. Khaddoumi, H. Rix, O. Meste et al. Body Surface ECG Signal Shape Dispersion[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2491-2500.
    [117]张刚武,杨东.实用心电图学图谱[M].山东:科学技术出版社, 2003.
    [118] B. J. Frey, N. Jojic. A Comparison of Algorithms for Inference and Learning in Probabilistic Graphical Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9): 1392-1416.
    [119] K. P. Murphy. An Introduction to Graphical Models[J]. 2001.
    [120] E. Charniak. Bayesian Networks without Tears[J]. AI Magazine, 1991.
    [121] F. R. Kschischang, B. J. Frey, H.-A. Loeliger. Factor Graphs and the Sum-Product Algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.
    [122] G. Colavolpe, G. Germi. On the Application of Factor Graphs and the Sum-Product Algorithm to Isi Channels[J]. IEEE Transactions on Communications, 2005, 53(5).
    [123] M. R. Naphade, I. V. Kozintsev, T. S. Huang. A Factor Graph Framework for Semantic Video Indexing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(1).
    [124] H.-A. Loeliger. An Introduction to Factor Graphs[J]. IEEE Signal Processing Magazine, 2004.
    [125] H. Wymeersch, H. Steendam, H. Bruneel et al. Code-Aided Frame Synchronization and Phase Ambiguity Resolution[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2747-2757.
    [126] R. J. Drost, A. C. Singer. Factor-Graph Algorithms for Equalization[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2052.
    [127]李俭川,胡茑庆,秦国军等.贝叶斯网络理论及其在设备故障诊断中的应用[J].第卷第期, 2003, 14(10): 896-900.
    [128] M. L. Wong, K. S. Leung. An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm-Based Hybrid Approach[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 378-404.
    [129]薛万欣,刘大有,张弘. Bayesian网中概率参数学习方法[J].电子学报, 2003, 31(11): 1686-1689.
    [130] J. S. Yedidia, W. T. Freeman, Y. Weiss. Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms[J]. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312.
    [131] D. Nikovski. Constructing Bayesian Networks for Medical Diagnosis from Incomplete and Partially Correct Statistics[J]. Ieee Transactions on Knowledge and Data Engineering, 2000, 12(4): 509-516.
    [132] X.-W. Chen, G. Anantha, X. Lin. Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm[J]. Ieee Transactions on Knowledge and Data Engineering, 2008, 20(5): 628-640.
    [133]卢喜烈.多导同步心电图分析大全[M].北京:科学技术文献出版社, 1999.
    [134]于伟琦,张新中.新编心电图学[M].北京:学苑出版社, 1993.
    [135]曹德本.新编心电图诊断学[M].北京:中国医药科技出版社, 1999.
    [136] C. L. M. Witteman, S. Renooij, P. Koele. Medicine in Words and Numbers: A Cross-Sectional Survey Comparing Probability Assessment Scales[J]. BMC Medical Informatics and Decision Making, 2007, 7: 13.
    [137] S. Renooij, C. L. M. Witteman. Talking Probabilities: Communicating Probabilistic Information with Words and Numbers[J]. International Journal of Approximate Reasoning, 1999, 22: 169-194
    [138] H. Chan. Sensitivity Analysis of Probabilistic Graphical Models[D]. Los Angeles: University of California, 2005.
    [139] K. B. Laskey. Sensitivity Analysis for Probability Assessments in Bayesian Networks[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 1995, 25(6): 901-909.
    [140] E. Castillo, J. e. M. Guti′errez, A. S. Hadi. Sensitivity Analysis in Discrete Bayesian Networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1997, 27(4): 412-423.
    [141]张志伟,钱雪松,王磊等.心电图“伪差”的鉴别与排除[J].医疗卫生装备, 2005, 26(5): 69-70.
    [142]崔屹.图像处理与分析——数学形态学方法及应用[M].北京:科学技术出版社, 2000.
    [143] P. Marago, R. W. Schafer. Morphological Filters-Part I: Their Set-Theoretic Analysis and Relations to Linear Shift-Invariant Filters[J]. IEEE Trans. Acoustics, Speech, and Signal Processing, 1987, 35(8): 1153-1169.
    [144]赵春晖,孙圣和.一种形态开、闭自适应加权组滤波器[J].电子学报, 1997, 25(6): 109-111.
    [145] C.-H. H. Chu, E. J. Delp. Impulsive Noise Suppression and Background Normalization of Electrocardiogram Signals Using Morphological Operators[J]. IEEE Transactions on Biomedical Engineering, 1989, 36(2): 262-273.
    [146]夏恒超,詹永麒.一种新的基于三次样条插值技术的心电图基线漂移消除方法[J].生物医学工程学杂志, 2003, 20(3): 524-526.
    [147] D. Zhang. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, Shanghai, China, 2005, 1212-1215.
    [148] K. L. Chan, S. M. Krishnan, Y. Sun. ECG Signal Conditioning by Morphological Filtering[J]. Computers in Biology and Medicine, 2002, 32(6): 465-479.
    [149] P. Sun, Q. H. Wu, A. M. Weindling et al. An Improved Morphological Approach to Background Normalization of ECG Signals[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(1): 117-121.
    [150]金炳陶.概率与数理统计[M].北京:电子工业出版社, 1999.
    [151] G. Shi, X. Li, L. Jiao et al. Adaptive Wavelet Thresholding for Time Varying Snr Signal Denoising[C]. IEEE International Symposium on Circuits and Systems, ISCAS 2002, 2002, 827-829.
    [152] D. L. Donoho. De-Noising by Soft Thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [153]高清维,李海鹰,庄镇泉等.基于平稳小波变换的心电信号噪声消除方法[J].电子学报, 2003, 31(2): 238-240.
    [154]杨国杰,魏太星.高频心电图研究的进展[J].心血管病学进展, 1996, 17(1): 17-20.
    [155] P. E. Trahanias. An Approach to QRS Complex Detection Using Mathematical Morphology[J]. IEEE Transactions on Biomedical Engineering, 1993, 40(2): 201-204.
    [156]季虎,毛玲,孙即祥.基于小波变换与形态学运算的R波检测算法[J].计算机应用, 2006, 26(5): 1223-1225.
    [157] I. K. Daskalov, I. I. Christov. Electrocardiogram Signal Preprocessing for Automatic Detection of QRS Boundaries[J]. Medical Engineering and Physics, 1999, 21(1): 37-44.
    [158] A. Bugarin, S. Barro, R. Ruiz et al. Syntactic Characterization of QRS Morphology[C]. Proceedings of the Annual Conference on Engineering in Medicine and Biology, Orlando, FL, USA, 1991, 588-589.
    [159] S. C. Saxena, V. K. Tandon, S. Gupta. Patient Monitoring in Iccu Using Syntactic Approach[C]. New Delhi, India, 1995, 2-1.
    [160]易大义.计算方法[M].浙江大学出版社, 2001.
    [161]刘霞. ST段改变的形态学分型[J].临床心电学杂志, 2005, 14(3): 159-160.
    [162]范晓东,朱泽煌.心电特征点定位算法[J].北京生物医学工程, 1996, 15(1): 15-18.
    [163]李德华,宁新宝.临床诊断心电信号波形参数拐点检测算法研究[J].南京师范大学学报(工程技术版), 2004, 4(2): 29-31.
    [164] S. J. Weisner, W. J. Tompkins, B. M. Tompkins. A Compact, Microprocessor-Based ECG St-Segment Analyzer for the Operating Room[J]. IEEE Transactions on Biomedical Engineering, 1982, BME-29(9): 642-649.
    [165] J. S. Sahambi, S. N. Tandon, R. K. P. Bhatt. Wavelet Based St-Segment Analysis[J]. Medical & Biological Engineering & Computing, 1998, 36(5): 568-572.
    [166] G. Y. Jeong, K. H. Yu, N. G. Kim. A Polynomial Approximation Approach for Analyzing St Shape Change[C]. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, Shanghai, China, 2005, 4034-4037.
    [167]师黎,杨岑玉,张金盈.小波变换在心电图ST段识别中的应用[J].郑州大学学报(医学版, 2006, 4l(2): 275-277.
    [168]刘海龙,唐奇伶.基于径向基函数神经网络的心电图st段形态识别[J].生物物理学报, 2005, 21(6): 457-463.
    [169] K. F. Tan, K. L. Chan, K. Choi. Detection of the QRS Complex, P Wave and T Wave in Electrocardiogram[C]. IEE Conference Publication, Bristol, UK, 2000, 41-47.
    [170]夏恒超,詹永麒,陈旭华.基于小波变换和波形信息的P波检测方法[J].北京生物医学工程, 2003, 22(1): 27-30.
    [171]季虎,孙即祥,王春光.基于小波变换的自适应QRS-T对消P波检测算法[J].电子与信息学报, 2007, 29(8): 1868-1871.
    [172]卢喜烈.现代心电图诊断大全[M].北京:科学技术文献出版社, 1996.
    [173]胡笑旋,杨善林,马溪骏.面向复杂问题的贝叶斯网建模方法[J].系统仿真学报, 2006, 18(11): 3242-3246.
    [174]王飞,刘大有,薛万欣.基于遗传算法的bayesian网中连续变量离散化的研究[J].计算机学报, 2002, 25(8): 794-800.
    [175]林春漪,尹俊勋,马丽红等.基于模糊贝叶斯网络的星形细胞瘤恶性分级的研究[J].中国图象图形学报, 2007, 12(4): 661-665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700