用户名: 密码: 验证码:
咪唑对人子宫内膜腺上皮癌细胞(HEC-1B)自噬及凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咪唑是一种生物弱碱,它是生物体内组胺、组氨酸发挥生理作用的重要基团。咪唑及其衍生物广泛应用在不同类型的药物中,显示出不同的药理活性,如抗菌、抗真菌、抗病毒、抗寄生虫、拮抗组胺受体等。尤其作为抗癌药物,咪唑显示了广阔的应用前景。该领域已经取得了许多重要成果,其中多个咪唑类化合物已作为抗癌药物应用于临床。然而,咪唑类药物的抗癌机制尚不完全清楚。细胞自噬和凋亡与癌症的发生密切相关,目前,绝大多数化疗药物主要是通过抑制自噬和促进凋亡来实现癌症治疗目的。因此,本论文以人子宫内膜腺上皮癌细胞(HEC-1B)为材料,系统地研究分析咪唑对细胞自噬和凋亡的影响,旨在揭示咪唑类药物抗癌作用的分子机制。在自噬方面:(1)较低浓度的咪唑(5-25mM)能够在6h内引起HEC-1B细胞空泡化,通过Western blotting检测发现咪唑能够明显地升高自噬体标志物LC3-II的含量,进一步利用透射电镜观察发现咪唑诱导胞内产生大量自噬体样囊泡(AVs),表明咪唑影响细胞的自噬过程;(2)Western blotting检测显示咪唑并未对自噬启动相关激酶及分子产生明显影响,表明咪唑处理并未启动细胞的自噬;(3)在咪唑处理的细胞中EGFP-LC3呈点状分布,游离EGFP蛋白水平显著下降,进一步通过Western blotting检测表明咪唑处理显著增加p62蛋白水平,并且BafA1抑制并未提高咪唑处理细胞内LC3-II的水平,表明咪唑阻断自噬物的降解;(4)利用激光共聚焦检测mRFP-GFP-LC3的亚细胞定位发现咪唑能够增加自噬体的数量,但未检测到自噬溶酶体数量增加,表明咪唑抑制自噬体成熟为自噬溶酶体。在凋亡方面:(1)较高浓度的咪唑(50-100mM)能够在12-48h显著地抑制HEC-1B细胞存活,Western blotting检测显示咪唑处理引起caspase9和caspase3断裂,表明咪唑能够诱导细胞凋亡;(2)利用RT-PCR和Western blotting检测促凋亡蛋白Bim的表达,结果表明咪唑处理导致Bim mRNA和蛋白水平表达显著升高;(3)通过Western blotting和蛋白超表达检测咪唑对转录因子Fox03a的影响,结果显示,咪唑能够诱导FoxO3a蛋白上调并促进其入核;(4)进一步研究发现siRNA介导的FoxO3a基因沉默显著地抑制咪唑引起的Bim上调,并降低细胞的死亡率,表明咪唑通过激活Fox03a上调Bim的表达。综上所述,咪唑通过抑制自噬体成熟从而阻断自噬体的降解:同时,咪唑通过FoxO3a-Bim通路诱导细胞凋亡。本研究结果明晰了咪唑对HEC-1B细胞自噬和凋亡作用的分子机制,并且为进一步研发咪唑类抗癌药物提供了有价值的科学依据。
Imidazole, an organic compound with the formula C3H4N2, is classified as an alkaloid. It is incorporated into many important biological molecules; the most widespread is the amino acid histidine, which has an imidazole side-chain. Imidazole is an important pharmacophore in drug discovery. Its derivatives have diverse pharmaceutical effects, including histamine-H3antagonist, anti-inflammatory, gastroprotective, and antioxidant. Importantly, several imidazole derivatives had anticancer activity against a variety of malignant cells. However, mechanisms by which tumor cells respond to these stimuli remain to be elucidated. Autophagy and apoptosis are both cellular degradation pathways essential for organismal homeostasis. Therefore, it is not surprising that both autophagy and apoptosis have been implicated in protecting organisms against a variety of diseases, especially cancer. As autophagy removes damaged proteins and organelles, it limits their cumulative deleterious effects inside cells. Therefore, it is not surprising that autophagy defects are found in many human tumors. In contrast to these tumor-suppressor roles for autophagy, stress-activated autophagy may promote survival of tumor cells, especially when apoptosis is defective. Apoptosis is a tumor suppressor pathway. Deregulation of apoptosis leads to accumulation of "unwanted" cells and contributes to cancer development. Autophagy and apoptosis have key roles in tumorigenesis and tumor treatment. In this study, we systematically examined autophagic events induced by imidazole in HEC-1B cells. Accumulation of autophagic vacuoles in imidazole-treated cells was verified by conversion of LC3protein, as well as confocal and transmission electron microscopy. Furthermore, imidazole blocked autophagic degradation by impairing maturation of autophagosomes into autolysosomes. Concurrently, imidazole treatment induced apoptosis in HEC-1B cells, accompanied by activation of caspase9and caspase3. The proapoptotic effect was mediated by increased expression of the BH3-only protein Bim. Moreover, imidazole upregulated the protein level of transcription factor Foxo3a and induced its increased nuclear localisation. In addition, siRNA-mediated silencing of FoxO3a effectively attenuated imidazole-induced Bim upregulation and cell death, indicating direct involvement of this pathway in the imidazole-induced apoptosis. Taken together, our data provided a molecular link between imidazole drugs and anticancer therapies; understanding of these properties of imidazole is essential for future development of effective cancer therapeutics using imidazoles.
引文
Akiyama, T., Bouillet, P., Miyazaki, T., Kadono, Y., Chikuda, H., Chung, U. I., Fukuda, A., Hikita, A., Seto, H., Okada, T., et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. The EMBO journal 22,6653-6664.
    Akiyama, T., Dass, C. R., and Choong, P. F. (2009). Bim-targeted cancer therapy:a link between drug action and underlying molecular changes. Molecular cancer therapeutics 8,3173-3180.
    Angibaud, P., Mevellec, L., Meyer, C., Bourdrez, X., Lezouret, P., Pilatte, I., Poncelet, V., Roux, B., Merillon, S., End, D. W., et al. (2007). Impact on farnesyltransferase inhibition of 4-chlorophenyl moiety replacement in the Zarnestra series. European journal of medicinal chemistry 42,702-714.
    Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M., Pignataro, G., D'Alessio, A., Sirabella, R., Secondo, A., Sibaud, L., and Di Renzo, G. F. (2003). Apoptosis induced in neuronal cells by oxidative stress:role played by caspases and intracellular calcium ions. Toxicology letters 139,125-133.
    Antonsson, B., and Martinou, J. C. (2000). The Bcl-2 protein family. Experimental cell research 256, 50-57.
    Ashkenazi, A. (2008). Targeting the extrinsic apoptosis pathway in cancer. Cytokine & growth factor reviews 19,325-331.
    Barreyro, F. J., Kobayashi, S., Bronk, S. F., Werneburg, N. W., Malhi, H., and Gores, G. J. (2007). Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. The Journal of biological chemistry 282,27141-27154.
    Bold, R. J., Termuhlen, P. M., and McConkey, D. J. (1997). Apoptosis, cancer and cancer therapy. Surgical oncology 6,133-142.
    Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., et al. (2005). Inhibition of macroautophagy triggers apoptosis. Molecular and cellular biology 25,1025-1040.
    Brune, B. (2003). Nitric oxide:NO apoptosis or turning it ON? Cell death and differentiation 10, 864-869.
    Bruno, R. D., and Njar, V. C. (2007). Targeting cytochrome P450 enzymes:a new approach in anti-cancer drug development. Bioorganic & medicinal chemistry 15,5047-5060.
    Byrne, G. I., and Ojcius, D. M. (2004). Chlamydia and apoptosis:life and death decisions of an intracellular pathogen. Nature reviews Microbiology 2,802-808.
    Cai, J. L., Li, S., Zhou, C., Gan, L., and Wu, J. (2009). Advance in research of imidazoles as anti-tumor agents. Chinese Journal of New Drugs 18,598-608.
    Carbajo-Pescador, S., Steinmetz, C., Kashyap, A., Lorenz, S., Mauriz, J. L., Heise, M., Galle, P. R., Gonzalez-Gallego, J., and Strand, S. (2013). Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells. British journal of cancer 108,442-449.
    Chen, N., and Karantza-Wadsworth, V. (2009). Role and regulation of autophagy in cancer. Biochimica et biophysica acta 1793,1516-1523.
    Chen, Q., Ray, S., Hussein, M. A., Srkalovic, G., and Almasan, A. (2003). Role of Apo2L/TRAIL and Bcl-2-family proteins in apoptosis of multiple myeloma. Leukemia & lymphoma 44,1209-1214.
    Chiche, J., Brahimi-Horn, M. C., and Pouyssegur, J. (2010). Tumour hypoxia induces a metabolic shift causing acidosis:a common feature in cancer. Journal of cellular and molecular medicine 14,771-794.
    Codogno, P., and Meijer, A. J. (2005). Autophagy and signaling:their role in cell survival and cell death. Cell death and differentiation 12 Suppl2,1509-1518.
    Corcelle, E., Djerbi, N., Mari, M., Nebout, M., Fiorini, C., Fenichel, P., Hofman, P., Poujeol, P., and Mograbi, B. (2007). Control of the autophagy maturation step by the MAPK ERK and p38:lessons from environmental carcinogens. Autophagy 3,57-59.
    Cotter, T. G. (2009). Apoptosis and cancer:the genesis of a research field. Nature reviews Cancer 9, 501-507.
    Coultas, L., Bouillet, P., Loveland, K. L., Meachem, S., Perlman, H., Adams, J. M., and Strasser, A. (2005). Concomitant loss of proapoptotic BH3-only Bcl-2 antagonists Bik and Bim arrests spermatogenesis. The EMBO journal 24,3963-3973.
    Cragg, M. S., Kuroda, J., Puthalakath, H., Huang, D. C., and Strasser, A. (2007). Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS medicine 4,1681-1689; discussion 1690.
    Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell 10,51-64.
    Eisenberg-Lerner, A., Bialik, S., Simon, H. U., and Kimchi, A. (2009). Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell death and differentiation 16,966-975.
    Elmore, S. (2007). Apoptosis:a review of programmed cell death. Toxicologic pathology 35,495-516.
    Fennell, D. A., Chacko, A., and Mutti, L. (2008). BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 27,1189-1197.
    Fesik, S. W. (2000). Insights into programmed cell death through structural biology. Cell 103,273-282.
    Fujita, N., Itoh, T., Omori, H., Fukuda, M., Noda, T., and Yoshimori, T. (2008). The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Molecular biology of the cell 19,2092-2100.
    Fulda, S., and Debatin, K. M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25,4798-4811.
    Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. The Journal of biological chemistry 284,12297-12305.
    Geng, Y., Kohli, L., Klocke, B. J., and Roth, K. A. (2010). Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro-oncology 12,473-481.
    Giansanti, V., Torriglia, A., and Scovassi, A. I. (2011). Conversation between apoptosis and autophagy: "Is it your turn or mine?". Apoptosis:an international journal on programmed cell death 16,321-333.
    Gilley, J., Coffer, P. J., and Ham, J. (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. The Journal of cell biology 162,613-622.
    Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., Jalil, A., Larochette, N., Souquere, S., Eskelinen, E. L., Pierron, G., Saftig, P., and Kroemer, G. (2005). The apoptosis/autophagy paradox:autophagic vacuolization before apoptotic death. Journal of cell science 118,3091-3102.
    Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., and Giaccia, A. J. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379,88-91.
    Gupta, S., Kim, C., Yel, L., and Gollapudi, S. (2004). A role of fas-associated death domain (FADD) in increased apoptosis in aged humans. Journal of clinical immunology 24,24-29.
    Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., and Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell 30,214-226.
    Hackett, J. C., Kim, Y. W., Su, B., and Brueggemeier, R. W. (2005). Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorganic & medicinal chemistry 13,4063-4070.
    Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y, Fujioka, Y, Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. The Journal of biological chemistry 282,37298-37302.
    Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y. (2003). Apoptosis-the p53 network. Journal of cell science 116,4077-4085.
    Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407,770-776.
    Herrero-Martin, G., Hoyer-Hansen, M., Garcia-Garcia, C., Fumarola, C., Farkas, T., Lopez-Rivas, A., and Jaattela, M. (2009). TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. The EMBO journal 28,677-685.
    Hori, A., Imaeda, Y., Kubo, K., and Kusaka, M. (2002). Novel benzimidazole derivatives selectively inhibit endothelial cell growth and suppress angiogenesis in vitro and in vivo. Cancer letters 183,53-60.
    Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y, Iemura, S., Natsume, T., Takehana, K., Yamada, N., et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular biology of the cell 20,1981-1991.
    Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., Campanella, M., Szabadkai, G., Farkas, T., Bianchi, K., Fehrenbacher, N., Elling, F., Rizzuto, R.,et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Molecular cell 25,193-205.
    Hubner, A., Barrett, T., Flavell, R. A., and Davis, R. J. (2008). Multisite phosphorylation regulates Bim stability and apoptotic activity. Molecular cell 30,415-425.
    Iguchi, K., Usui, S., Ishida, R., and Hirano, K. (2002). Imidazole-induced cell death, associated with intracellular acidification, caspase-3 activation, DFF-45 cleavage, but not oligonucleosomal DNA fragmentation. Apoptosis:an international journal on programmed cell death 7,519-525.
    Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature cell biology 4,648-657.
    Itakura, E., Kishi, C., Inoue, K., and Mizushima, N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 19,5360-5372.
    Jin, C. Z., Nagasawa, H., Shimamura, M., Uto, Y., Inayama, S., Takeuchi, Y., Kirk, K. L., and Hori, H. (2004). Angiogenesis inhibitor TX-1898:syntheses of the enantiomers of sterically diverse haloacetylcarbamoyl-2-nitroimidazole hypoxic cell radiosensitizers. Bioorganic & medicinal chemistry 12,4917-4927.
    Jin, S. (2006). Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2,80-84.
    Jin, S., and White, E. (2007). Role of autophagy in cancer:management of metabolic stress. Autophagy 3,28-31.
    Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M., and Kim, D. H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20,1992-2003.
    Kamada, Y, Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apgl protein kinase complex. The Journal of cell biology 150, 1507-1513.
    Karantza-Wadsworth, V., Patel, S., Kravchuk, O., Chen, G., Mathew, R., Jin, S., and White, E. (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes & development 21,1621-1635.
    Karantza-Wadsworth, V., and White, E. (2007). Role of autophagy in breast cancer. Autophagy 3, 610-613.
    Katsumata, K., Sumi, T., Tomioka, H., Aoki, T., and Koyanagi, Y. (2003). Induction of apoptosis by p53, bax, bcl-2, and p21 expressed in colorectal cancer. International journal of clinical oncology 8,352-356.
    Kawamura, N., Kugimiya, F., Oshima, Y., Ohba, S., Ikeda, T., Saito, T., Shinoda, Y., Kawasaki, Y, Ogata, N., Hoshi, K., et al. (2007). Aktl in osteoblasts and osteoclasts controls bone remodeling. PloS one 2, e1058.
    Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y, Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., and Ohsumi, Y (2003). A unified nomenclature for yeast autophagy-related genes. Developmental cell 5,539-545.
    Krezel, I. (1998). New derivatives of imidazole as potential anticancer agents. Farmaco 53,342-345.
    Kundu, M., Lindsten, T., Yang, C. Y, Wu, J., Zhao, F., Zhang, J., Selak, M. A., Ney, P. A., and Thompson, C. B. (2008). Ulkl plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112,1493-1502.
    Kuroda, J., Puthalakath, H., Cragg, M. S., Kelly, P. N., Bouillet, P., Huang, D. C., Kimura, S., Ottmann, O. G., Druker, B. J., Villunger, A., et al. (2006). Bim and Bad mediate imatinib-induced killing of Bcr/Abl+leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proceedings of the National Academy of Sciences of the United States of America 103,14907-14912.
    Levine, B., and Klionsky, D. J. (2004). Development by self-digestion:molecular mechanisms and biological functions of autophagy. Developmental cell 6,463-477.
    Levine, B., Sinha, S., and Kroemer, G. (2008). Bcl-2 family members:dual regulators of apoptosis and autophagy. Autophagy 4,600-606.
    Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., Lee, K. Y., Nomura, S., Lee, C. W., Han, S. B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109,113-124.
    Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., and Jung, J. U. (2006). Autophagic and tumour suppressor activity of a novel Beclinl-binding protein UVRAG. Nature cell biology 8,688-699.
    Liang, C., Lee, J. S., Inn, K. S., Gack, M. U., Li, Q., Roberts, E. A., Vergne, I., Deretic, V., Feng, P., Akazawa, C., and Jung, J. U. (2008). Beclinl-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature cell biology 10,776-787.
    Liang, J., Shao, S. H., Xu, Z. X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D. J., Gutterman, J. U., Walker, C. L., et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nature cell biology 9, 218-224.
    Liang, X. H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402,672-676.
    Luby, T. M. (2008). Targeting cytochrome P450 CYP1B1 with a therapeutic cancer vaccine. Expert review of vaccines 7,995-1003.
    Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P. P. (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121,179-193.
    Mailleux, A. A., Overholtzer, M., Schmelzle, T., Bouillet, P., Strasser, A., and Brugge, J. S. (2007). BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Developmental cell 12,221-234.
    Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. The EMBO journal 26,2527-2539.
    Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature cell biology 11,385-396.
    Matsunaga, N., Kaku, T., Ojida, A., Tanaka, T., Hara, T., Yamaoka, M., Kusaka, M., and Tasaka, A. (2004). C(17,20)-lyase inhibitors. Part 2:design, synthesis and structure-activity relationships of (2-naphthylmethyl)-1H-imidazoles as novel C(17,20)-lyase inhibitors. Bioorganic & medicinal chemistry 12,4313-4336.
    Mercer, C. A., Kaliappan, A., and Dennis, P. B. (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5,649-662.
    Miller, T. J., Schneider, R. J., Miller, J. A., Martin, B. P., Al-Ubaidi, M. R., Agarwal, N., Dethloff, L. A., and Philbert, M. A. (2006). Photoreceptor cell apoptosis induced by the 2-nitroimidazole radiosensitizer, CI-1010, is mediated by p53-linked activation of caspase-3. Neurotoxicology 27,44-59.
    Minsky, B. D., and Leibel, S. A. (1989). The treatment of hepatic metastases from colorectal cancer with radiation therapy alone or combined with chemotherapy or misonidazole. Cancer treatment reviews 16,213-219.
    Mizushima, N. (2007). Autophagy:process and function. Genes & development 21,2861-2873.
    Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140,313-326.
    Nagata, S. (1998). Fas-induced apoptosis. Internal medicine 37,179-181.
    Nickerson, T., Huynh, H., and Pollak, M. (1997). Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells. Biochemical and biophysical research communications 237, 690-693.
    Ohkuma, S., and Poole, B. (1981). Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. The Journal of cell biology 90,656-664.
    Ohsumi, Y. (1999). Molecular mechanism of autophagy in yeast, Saccharomyces cerevisiae. Philosophical transactions of the Royal Society of London Series B, Biological sciences 354,1577-1580; discussion 1580-1571.
    Olsen, S. R. (2005). Taxanes and COX-2 inhibitors:from molecular pathways to clinical practice. Biomedicine & pharmacotherapy=Biomedecine & pharmacotherapie 59 Suppl 2, S306-310.
    Papadopoulou, M. V., Rosenzweig, H. S., and Bloomer, W. D. (2004). Synthesis of a novel nitroimidazole-spermidine derivative as a tumor-targeted hypoxia-selective cytotoxin. Bioorganic & medicinal chemistry letters 14,1519-1522.
    Papandreou, I., Lim, A. L., Laderoute, K., and Denko, N. C. (2008). Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell death and differentiation 15,1572-1581.
    Pinon, J. D., Labi, V., Egle, A., and Villunger, A. (2008). Bim and Bmf in tissue homeostasis and malignant disease. Oncogene 27 Suppl 1, S41-52.
    Poole, B., and Ohkuma, S. (1981). Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. The Journal of cell biology 90,665-669.
    Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of clinical investigation 112,1809-1820.
    Ramesh, S., Qi, X. J., Wildey, G. M., Robinson, J., Molkentin, J., Letterio, J., and Howe, P. H. (2008). TGF beta-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO reports 9,990-997.
    Shimizu, S., Eguchi, Y, Kamiike, W., Itoh, Y., Hasegawa, J., Yamabe, K., Otsuki, Y, Matsuda, H., and Tsujimoto, Y. (1996). Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer research 56,2161-2166.
    Simpson, C. D., Anyiwe, K., and Schimmer, A. D. (2008). Anoikis resistance and tumor metastasis. Cancer letters 272,177-185.
    Sinha, S., and Levine, B. (2008). The autophagy effector Beclin 1:a novel BH3-only protein. Oncogene 27 Suppl 1,S 137-148.
    Sou, Y. S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., et al. (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Molecular biology of the cell 19,4762-4775.
    Sridharan, S., Jain, K., and Basu, A. (2011). Regulation of autophagy by kinases. Cancers 3,2630-2654. Strasser, A. (2005). The role of BH3-only proteins in the immune system. Nature reviews Immunology 5,189-200.
    Su, M., Mei, Y., and Sinha, S. (2013). Role of the Crosstalk between Autophagy and Apoptosis in Cancer. Journal of oncology 2013,102735.
    Sun, Q., Fan, W., Chen, K., Ding, X., Chen, S., and Zhong, Q. (2008). Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proceedings of the National Academy of Sciences of the United States of America 105,19211-19216.
    Sunters, A., Fernandez de Mattos, S., Stahl, M., Brosens, J. J., Zoumpoulidou, G., Saunders, C. A., Coffer, P. J., Medema, R. H., Coombes, R. C., and Lam, E. W. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. The Journal of biological chemistry 278,49795-49805.
    Tait, S. W., and Green, D. R. (2010). Mitochondria and cell death:outer membrane permeabilization and beyond. Nature reviews Molecular cell biology 11,621-632.
    Takahashi, Y., Meyerkord, C. L., and Wang, H. G. (2009). Bif-1/endophilin B1:a candidate for crescent driving force in autophagy. Cell death and differentiation 16,947-955.
    Tanabe, K.., Kojima, R., Hatta, H., and Nishimoto, S. (2004). Propargylic sulfones possessing a 2-nitroimidazole function:novel hypoxic-cell radiosensitizers with intracellular non-protein thiol depletion ability. Bioorganic & medicinal chemistry letters 14,2633-2635.
    Taylor, R. C., Cullen, S. P., and Martin, S. J. (2008). Apoptosis:controlled demolition at the cellular level. Nature reviews Molecular cell biology 9,231-241.
    Thomas, L. R., Henson, A., Reed, J. C., Salsbury, F. R., and Thorburn, A. (2004). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. The Journal of biological chemistry 279,32780-32785.
    Thoreen, C. C., Kang, S. A., Chang, J. W., Liu, Q., Zhang, J., Gao, Y., Reichling, L. J., Sim, T., Sabatini, D. M., and Gray, N. S. (2009). An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. The Journal of biological chemistry 284,8023-8032.
    Tsujimoto, Y., and Shimizu, S. (2005). Another way to die:autophagic programmed cell death. Cell death and differentiation 12 Suppl 2,1528-1534.
    Uehara, N., Matsuoka, Y., and Tsubura, A. (2008). Mesothelin promotes anchorage-independent growth and prevents anoikis via extracellular signal-regulated kinase signaling pathway in human breast cancer cells. Molecular cancer research:MCR 6,186-193.
    Urano, M., Wong, K. H., Reynolds, R., and Begley, J. (1995). The advantageous use of hypoxic tumour cells in cancer therapy:identical chemosensitization by metronidazole and misonidazole at moderately elevated temperatures. International journal of hyperthermia:the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 11,379-388.
    Urtasun, R. C., Palmer, M., Kinney, B., Belch, A., Hewitt, J., and Hanson, J. (1998). Intervention with the hypoxic tumor cell sensitizer etanidazole in the combined modality treatment of limited stage small-cell lung cancer. A one-institution study. International journal of radiation oncology, biology, physics 40,337-342.
    Vairetti, M., Ferrigno, A., Bertone, R., Richelmi, P., Berte, F., and Freitas, I. (2005). Apoptosis vs. necrosis:glutathione-mediated cell death during rewarming of rat hepatocytes. Biochimica et biophysica acta 1740,367-374.
    Van Damme, P., Martens, L., Van Damme, J., Hugelier, K., Staes, A., Vandekerckhove, J., and Gevaert, K. (2005). Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nature methods 2,771-777.
    Wang, J., and Lenardo, M. J. (2000). Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. Journal of cell science 113 (Pt 5),753-757.
    Wang, Z., Zhang, J., Wang, Y., Xing, R., Yi, C., Zhu, H., Chen, X., Guo, J., Guo, W, Li, W., et al. (2013). Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases. Carcinogenesis 34,128-138.
    Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Molecular cell 30,678-688.
    Weinrauch, Y, and Zychlinsky, A. (1999). The induction of apoptosis by bacterial pathogens. Annual review of microbiology 53,155-187.
    White, E., and DiPaola, R. S. (2009). The double-edged sword of autophagy modulation in cancer. Clinical cancer research:an official journal of the American Association for Cancer Research 15, 5308-5316.
    Woods, N. T., Yamaguchi, H., Lee, F. Y, Bhalla, K. N., and Wang, H. G. (2007). Anoikis, initiated by Mcl-1 degradation and Bim induction, is deregulated during oncogenesis. Cancer research 67, 10744-10752.
    Wright, K. M., Vaughn, A. E., and Deshmukh, M. (2007). Apoptosome dependent caspase-3 activation pathway is non-redundant and necessary for apoptosis in sympathetic neurons. Cell death and differentiation 14,625-633.
    Yamamoto, A., Tagawa, Y, Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, Y. (1998). Bafilomycin Al prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell structure and function 23, 33-42.
    Yanagisawa, J., Takahashi, M., Kanki, H., Yano-Yanagisawa, H., Tazunoki, T., Sawa, E., Nishitoba, T., Kamishohara, M., Kobayashi, E., Kataoka, S., and Sato, T. (1997). The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. The Journal of biological chemistry 272,8539-8545.
    Yang, Z., and Klionsky, D. J. (2009). An overview of the molecular mechanism of autophagy. Current topics in microbiology and immunology 335,1-32.
    Yang, Z., and Klionsky, D. J. (2010). Mammalian autophagy:core molecular machinery and signaling regulation. Current opinion in cell biology 22,124-131.
    Yang, Z. J., Chee, C. E., Huang, S., and Sinicrope, F. A. (2011). The role of autophagy in cancer: therapeutic implications. Molecular cancer therapeutics 10,1533-1541.
    Yano, T., Ito, K., Fukamachi, H., Chi, X. Z., Wee, H. J., Inoue, K., Ida, H., Bouillet, P., Strasser, A., Bae, S. C., and Ito, Y. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Molecular and cellular biology 26, 4474.4488.
    Yaoita, Y., and Nakajima, K. (1997). Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail. The Journal of biological chemistry 272,5122-5127. Youle, R. J., and Strasser, A. (2008). The BCL-2 protein family:opposing activities that mediate cell death. Nature reviews Molecular cell biology 9,47-59.
    Young, A. R., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J. F., Tavare, S., Arakawa, S., Shimizu, S., Watt, F. M., and Narita, M. (2009). Autophagy mediates the mitotic senescence transition. Genes & development 23,798-803.
    Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America 100,15077-15082.
    Zalckvar, E., Berissi, H., Mizrachy, L., Idelchuk, Y, Koren, I., Eisenstein, M., Sabanay, H., Pinkas-Kramarski, R., and Kimchi, A. (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO reports 10,285-292.
    Zanella, F., Link, W., and Carnero, A. (2010). Understanding FOXO, new views on old transcription factors. Current cancer drug targets 10,135-146.
    Zeng, X., and Kinsella, T. J. (2008). Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer research 68,2384-2390.
    Zhong, Y, Wang, Q. J., Li, X., Yan, Y., Backer, J. M., Chait, B. T., Heintz, N., and Yue, Z. (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature cell biology 11,468-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700