表面包覆La-Mg-Ni系A_2B_7型贮氢电极合金的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
La-Mg-Ni系A_2B_7型贮氢合金是近来发现的综合电化学性能较好的电极合金,具有重要的开发应用前景,但电极合金循环稳定性较差,因而如何提高该类合金电极循环稳定性是该类合金目前应用研究的关键问题。据此本文以A_2B_7型贮氢合金La_(1.5)Mg_(0.5)Ni_7为研究对象,通过对合金表面包覆Ni-P、Co-P和Cu—P及退火处理,系统的研究了表面包覆对A_2B_7型贮氢合金电极电化学性能的影响。
     首先本文对A_2B_7型贮氢合金La_(1.5)Mg_(0.5)Ni_7进行化学镀不同厚度Ni-P处理,包覆处理后对合金粉末表面进行SEM观察。研究表明,包覆镍颗粒均为球形,且均匀弥散于合金表面,合金粉末刨面光镜照片显示合金粉末包覆的镍层厚度较为均匀,呈连续包覆状态。电化学测试结果表明,表面包覆镍处理的La_(1.5)Mg_(0.5)Ni_7贮氢合金电极放电容量有所降低,而循环稳定性有所提高,但改善并不明显。线性极化扫描和电化学阻抗谱等分析结果表明,包覆后合金电极的交换电流密度(I_0)以及电化学阻抗均有较好的改善。
     对于A_2B_7型贮氢合金La_(1.5)Mg_(0.5)Ni_7,本文还通过对其化学镀不同厚度Co-P处理及6.78%Co-P镀态合金进行不同温度退火处理,系统地研究了包覆及退火对贮氢合金电极电化学性能的影响。SEM形貌观察显示镀钴晶粒较为细小,退火处理使镀层表面更为平整且镀层颗粒增大,同时合金表面有孔隙出现。XRD分析表明,化学镀Co-P镀层为晶态,是磷在钴中的固熔体;经退火处理,晶粒长大,应力减小;随着温度的升高,合金镀层结构及内部合金均发生变化,镀层结构出现CoP_3相及β—Co相,且基体合金La Ni_5逐渐增多。773K退火1小时是合金镀层结构和电化学性能变化的转折温度。电化学测试结果表明表面包覆钴放电容量明显提高,包覆10%Co-P后放电容量可高达433.1mAh/g,比未包覆合金放电容量提高50mAh/g以上,但循环稳定性均有所降低。包覆钴后,放电曲线出现两个平台,合金电极出现放电双平台及容量提高与镀层钴的氧化而导致吸放氢有关。低温退火处理使合金的循环稳定性较镀态合金有所改善,但对合金电极其它电化学性能影响不大;高温退火处理,随着退火温度升高,合金电极的放电容量逐渐减小,活化性能和循环稳定性均呈恶化趋势。合金电极动力学分析表明,表面包覆钴改善了合金电极的高倍率放电性能,合金电极的交换电流密度I_0。低温退火处理对合金电极动力学性能影响较小,高温退火使合金电极动力学性能变差。
     最后本文对贮氢合金La_(1.5)Mg_(0.5)Ni_7表面包覆铜进行了系统研究,使用次磷酸钠作还原剂及用硫酸溶液浸蚀两种方法对合金粉末进行化学镀铜,同时对比研究了在铜镀层表面再覆镍和钴处理对合金电极电化学性能的影响。SEM形貌观察结果表明,用次磷酸钠作还原剂所获铜镀层晶粒非常细密;用硫酸溶液浸蚀镀铜,镀层的形态与硫酸的浓度有很大关系。电化学测试结果表明包覆铜、铜-镍处理均改善了合金电极的循环稳定性能,包覆10%Cu处理的合金电极循环寿命增加最为明显,140次循环容
    量保持率从包覆前的66.1%提高到73.2%。经不同浓度硫酸浸蚀镀铜后,合金电极的循环寿命均有较好改善,但合金的放电容量下降明显。合金电极动力学分析表明表面包覆铜、铜-镍和铜-钴均改善了合金电极的动力学性能。
A_2B_7-type hydrogen storage alloy of La-Mg-Ni system is a kind of new type high capacity electrode alloy with better overall electrochemical properties which was found in recent years, this kind of alloy possesses an important prospect of development and utilization. However, the cyclic life of alloy electrodes is poor, then it is the key question of unilization researches that how to improve the cyclic life of alloy electrodes. So in this paper, the influence of Ni-P、 Co-P and Cu coatings on the electrochemical properties of A_2B_7-type hydrogen storage alloy electrode was studied.
    Firstly, in this paper the Ni-P coating by chemical plating was systematically studied. The results of SEM showed that some global grain was covered on the surface of alloys. The section optic microscope picture of powder alloy showed that the Ni-P coatings was very symmetrical.The electrochemical results showed that, after Ni-P coating, the cyclic stability of the alloy electrodes was some improved, while the maximum discharge capacity was reduced. The kinetic properties of surface microencapsulation alloy electrode were improved by testing kinetic parameter i.e., a higher exchange density I_0 and lager high rate dischargeability.
    For further improving the performances of the A_2B_7-type alloy electrodes, The effect of Co-P coatings and annealing on the electrochemical properties of La_(1.5)Mg_(0.5)Ni_7 hydrogen storage alloy electrode was systematically studied. The results of SEM showed that many small cobalt global grains were covered on the surface of alloys. Heat treatment make cobalt grains grow and some pore appear on the surface. XRD show that electroless plated Co-P alloys coating is crystalline,being a solid solution of phosphors in cobalt matrix with finer grains as plated .when heated, grains growth stress relaxation occur in the coating.With the heating temperature increasing, coating crystal structure was changed,metallic compounds CoP_3 and β— Co phases deposition and allotropic transformation from α—Co, at the same time, LaNi_5 phases increase. The metamorphic temperature is 773K. The electrochemical results showed: material has a higher capacity and has two discharge voltage compared to the bare alloy due to the faradaic reaction of cobalt during discharge, the discharge capacity of coating electrodes could be up to 433.1mAh/g, but the cycle life of coated material was not improved compared to the bare alloy, comparing to coating alloys,When the coating alloys was treated at the low heating temperature ,whose capacity approximated to coating alloys and cycling stability was improved ,with the heating temperature increasing, the capacity and cycling stability were all deteriorated.The Co-P coated powder electrode is better than bare relectrode in exchange current density I_0 limiting current density I_0. The kinetic properties of alloy electrode change rarely when the coating alloys were annealed at the low temperature, but
    with the heating temperature increasing, the kinetic properties were deteriorated.
    Finally, in order to improve the cyclic stability of A_2B_7-type alloy electrodes, the Cu coating by chemical plating was systematically investigated.We deal with alloy make use of two different methods, at the same time, the cover Ni-P and Co-P on the Cu coating alloy electrodes were also studied.The picture of SEM showed the copper aggradation surface with hypophosphite reducer was covered with very close-grained grains,the surface layer forms of alloys by erode plating were associated with the chroma of vitriol .The electrochemical results showed the cycle life of the materials coated by Cu and Cu-Co were improved .Cu coating could obviously improve overall electrochemical properties of alloy electrodes. After 10% Cu coating the capacity retention rate after 140 charge/discharge cycles could reach73.2%, whereas the discharge capacity retaining rate of bare electrode was 66.1%. The cycle life of Cu coating alloys by erode plating all were improved obviously, but their discharge capacity minished evidently. The kinetic properties testing show: The Cu、 Cu-Co、 Cu-Ni surface microencapsulation all obviously improved the kinetic properties of alloy electrodes.
引文
[1] 王连邦,镁基贮氢合金的制备及性能,2001,4
    [2] 胡子龙.贮氢材料.北京:化学工业出版社,2002
    [3] 国家发改委,中国材料研究协会编写.中国新材料产业发展报告.北京:化学工业出版社,2004,58
    [4] 雷永泉.新能源材料.天津:天津大学出版社,2002
    [5] 雷永泉,李洲鹏,陈长聘等.贮氢电极材料与氢化物—镍电池的进展.材料科学与工程,1990,8(1):1
    [6] 小野修一郎.水素吸藏金属.见:堂山昌男,山本良一编.机能性金属材料.东京:东京大学出版社.187
    [7] 徐光宪.稀土—贮氢材料.北京:冶金工业出版社,1995,286
    [8] Westlake D G. A geometric model for the stoichiometry and interstitial site occupancy in hydrides of LaNis, LaNi_4Al. Less-Common Met. 1983,91:275
    [9] V.A.Yartys,V.V.Burnasheva, K.N.Semenenko. Crystal chemistry of RT_5H(D)x,RT_2H(D)x and RT_3H(D)x hydrides based on intermetallic compounds of CaCu_5, MgCu_2, MgZn_2, and PuNi_3 structure type. Int. J. Hydrogen Energy, 1982, 7:957
    [10] 袁满雪,韩剑文,赖城明.LaNi_5储氢材料中储氢状态的理论研究.南开大学学报(自然科学),1998,31:84
    [11] D.G.Westlake. Hydrides of intermetillic compounds: a review of stabilities, stoichiometries and preferred hydrogen sites. J. Less-Common Met. 1983,91:1
    [12] 大角泰章.金属氢化物的性质与应用.北京:化学工业出版社,1990
    [13] Hempelmann R.J. Less-Common Met, 1984, 101:69
    [14] 张大为 袁华堂 张允什.储氢合金的表面处理.化学通报,1998,2:20
    [15] J.J.Willems. Metal hydride electrodes stability of LaNis-related compounds. Philips J. Res. 1984, 39 (1):1
    [16] 张永俊,孙俊才,于志伟.贮氢电极合金的发展.金属功能材料,2001,1:9
    [17] 陈长聘,王春生.高性能贮氢电极合金.物理,1998,27:156
    [18] Andreas Zuttel, Felix Meli, Louis Schlapbach. AB_2 and AB5 metal hydride electrodes: a phenomenological model for the cycle life. J. Alloys Comp., 1993,200:157
    [19] J.M.Joubert, M.Latroche, R.Cerny. Hydrogen cycling induced degradation in LaNi_5-type materials. J.Alloys Comp., 2002, 330-332:208
    [20] Vancht. J.H, Kuijpers.F.A. Philips Res. Rept., 1970,25:133
    [21] Y. Q. Lei, Z. P. Li, C. P. Chen, J. Wu and Q. D. Wang, J. Less-Common Met., 1991,172-174:1265
    [22] 川野博志,第29回电池讨论会要旨集,1988:115
    [23] A.Pebler and E.A.Gulbransen.Electrochem. Tech., 1996, 4:211
    [24] S.R.Ovshinsky, M.A.Fetcenko, S.Venkatesan, et al. The 13 th Internation Seminar on Primary and Secondary Battery Technology and Application. Deerfield Beach,FL,March 1996
    [25] Yu J Y, Lei Y Q, Chen C P, et al. J.Alloys Compd, 1995,231:578
    [26] Sapru K. et al. Rechargeable battery and electrode used therein. USA patent, USP 4623 597, 1986
    [27] Y Q, Yang Q M, Wu J, et al. Electrochemical behaviour of somemechanically alloyed Mg-Ni based amorphous hydrogen storage alloys. Z. Phys. Chem.Bd., 1994, 183:379
    [28] T.Schober,Wenzl. Hydrogen in Metals. G.. Alefeld and Volkl(eds), Springer-Verlag,Berlin,Heidelberg, Topic in Applied Physics, 1978,29:11.
    [29] Tsukahara M, Takahashi K, Mishima T, et al. Phase structure of V-based solid solutions containing Ti and Ni and theirhydrogen-absorption properties. J. Alloys Comp., 1995, 224:162
    [30] Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydrige electrodes. J. Alloys Comp., 1997, 253-254:583
    [31] Kadir K, Sakai T, Uehara I. Synthesis and structure determination of a new series of hydrogen storage alloys; RMg_2Ni_9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi_2 Laves-type layers alternating with AB_5 layers. J. Alloys Comp., 1997, 257:115-121
    [32] Kohno T, Yoshida H, Kawashima F, et al. Hydrogen storage properties of new ternary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14). J. Alloys Comp., 2000, 311(2): L5-L7
    [33] Oesterreicher H, Cliton J and Bittner H. Hydrides of La-Ni compounds. Mat. Res.Bull., 1976, 11: 1241
    [34] K.H.J.Buschow, A.S.Van Der Goot. The crystal structure of rare-earth nickel compounds of the type R_2Ni_7, J. Less-Common Met., 1970, 22: 419-428
    [35] 顾巍.非AB_5型La-Ni系贮氢合金的相结构与电化学性能.硕士学位论文,浙江大学,2002
    [36] Zhang Faliang, LuoYongchun, Chert Jiangping et al. Effect of annealing treatment on structure and electrochemical properties of La_(0.67)Mg_(0.33)Ni_(2.5)Co_(0.5) alloy electrodes. J Power sources, 2005, 150(4): 193
    [37] 张法亮,罗永春,张永超等,La-Mg-Ni系A_2B_7型贮氢合金的结构与电化学性能.中国稀土学报(Journal of The Chinese Rare Earth Society),2006,24(5):592
    [38] 张法亮,罗永春,孙凯等.La_(1.5)Mg_(0.5)Ni_(7-x)Co_x(x=0~1.8)贮氢合金结构和电化学性能研究.功能材料,2006,2(37):265
    [39] 周增林,宋月清,崔舜等,Nd替代La对La-Mg-Ni系A_2B_7型贮氢电极合金性能的影响.中国有色金属学报(The Chinese Journal of Nonferrous Metals),2007,17(1):45
    [40] 许剑轶,闫汝煦,王大辉.A_2B_7型La_(0.75)Mg_(0.25)Ni_(3.5-x)Al_x(x=0~0.3)合金相结构及电化学性能,稀有金属材料与工程,2007,36(2):349
    [41] Liu Yongfeng, Pan Hongge, Yue Yuanjian,et al. Cycling durability and degradation behavior of La-Mg-Ni-Co-type metal hydride electrodes. J.Alloys Compd,2005,395:291
    [42] Sakai T, Yuasa A, Ish ikawa H et al. Nickel-metal hydride battery using microencapsulated alloys. J. Less-Common., 1991,172~174: 1194~1203
    [43] Zhang Yunshi, Chen Youxiao, Chen Yun et al. Accumulation of rare-earth metal on the surface of the microencapsulated hydrogen storage alloy. J. Alloys. Comp., 1993, 190: L 37~L 38
    [44] Iwakura C, Kajiya Y, Yoneyama H et al. Self-discharge mechanism of nickel-hydrogen batteries using metal hydride anodes.J. Electrochem. Soc., 1989, 136: 1351~1355
    [45] Sakai T, Ishikawa H, Oguro K et al. Effects of microencapsulation of hydrogen storage alloy on the performances of sealed nickel/metal hydride batteries. J. Elcctrochcmi. Soc., 1987, 134: 558~562
    [46] Matsuoka M, Asai K,et al. Electrochemical characterization of surface-modified negative electrodes consisting of hydrogen storage alloys. J. Alloys. Comp.,1993,192:149
    [47] Sakai T,Yuasa A, Ishikawa H et al. Nickel/metal hydride battery using microencapsulated alloys. J Less-Common Met, 1991, 172~174:1194~1204
    [48] 范祥清,肖士民,葛华才等1贮氢合金粉体表面处理的研究[J].电池,1993,23(3):113~115
    [49] Chao Deng, Pengfei Shi, Sen Zhang. Effect of surface modification on the electrochemical performances of LaNi_5 hydrogen storage alloy in Ni/MH batteries. Materials Chemistry and Physics, 2006, 98: 514-518
    [50] 南俊民,杨勇,林祖赓.铜包覆AB5型金属氢化物电极的电化学性能研究[J].Chinese Journal of Power Sources, 1998, 22 (5): 188
    [51] 孙俊才等.表面包覆贮氢合金电极的电化学特性.稀土,1994,15(5):5
    [52] Mao-Sung Wu, Hong-Rong Wu, et al. Surface treatment for hydrogen storage alloy of nickel/metal hydride batteryo J. Alloy and Comp.,2000,302:248-257
    [53] 成少安,浙江大学博士学位论文,1995,10
    [54] Masao Matsuoka, Tatsuoki Kohno and Chiaki Iwakura. Electrochemical properties of hydrogen storage alloys modified with foreign metals. J. Electrochimica Acta, 1993,38(6):787-791
    [55] D. Chartouni, F. Meli, A. Zuettel, K. Gross, L. Sclapbach, The influence of cobalt on the electrochemical cycling stability of LaNi5-based hydride forming alloys. J. Alloys Compounds 1996,241:160
    [56] Bala S H, Branko N P and Ralph E W. Studies on electroless cobalt coating for microencapsulation of hydrogen storage alloys. J Electrochem Soc, 1998,145 ((9):3000-3007
    [57] J. L. Luo, N. Cui. Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution. J. Alloys Comp., 1998, 264:299-305
    [58] Zhu Chunling(朱春玲) et al.表面包覆镍处理La_(0.67)Mg_(0.33)N_(12.5)Co_(0.5)贮氢合金电极的电化学性能[J]. Rare Metal Materials and Engineerings(稀有金属材料与程),2006,35(4):573~576
    [59] 姜晓霞,沈伟.化学镀理论及实践.国防工业出版社,2001,8-24
    [60] 李宁,袁国伟.化学镀镍基合金理论及技术.哈尔滨工业大学出版社,2000,23-25
    [61] 李宁,化学镀实用技术,化工工业出版社,2004,289
    [62] 曾鹏,郑国桢等.化学镀合金镀层的非晶结构条件及性能研究[J].材料保护,1999,32(12):5
    [63] 姜晓霞,沈伟.化学镀理论及实践.国防工业出版社,2001,294-300,307-314
    [64] 吴辉煌.电化学.北京:化学工业出版社,2004
    [65] 史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001
    [66] L. O. Valen, R. Tunold. The electrochemical impedance of metal hydride electrodes. J. Alloys Comp., 2002, 330-332:810
    [67] Nobuhiro Kuriyama, Tetsuosakai, Hiroshi Miyamura, et al. Electrochemical impedance spectra and deterioration mechanism of metal hydride electrodes. J. Electrochem. Soc., 1992, 139(7):L72
    [68] Zhang G, Popov B V, White R E. Electrochemical determination of the diffusion coefficient of hydrogen through an LaN_(14.25)Al_(0.75) electrode in alkaline aqueous solution. J. Electrochem. Soc., 1995, 142:2695~2698
    [69] Xuan Tianpeng(宣天鹏) et al. Effect of Heating Temperature on the Crystal Structure and Hardness of Electroless Co-P Alloy Coating. Plating and Finishing(电镀与精饰),1997,19(2): 12~14
    [70] Geng M M. Electrode characterization of MmNi_5-based alloys for nickel/metal hydride batteries. J Alloys and Compounds, 1994,206 : L3-L5.
    [71] Anand Durairajan, Bala S. et al. Cycle life and utilization studies on cobalt microencapsulated AB_5 type metal hydride Journal of Power Sources 83(1999).114~120
    [72] Kuriyama N, Sakai T, et al. Evaluation of methods to improve reproducibility in charge/discharge measurements of metal hydride battery electrodes. J. Alloys Compounds, 2002, 330-332:771
    [73] Kuriyama N, Sakai T, MiyamuraI H, et al. Characterization of metal hydride electrode by means of Electrochemical impedance speatroscopy. J Alloys Compounds, 1993,192: 161
    [74] Kuriyama N, Tsukahara M, et al. Deterioration behavior of a multi-phase vanadium-based solid solution alloy electrode. J Alloys and Compounds, 2003,56: 738
    [75] 胡赓祥等.金属学.上海科技出版社,1982.34.328
    [76] 谢中伟.表面覆铜贮氢合金电极的电催化活性[J].中国有色金属学报(The Chinese Journal of Nonferrous Metals), 1997, 7 (2): 56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700