Smac调节增生性瘢痕成纤维细胞的凋亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增生性瘢痕的是一种常见伤口愈合的异常反应,皮损表现为局限于原损伤边界内的隆起性红色斑块,常伴有痒痛,镜下可见成纤维细胞过度增殖和胶原排列紊乱。增生性瘢痕的具体发病机理至今不明,研究认为其可能和炎症反应过度、细胞过度增殖、凋亡减低、表皮再生延迟及新生血管形成增强等多种因素相关。目前,对增生性瘢痕的各种治疗方法,比如外科手术切除、各种药物治疗和激光冷冻等物理疗法,治疗结果都不是很理想,而干细胞及基因疗法等高技术新型治疗手段,目前尚处在实验室研究阶段,疗效还不确定。我单位先前发现了一些促进细胞凋亡和抑制细胞增殖的因子,如第10号染色体缺失的磷酸酶及张力蛋白同源的基因(PTEN)、分泌型卷曲相关蛋白2(SFRP2)、三羟基异黄酮等,能调节增生性瘢痕成纤维细胞增殖、胶原分泌等生物活性,从而影响增生性瘢痕的形成和治疗。
     第二个线粒体来源的半胱氨酸蛋白酶激动剂/低等电点的凋亡抑制蛋白直接结合蛋白(Smac/DIABLO)及其类似物能够与凋亡抑制蛋白竞争性结合,促进半胱氨酸蛋白酶从凋亡抑制蛋白分离后剪切激活,Smac/DIABLO又可促进c-IAPl和c-IAP2泛素化降解,从而发挥促进凋亡作用。Smac/DIABLO在许多肿瘤和增生性疾病中的表达常常比在正常组织中的低,提高Smac/DIABLO或其类似物的表达可以促进肿瘤和增生性细胞的凋亡,降低肿瘤和增生性疾病对放化疗的抵抗性,并能增强其他相关治疗手段的促凋亡效应。目前暂未发现Smac/DIABLO在增生性瘢痕组织表达以及其表达变化之后对增生性瘢痕成纤维细胞生物学指标影响的报道。
     本研究通过免疫组织化学法、Western blot和Real-time PCR法研究发现Smac/DIABLO蛋白或其mRNA在增生性瘢痕组织成纤维细胞中的表达要低于在正常皮肤成纤维细胞中表达,这和文献报道的增生性疾病中的Smac/DIABLO表达趋势相一致。我们通过构建腺病毒过表达Smac载体和Smac siRNA来转染成纤维细胞以研究Smac/DIABLO表达变化对成纤维细胞生物学功能的影响,发现转染腺病毒过表达Smac载体后,流式细胞学检测发现增生性瘢痕成纤维细胞的凋亡显著升高,CCK8检测发现细胞增殖率显著降低,比色法发现增生性瘢痕成纤维细胞中半胱氨酸蛋白酶3(Caspase3)和半胱氨酸蛋白酶9(Caspase9)的活性显著增加,Real-time PCR检测提示Ⅰ型前胶原和Ⅲ型前胶原的mRNA合成受到抑制,流式细胞学检测发现细胞周期无明显变化;而在转染Smac siRNA后,增生性瘢痕成纤维细胞出现相反的结果。在正常皮肤成纤维细胞的研究中发现,Smac/DIABLO表达增高会导致细胞增殖的抑制,Ⅰ型前胶原和Ⅲ型前胶原的mRNA合成也下调,而Smac siRNA会提高细胞增殖和Ⅰ型前胶原及Ⅲ型前胶原的mRNA水平。
     总之,Smac能促进增生性瘢痕成纤维细胞的凋亡、抑制其增殖及前胶原的合成,是创面愈合和增生性瘢痕防治的新的潜在靶点。
Formation of hypertrophic scars (HS) is an ordinary abnormal reaction to woundhealing which generally occurs following surgery, trauma and especially burns. HS areclinically described as raised, pruritic and erythematous fibrous lesions confined within theboundary of the primary trauma. At present, little is known about the incidence and riskfactors for HS. But they are histologically characterized as hypernomic fibroblastshypercellularity, an excessus of extracellular and an inordinate collagen matrix remodelingin the scar tissue. Although the exact mechanism of hypertrophic scars remains unclear,excessive inflammtory reaction, increase of hypertrophic scar fibroblasts proliferation,delayed epidermis regeneration and neovascularization were considered correlated with theformation of HS. Many treatments of HS, such as chirurgic excision, drug treatment andphysical therapy are often incompletely successful and easily recur. The stem cell therapyand the gene therapy of HS have not been mature enough for their application in clinic yet.Our department have found some factors which could alter the cells apoptosis andproliferation, such as phosphatase and tensin homolog deleted on chromosome ten (PTEN),human secreted frizzled-related protein2(SFRP2) and genistein, regulating thehypertrophic scar fibroblasts (HSFBs) biological activity. These factors could suppress thecollagen secreting from HSFBs and might be useful to treat the HS.
     The second mitochondria derived activator of caspase/direct IAP binding protein withlow PI (Smac/DIABLO) and it's mimetics promote apoptosis through their abilities toinhibit inhibitors of apoptosis (IAPs), by direct inhibition and/or proteasomal degenerationof some members of the IAPs, and therefore cleave and disinhibit cysteine-aspartic acidprotease (caspase), and while promoting c-IAPl and c-IAP2ubiquitination and degradation.The expression of Smac/DIABLO is down-regulated in many neoplasma or proliferateddiseases as compared to the abnormal tissue. The over-expression of Smac/DIABLO or itsmimetics could promote the cell's apoptosis of neoplasma or proliferative diseases. Smacplays an important role in treating the tumor cells that resist to chemotherapy andradiotherapy. It can reduce the tumor cells' resistance and significantly enhance the pro-apoptotic effects of chemotherapy and radiotherapy. Interestingly, little is known aboutthe role in HS of the Smac/DIABLO protein which is able regulates the caspase inhibitionof IAPs.
     We assessed the expression of Smac/DIABLO protein or mRNA in HS tissues andHSFBs through the immunochemical and Western blot, Real-time PCR. Then we observeda significant downregulation of Smac/DIABLO expression in HS or HSFBs than normalskin tissues or normal skin tissue fibroblasts. The results are consistent with previousstudies in various proliferative diseases. In order to demonstrate the effects of theSmac/DIABLO to skin fibroblasts, we over-expressed the Smac/DIABLO by adenoviruscarrying the Smac/DIABLO gene (AD-Smac) and silenced the Smac/DIABLO by SmacsiRNA in normal fibroblasts and HSFBs. The Smac/DIABLO over-expression significantlyincreased apoptosis rate of HSFBs detected using fluorescence-activated cell sorting (FACS)and down-regulated HSFBs proliferation detected by Cell Counting Kit (CCK8), andelevated caspase3and9activity detected by spectrofluorimetry. In addition, mRNAexpressions of type I and type III procollagen detected in hypertrophic scar fibroblastscould be significantly inhibited by Smac/DIABLO over-expression using Real-time PCR.Significant changing hasn't been found in the cell cycle after transfected with AD-Smacdetected using FACS. Remarkably, the transfection of normal fibroblasts and HSFBs withSmac siRNA leaded to the opposite result, with a significant reduction of apoptosis and arestoration of the proliferation rate, induced a noticeable depression of caspase3and9activities, leading to significant decreases in apoptosis. The mRNA expression of type I andIII procollagen could be significantly increased by the silencing of Smac with siRNA.
     In summary, Smac/DIABLO can impair proliferation and promote apoptosis ofhypertrophic scar fibroblasts, and will be a novel therapeutic target for hypertrophic scarsand wound healing.
引文
1Gauglitz GG, Pavicic T. Emerging strategies for the prevention and therapy of excessive scars [J]. MMW Fortschr Med,2012,154(15):55–58.
    2Bond JS, Duncan JA, Mason T, et al. Scar redness in humans: how long does it persist after incisional and excisionalwounding?[J]. Plast Reconstr Surg,2008,121(2):487–496.
    1Monica CT, Willem MV, Magda MW, et a1. Prevention and curative management of hypertrophic scar formation[J].Bums,2009,35(4):463-475.
    2Sun Z, Li S, Cao C, et al. shRNA targeting SFRP2promotes the apoptosis of hypertrophic scar fibroblast [J]. Mol CellBiochem,2011,352(1-2):25–33.
    3Du C, FangM, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c dependent caspase activation byeliminating IAP inhibition[J]. Cell,2000,102(1):33-42.
    4Sun HY, Liu L, Lu JF, et al. Potent bivalent Smac mimetics: effect of the linker on binding to inhibitor of apoptosis
    5proteins(IAPs)and anticancer activity [J]. Med Chem,2011,54(9):3306-3318.Jack W P, Adriaan O G, Kerstin J R. The role of the TGF-β family in wound healing, burns and scarring: a review [J].Int J Burns Trauma,2012,2(1):18–28
    1Sheridan RL. Burn Care: Results of technical and organizational progress [J]. JAMA,2003,290(6):719–722.
    2Ehrlich HP, Kelley SF. Hypertrophic Scar: An interruption in the remodelling of repair-a laser Doppler blood flowstudy [J].Plast Reconstr Surg,1992,90(6):993–998.
    3Gangemi EN, Gregori D, Berchialla P, et al. Epidemiology and risk factors for pathologic scarring after burn wounds[J]. Arch Facial Plast Surg,2008,10(2):93–102.
    4Herndon DN, Lemaster J, Beard S, et al. The quality of life after a major thermal injury in children: an analysis of12survivors with greater than or equal to80%total body,70%third-degree burns [J]. J Trauma,1986,26(7):609–619.
    5Robert R, Meyer W, Bishop S, et al. Disfiguring burn scars and adolescent self-esteem [J]. Burns,1999,25(7):581–585.
    6Bayat A, McGrouther DA, Ferguson MWJ. Skin scarring [J]. BMJ,2003,326(7380):88–92.
    7Wang J, Dodd C, Shankowsky HA, et al. Deep dermal fibroblasts contribute to hypertrophic scarring [J]. LabInvest,2008,88(12):1278–1290.
    8Bombaro KM, Engrav LH, Carrougher GJ, et al. What is the prevalence of hypertrophic scarring following burns?
    9[J]. Burns,2003,29(4):299–302.Rowlatt U. Intrauterine wound healing in a20week human fetus [J]. Virchows Arch A Pathol Anat Histol,1979,381(3):353–361.
    1Singer AJ, Clark RA. Cutaneous wound healing [J]. N Engl J Med,1999,341():738-746
    2Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burns and trauma: new approaches totreatment [J]. PLoS Med,2007,4(9):234-256
    3De Felice B, Garbi C, Santoriello M, et al. Differential apoptosis markers in human keloids and hypertrophic scarfibroblasts [J]. Mol Cell Biochem,2009,327(1-2):191–201.
    4Thornberry NA, Lazebnik Y. Caspases: Enemies within [J]. Science,1998,281(5381):1312-1316.
    5Wang J, Hori K, Ding J, et al. Toll-like receptors expressed by dermal fibroblasts contributes to hypertrophic scarring[J]. J Cell Physiol.2011,226(5):1265–1273.
    6Wu J, Ma B, Yi S, et a1. Gene expression of early hypertrophic scar tissue screened by means of cDNA microarrays [J].J Trauma,2004,57(6):1276-1286.
    7Hakvoot T, Altun V, van Zuijlen PP, et al. Transforming growth factor beta (1)-beta (2)-beta (3), basic fibroblastgrowth factor and vascular endothelial growth factor expression in keratinocytes of burns scars [J]. Eur CytokineNetw,2000,11(2):233–239.
    8Van der Veer WM, Niessen FB, Ferreira JA, et al. Time course of the angiogenic response during normotrophic andhypertrophic scar formation in humans [J]. Wound Repair Regen,2011,19(3):292–301.
    9陶灵,李世荣,刘剑毅,等. CTGF刺激人增生性瘢痕成纤维细胞STATs蛋白活化的状况[J].中国美容医学杂志,2008,17(4):521-523.
    10Hayashida K, Akita S. Quality of pediatric second-degree burn wound scars following the application of basicfibroblast growth factor: results of a randomized, controlled pilot study [J]. Ostomy Wound Manage,2012,58(8):32-36
    Siwik DA, Chang DL, Colucci WS. Interliukin-1βand tumor necrosis factorαdecrease collagen synthesis and increasematrix metalloproteinase activity in cardiac fibroblasts in vitro[J]. Circ Res,2000,86(12):1259-1265.
    1Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways andcellular proliferation in human epidermal keratinocytes [J]. J Invest Dermatol,2004,122(3):783-790
    Ogawa R, Akaishi S, Huang C, et al. Clinical applications of basic research that shows reducing skin tension couldprevent and treat abnormal scarring, the importance of fascial/subcutaneous tensile reduction sutures and flap surgery forkeloid and hypertrophic scar reconstruction [J]. J Nippon Med Sch,2011,78(2):68–76.
    3Ulrich D, Ulrich F, Unglaub F, et al. Matrix metalloproteinases and tissue inhibitors of metalloprotienases in patientswith different types of scars and keloids [J]. J Plast Reconstr Aesthet Surg,2010,63(6):1015–1021.
    4Sidgwick GP, Bayat A. Extraeellular matrix molecules implicated in hypertrophic and keloid scarring [J]. J Eur AeadDermatol Venereol,2012,26(2):141-152.
    5Thornberry NA, Lazebnik Y. Caspases: Enemies within [J]. Science,1998,281(5381):1312-1316.
    Salvesen GS, Duckett CS. IAP proteins:Blocking the road to death’s door [J]. Nat Rev Mol Cell Biol,2002,3(6):401-410.
    1Takahashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient for inhibiting caspases[J]. J BiolChem,1998,273(14):7787-7790.
    2Jia L, Patwari Y, Kelsey SM, et al. Role of Smac in human leukaemic cell apoptosis and proliferation [J]. Oncogene,2003,22(11):1589-1599
    3Verhagen AM, Ekert PG, PakuschM, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis bybinding to and antagonizing IAP proteins[J]. Cell,2000,102(1):43-53.
    4Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspase promoting activity of Smac/DIABLO andits role in the death receptor pathway [J]. Biol Chem,2000,275(46):36152-36157.
    Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer [J]. Nat Rev Drug Discov,2012,11(2):109-124.
    1Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptosis activation by Smac/DIABLO [J]. Nature,2000,406(6798):855-863.
    2Filipovich AH, Zhang KJ, Snow AL, et al. X-linked lymphoproliferative syndromes: brothers or distant cousins?[J].Blood,2010,116(18):3398-3408
    3Guo F,Nimmanapalli R, Paranawthana S, et al. Ectopic over expression of second mitochondria derived activator ofcaspases (Smac/DIABLO) or cotreatment with N-terminals of Smac/DIABLO peptide potentiates epothilone B derivative(BMS247550) and apo-2L/TRA L induced apoptosis[J]. Blood,2002,99(9):3419-34297.
    4Jia L, Patwaari Y, Kelsey SM, et al. Role of Smac in human leukemic cell apoptosis and proliferation [J]. Oncogene,2003,22(11):1589-1599.
    Mizukawa K, Kawamura A, Sasayama T, et al. Synthetic Smac peptide enhances the effect of etoposide-inducedapoptosis in human glioblastoma cell lines [J]. J Neuro Oncol,2006,77(3):247-255.
    1Sun H, Nikolovska-Coleska Z, Lu J, et al. Design, synthesis, and evaluation of a potent, cell-permeable,conformationally constrained second mitochondria derived activator of caspase(Smac) mimetic [J]. Med Chem,2006,49(26):7916-7920.
    2Morizane Y, Honda R, Fukami K, et al. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward matureCaspase9and cytosolic Smac/DIABLO.[J]. Biochem,2005,137(2):125-132.
    3Feltham R, Bettjeman B, Budhidarmo R, et al. Smac-mimetics activate the E3ligase activity of cIAP1by promotingRING dimerisation.[J]. Biochem,2011,286(19):17015-17028.
    4Darding M, Feltham R, Tenev T, et al. Molecular determinants of Smac mimetic induced degradation of cIAP1andcIAP2[J]. Cell Death Differ,2011,18(8):1376-1386.
    5Zarnegar BJ, Wang YY, Mahoney DJ, et al. Noncanonical NF-kappa B activation requires coordinated assembly of aregulatory complex of the adaptors cIAP1, cIAP2, TRAF2and TRAF3and the kinase NIK [J]. Nat Immunol,2008,9(12):1371-1378.
    6Vince JE, Wong WW, Khan N, et al. IAP antagonists target cIAP1to induce TNF alpha-dependent apoptosis [J]. Cell,2007,131(4):682-693.
    7Gaither A, Porter D, Yao Y, et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins intumor necrosis factor-alpha signaling [J]. Cancer Res,2007,67(24):11493-11498.
    Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF alpha signaling renders human cancer cells susceptible toSmac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    1Haverstock BD. Hypertrophic scars and keloids [J]. Clin Podiatr Med Surg,2001,18(1):147-159.
    2王珍祥,李世荣.病理性瘢痕研究的进展[J].中华整形外科杂志,2008,24(5):405-408
    3Dolores W, Alexandar T, Petra P, et a1.Hypertrophic scars and keloids-review of their pathophysioIogy, risk factors,
    4and therapeutic management[J]. Dermatol Surg,2009,35(2):171-181.Yoo NJ, Kim HS, Kim SY, et al. Immunohistochemical analysis of Smac/DIABLO expression in human carcinomasand sarcomas [J]. APMIS,2003,111(3):382-388.
    1张曦.角质形成细胞源性蛋白因子在增生性瘢痕形成中的作用研究[D].西安:第四军医大学,2008:
    1陶灵.JAK-STATs通路对CTGF调控人增生性瘢痕成纤维细胞增殖分化作用的研究[D].重庆:第三军医大学,2008:
    1郭亮.PTEN调控增生性瘢痕成纤维细胞凋亡及相关功能的机制研究[D].重庆:第三军医大学,2012:
    1郑丽端,吴翠环,童强松,等.稳定过表达Smac基因对胃癌细胞株凋亡活性的调控作用[J].中华病理学杂志,2005,34(2):92-96.
    1时鹏,王明明,侯连泽,等. XIAP和Smac/DIABLO在乳腺癌发生、发展中的表达及意义[J].中国现代普通外科进展,2010,13(6):430-433
    1Peter ME, Heufelder HE, Hengartner MO. Advances in apoptosis research [J]. Pro Natl Acad Sci USA,1997,94(24):12736-12737
    2Yang J, Liu X, Bhalla K, et al. Prevention of paoptoses by bcl-2: relase ofcytochrome C from mitochondria [J]. Science,1997,275(5303):1129-1132
    Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis [J]. Annu RevCell Del Bio,1999,15:269-290
    1Li H, Zhu H, Xu C J. et al. Cleavage of Bid by caspase8mediates themitochondrial damage in the Fas pathway ofapoptosis [J]. Cell,1998,94(4):491-501
    2Yang J, Liu X, Bhalla K, et al. Prevention of paoptoses by bcl-2: relase ofcytochrome C from mitochondria [J]. Science,1997,275(5303):1129-1132
    3Rammohan VR, Evan H, Susana CO, et al. Coupling endoplasmic reticulumstress to the cell death program [J]. J BiolChem,2001,276(36):3869-3874
    4Shi YG. Mechenisms of caspase activation and inhibition during apoptosis [J].Mol Cell,2002,9(3):459-470
    Chai J, Shiozaki E, Srinivasula SM, et al. Structural basis of Caspase7inhibition by XIAP[J]. Cell,2001,104(5):769-780.
    1Lin JH, Deng G, Huang Q, et al. KIAP, a novel member of the inhibitor of apoptosis protein family[J]. BiochemBiophys Res Commun,2000,279(3):820-831.
    2Schimmer AD, Dalil IS, Batey RA, et al. Targeting XIAP for treatment of malignancy[J]. Cell Death Differ,2006,133(2):179-188.
    Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins [J].Biochem Biophys Res Commun,2003,304(3):499-504.
    4Ashhab Y, Alian A, Polliack A, et al. Two splicing variants of a new in hibitor of apoptosisgene with differentbiological properties and tissue distribution pattern[J]. FEBS Lett,2001,495(1-2):56-60.
    5Vucic D, Stennicke HR, Pisabarro MT, et al. ML-IAP, a novel inhibitor ofapoptosis that is preferentially expressed inhuman melanomas [J]. Curr Biol,2000,10(21):1359-1366.
    6Sanna MG, da Silva Correia J, Ducrev O, et al. IAP suppression of apoptosis involves distinct mechanisms: the
    7TAK1/JNK1signaling cascade and caspase inhibition [J]. Mol Cell Biol,2002,22(6):1754-1766.
    Vucic D, Franklin MC, Wallweber HJ, et al. Engineering ML-IAP to produce an extraordinarily potent caspase9inhibitor: implications o f Smacdependent anti-apoptotic activity of ML-IAP [J]. Biochem J,2005,385(Pt1):11-20.
    1Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspase promoting activity of Smac/DIABLO andits role in the death receptor pathway [J]. Biol Chem,2000,275(46):36152-36157.
    2Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspase promoting activity of Smac/DIABLO andits role in the death receptor pathway [J]. Biol Chem,2000,275(46):36152-36157.
    3Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO[J]. Nature,2000,406(6798):855-862.
    4Ng H, Smith DJ, Nagley P. Application of flow cytometry to determine differential redistribution of cytochrome c andSmac/DIABLO from mitochondria during cell death signaling. PLoS One,2012,7(7):e42298.
    1Mizutani Y, Katsuoka Y, Bonavida B. Low circulating serum levels of second mitochondria-derived activator ofcaspase (Smac/DIABLO) in patients with bladder cancer. Int J Oncol,2012,40(4):1246-1250.
    2Hu HY, Liu H, Zhang JW,et al. Clinical significance of Smac and Ki-67expression in pancreatic cancer.Hepatogastroenterology,2012,59(120):2640-2643
    3DA Silva LC, Forones NM, Ribeiro DA, et al. Immunoexpression of DIABLO, AIF and cytochrome C in gastricadenocarcinoma assessed by tissue Microarray. Anticancer Res,2013,33(2):647-653.
    4Adrain C, Emma MC,Seamos JM. Apoptosis associated release of Smac/DIABLO from mitochondria requires active
    5caspases and is blocked by Bcl-2[J]. Embo J,2001,20(23):6627-6636.Yan Y, Mahotka C, Heikaus S, et al. Disturbed balance of expression between XIAP and Smac/DIABLO during tumorprogression in renal cell carcinomas[J]. Br J of Cancer,2004,91(7):1349-1357.
    1周孝亮,刘德伍,毛远桂.增生性瘢痕成纤维细胞生物学行为及其影响因素[J].中华医学美学美容杂志,2012,18(2):154-157
    1Ladak A, Tredget EE. Pathophysiology and management of the burn scar [J].Clin Plast Surg,2009,36(4):661-674
    2Guo L, Chen L, Bi S, et al. PTEN inhibits proliferation and functions of hypertrophic scar fibroblasts [J]. Mol Cell
    3Biochem,2012,361(1-2):161-168.Mahdavian Delavary B, van der Veer WM, van Egmond M, et al. Macrophages in skin injury and repair[J].Immunobiology,2011,216(7):753-762.
    4Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory to migration and decorin-induced apoptosiscontribute to hypertrophic scarring[J]. J Burn Care Res,2012,33(5):668-677.
    5Jiang L, Zhang E, Yang Y, et al. Effectiveness of apoptotic factors expressed on the wounds of patients with stage IIIpressure ulcers[J]. J Wound Ostomy Continence Nurs,2012,39(4):391-396.
    6Kempkensteffen C, Hinz S, Christoph F, et al. Expression levels of the mitochondrial IAP antagonists Smac/DIABLOand Omi/HtrA2in clear-cell renal cell carcinomas and their prognostic value[J]. J Cancer Res Clin Oncol,2008,134(5):543-550.
    7Chen DJ, Huerta S. Smac mimetics as new cancer therapeutics [J]. Anti-Cancer Drugs,2009,20(8):646–658.
    1Gao Z, Tian Y, Wang J, et al. A dimeric Smac/diablo peptide directly relieves Caspase3inhibition by XIAP. Dynamicnd cooperative regulation of XIAP by Smac/Diablo [J]. J Biol Chem,2007,282(42):30718-30727.
    2Clark JA, Cheng JC, Leung KS. Mechanical properties of normal skin and hypertrophic scar [J]. Burns,1996,22(6):443–446.
    3刘英琦,曹莫.增生性瘢痕治疗靶点的回顾性分析[J].中国美容医学,2013,22(9):1005-1008
    4Qu L, Liu A, Zhou L, et a1. Clinical and molecular effects on mature burn scars after treatment with a fractional CO2laser [J]. Laser Surg Med,2012,44(7):517-524.
    5Yan G, Sun H, Wang F, et al. Topical application of hPDGF-A-modified porcine BMSC and keratinocytes loaded onacellular HAM promotes the healing of combined radiation-wound skin injury in minipigs [J]. Int J Radiat Biol,2011,87(6):591-600.
    6Weshahy AH, Abdel Hay R. Intralesional cryosurgery and intralesional steroid injection: a good combination therapyfor treatment of keloids and hypertrophic scars [J]. Dermatol Ther,2012,25(3):273-276.
    Morin C, Roumegous A, Carpentier G, et al. Modulation of inflammation by cicaderma ointment accelerates skinwound healing [J]. J Pharmacol Exp Ther,2012,343(1):115-124.
    1Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation byeliminating IAP inhibition[J]. Cell,2000,102(1):33–42.
    2Anne M. Verhagen, Paul G, et al. Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis byBinding to and Antagonizing IAP Proteins[J]. Cell,2000,102(1):43–53.
    3Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspase promoting activity of Smac/DIABLO andits role in the death receptor pathway [J]. Biol Chem,2000,275(46):36152-36157.
    Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO[J]. Nature,2000,406(6798):855-862.
    1Ng H, Smith DJ, Nagley P. Application of flow cytometry to determine differential redistribution of cytochrome c andSmac/DIABLO from mitochondria during cell death signaling [J]. PLoS One,2012,7(7):e42298.
    2童强松,郑丽端,阮庆兰,等. Smac和Caspase-3基因在神经母细胞瘤中的表达及其临床意义[J].中国癌症杂志,2004,14(1):90-91.
    3林木生,缪辉来,桂水清,等.肝癌中Smac和Caspase-3的表达及在细胞凋亡中的关系[J].中华肝胆外科杂志,2006,12(2):105-107.
    4Yan Y, Mahotka C, Heikaus S, et al. Disturbed balance of exp ression between XIAP and smac/DIABLO duringtumour p rogression in renal cell carcinomas [J]. Br J of Cancer,2004,91(7):1349-1357.
    5Mizutani Y, Katsuoka Y, Bonavida B. Low circulating serum levels of second mitochondria-derived activator ofcaspase (Smac/DIABLO) in patients with bladder cancer [J]. Int J Oncol,2012,40(4):1246-1250.
    6Hu HY, Liu H, Zhang JW, et al. Clinical significance of Smac and Ki-67expression in pancreatic cancer [J].Hepatogastroenterology,2012,59(120):2640-2643
    7DA Silva LC, Forones NM, Ribeiro DA, et al. Immunoexpression of DIABLO, AIF and cytochrome C in gastricadenocarcinoma assessed by tissue microarray [J]. Anticancer Res,2013,33(2):647-653.
    8Adrain C, Emma MC, Seamos JM. Apoptosis associated release of Smac/DIABLO from mitochondria requires activecaspases and is blocked by Bcl-2[J]. Embo J,2001,20(23):6627-6636.
    9Guo F, Nimmanapalli R, Paranawthana S, et al. Ectopic over expression of second mitochondria derived activator ofcaspases (Smac/DIABLO) or cotreatment with N-terminals of Smac/DIABLO peptide potentiates epothilone Bderivative (BMS247550) and apo-2L/TRIAL induced apoptosis [J]. Blood,2002,99(9):3419-3427.
    1Jia L, Patwaari Y, Kelsey SM, et al. Role of Smac in human leukemic cell apoptosis and proliferation[J]. Oncogene,2003,22(11):1589-1599.
    2Vucic D, Deshayes K, Ackerly H, et al. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor ofapoptosis (ML-IAP)[J]. J Biol Chem,2002,277(14):12275-12279.
    3Li L, Thomas R M, Suzuki H, et a1. A smal1molecule Smac mimic potentiates TRAIL-and TNFalpha-mediated cel1death [J]. Science,2004,305(5689):1471—1474.
    Cossu F, Milani M, Vachette P, et al. Structural Insight into Inhibitor of Apoptosis Proteins Recognition by a PotentDivalent Smac-Mimetic [J]. PLoS One,2012,7(11):e49527.
    1Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for thetreatment of cancer.[J]. Med Chem,2004,47(18):4417-4426.
    2Kashkar H, Seeger JM, Hombach A, et al. XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cellattack [J]. Blood,2006,108(10):3434-3440.
    3Yang QH, Du CY. Smac/DIABLO selectively reduces the levels of c-IAP1and c-IAP2but not that of XIAP and livinin HeLa cells [J]. Biol Chem,2004,279(17):16963-16970.
    Sun H, Liu L, Lu J, et al. Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of ApoptosisProteins (IAPs) and Anticancer Activity [J]. J Med Chem,2011,54(9):3306-3318.
    5Elsawy MA, Martin L, Tikhonova IG, et al. Solid phase synthesis of Smac/DIABLO-derived peptides using a'Safety-Catch' resin: Identification of potent XIAP BIR3antagonists [J]. Bioorg Med Chem,2013,21(17):5004-5011
    6Sun H, Zaneta NC, Yang CY, et al. Design of small-molecule peptidic and non-peptidic Smac mimetics [J]. Acc ChemRes,2008,41(10):1264-1277.
    7Sun H, Liu L, Lu J, et al. Design, synthesis and evaluation of monovalent Smac mimetics that bind to the BIR2domainof the anti-apoptotic protein XIAP [J]. J Med Chem,2011,54(9):3306-3318.
    Xu Y, Zhou L, Huang J, et al. Role of Smac in determining the chemotherapeutic response of esophageal squamouscell carcinoma [J]. Clin Cancer Res,2011,17(16):5412-5422.
    9Ziegler DS, Keating J, Kesari S, et al, A small-molecule IAP inhibitor overcomes resistance to cytotoxic310therapiesin malignant gliomas in vitro and in vivo [J]. Neuro Oncol,2011,13(8):820-829.
    10Yang J, McEachern D, Li W, et al. Radiosensitization of head and neck squamous cell carcinoma by a SMAC-mimeticcompound, SM-164, requires activation of caspases [J]. Mol Cancer Ther,2011,10(4):658-669.
    11Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9and Smac/DIABLOregulates caspase activity and apoptosis [J]. Nature,2001,410(6824):112-116.
    Filipovich AH, Zhang K, Snow AL, et al. X-linked lymphoproliferative syndromes: brothers or distant cousins?[J].Blood,2010,116(18):3398-3408
    1Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappa Bactivation, and TNF alpha-dependent apoptosis [J]. Cell,2007,131(4):669-681.
    Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF alpha signaling renders human cancer cells susceptible toSmac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    Morizane Y, Honda R, Fukami K, et al. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward maturecaspase-9and cytosolic Smac/DIABLO.[J]. Biochem,2005,137(2):125-132.
    Rebecca F, Bodhi B, Rhesa B, et al. Smac-mimetics activate the E3ligase activity of cIAP1by promoting RINGdimerisation.[J]. Biochem,2011,286(19):17015-17028.
    Darding M, Feltham R, Tenev T, et al. Molecular determinants of Smac mimetic induced degradation of cIAP1andcIAP2[J]. Cell Death Differ,2011,18(8):1376-1386.
    Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappa B activation requires coordinated assembly of aregulatory complex of the adaptors cIAP1, cIAP2, TRAF2and TRAF3and the kinase NIK [J]. Nat Immunol,2008,79(12):1371-1378.
    Vince JE, Wong WW, Khan N, et al. IAP antagonists target cIAP1to induce TNF alpha-dependent apoptosis [J]. Cell,2007,131(4):682-693.
    Gaither A, Porter D, Yao Y, et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins intumor necrosis factor-alpha signaling [J]. Cancer Res,2007,67(24):11493-11498.
    10夏开来,黄书岚,孙建波,等. Smac蛋白对C6胶质瘤细胞的影响[J].中华实验外科杂志,2009,26(5):621-623.
    Emeagi PU, Thielemans K, Breckpot K. The role of SMAC mimetics in regulation of tumor cell death and immunity[1J]. Oncoimmunology,2012,1(6):965-967.
    Melcher A, Gough M, Todryk S, et al. Apoptosis or necrosis for tumor immunotherapy: what’s in a name?[J]. J MolMed (Berl),1999,77(12):824–833.
    Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity [J]. Cell,2010,140(6):798–804.
    1Emeagi PU, Van Lint S, Goyvaerts C, et al. Proinflammatory characteristics of SMAC/DIABLO-induced cell death inantitumor therapy [J]. Cancer Res,2012,72(6):1342–1352.
    2Breckpot K, Escors D, Arce F, et al. HIV-1lentiviral vector immunogenicity is mediated by Toll-like receptor3(TLR3)and TLR7[J]. J Virol,2010,84(11):5627–5636
    3Friboulet L, Gourzones C, Tsao SW, et al. Poly(I:C) induces intense expression of c-IAP2and cooperates with an IAPinhibitor in induction of apoptosis in cancer cells [J]. BMC Cancer,2010,10:327.
    4Breckpot K, Emeagi P, Dullaers M, et al. Activation of immature monocyte-derived dendritic cells after transductionwith high doses of lentiviral vectors [J]. Hum Gene Ther,2007,18(6):536–546.
    5Emeagi PU, Van Lint S, Goyvaerts C, et al. Proinflammatory characteristics of SMAC/DIABLO-induced cell death inantitumor therapy [J]. Cancer Res,2012,72(6):1342–1352.
    6Müller-Sienerth N, Dietz L, Holtz P, et al. SMAC mimetic BV6induces cell death in monocytes and maturation ofmonocyte-derived dendritic cells [J]. PLoS One,2011,6(6):e21556.
    1Wang RF. Regulatory T cells and toll-like receptors in cancer therapy [J]. Cancer Res,2006,66(10):4987–4990.
    2Berger R, Jennewein C, Marschall V, et al. NF-kB is required for Smac mimetic-mediated sensitization of
    3glioblastoma cells for γ-irradiation–induced apoptosis [J]. Mol Cancer Ther,2011,10(10):1867–1875.Tchoghandjian A, Jennewein C, Eckhardt I, et al. Identification of non-canonical NF-κB signaling as a criticalmediator of Smac mimetic-stimulated migration and invasion of glioblastoma cells [J]. Cell Death Dis,2013,4:e564.
    4Jinesh GG, Chunduru S, Kamat AM. Smac mimetic enables the anticancer action of BCG-stimulated neutrophilsthrough TNF-α but not through TRAIL and FasL [J]. J Leukoc Biol,2012,92(1):233-44
    5Cheng J, Zhu YH, He SD, et al. Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptoticprotein, causes human progressive hearing loss DFNA64[J]. Am J Hum Genet,2011,89(1):56–66.
    6Yoo NJ,Kim HS,Kim SY,et al. Immunohistochemical analysis of Smac/DIABLO expression in human carcinomasand sarcomas [J]. APMIS,2003,111(3):382.
    Fulda S, Wick W, Weller M, et al. Smac agonist sensitizes for Apo-2/TRAIL or anticancer drug induced apoptosis andinduces regression of malignant gliamain in vivo [J]. Nat Med,2007,8:808-815.
    1Lu J, Bai L, Sun H, et al. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression byconcurrent removal of the blockade of cIAP-1/2and XIAP [J].Cancer Res,2008,68(22):9384-9393.
    Li W, Li B, Giacalone NJ, et al. BV6, an IAP antagonist, activates apoptosis and enhances radiosensitization ofnon-small cell lung carcinoma in vitro [J]. J Thorac Oncol,2011,6(11):1801-1809.
    Müller-Sienerth N, Dietz L, Holtz P, et al. SMAC mimetic BV6induces cell death in monocytes and maturation ofmonocyte-derived dendritic cells [J]. PLoS One,2011,6(6):e21556.
    Lopes RB, Gangeswaran R, McNeish IA, et al. Expression of the IAP protein family is dysregulated in pancreaticcancer cells and is important for resistance to chemotherapy [J]. Int J Cancer,2007,120(11):2344-2352.
    Dineen SP, Roland CL, Greer R, et al. Smac mimetic increases chemotherapy response and improves survival in micewith pancreatic cancer [J]. Cancer Res,2010,70(7):2852-2861.
    Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF-αsignaling renders human cancer cells susceptible toSmac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    Fingas CD, Blechacz BR, Smoot RL, et al. A smac mimetic reduces TNF related apoptosis inducing ligand(TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells [J]. Hepatology,2010,52(2):550-561.
    Tamer EF, Sharmila S, Rakesh KS. Smac/DIABLO enhances the therapeutic potential of chemotherapeutic drugs andirradiation and sensitizes TRAIL-resistant breast cancer cells [J]. Molecular Cancer,2008,7:60-69
    1Eschenburg G, Eggert A, Schramm A, et al. Smac mimetic LBW242sensitizes XIAP-overexpressing neuroblastomacells for TNF-α-independent apoptosis [J]. Cancer Res,2012,72(10):2645-2656
    2Brinkmann K, Hombach A, Michael SJ, et al. SMAC mimetic potentiates tumor susceptibility towards natural killercell-mediated killing [J]. Leuk Lymphoma,2013May23.[Epub ahead of print]
    3Scavullo C, Servida F, Lecis D, et al. Single-agent Smac-mimetic compounds induce apoptosis in B chroniclymphocytic leukaemia (B-CLL)[J]. Leuk Res,2013,37(7):809-815.
    4Sheng R, Sun H, Liu L, et al. A potent bivalent Smac mimetic (SM-1200) achieving rapid, complete, and durable tumorregression in mice [J]. J Med Chem,2013,56(10):3969-3979.
    Krepler C, Chunduru SK, Halloran MB, et al. The novel SMAC mimetic birinapant exhibits potent activity againsthuman melanoma cells [J]. Clin Cancer Res,2013,19(7):1784-1794.
    6Chen F, Xu C, Du L, et al. Tat-SmacN7induces radiosensitization in cancer cells through the activation of caspasesand induction of apoptosis [J]. Int J Oncol,2013,42(3):985-992
    7Qin S, Yang C, Wang X, et al. Overexpression of Smac promotes Cisplatin-induced apoptosis by activating caspase-3and caspase-9in lung cancer A549cells [J]. Cancer Biother Radiopharm,2013,28(2):177-182.
    8Jinesh GG, Chunduru S, Kamat AM. Smac mimetic enables the anticancer action of BCG-stimulated neutrophilsthrough TNF-α but not through TRAIL and FasL [J]. J Leukoc Biol,2012,92(1):233-44
    Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF-αsignaling renders human cancer cells susceptible toSmac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    1Xu Y, Zhou L, Huang J, et al. Role of Smac in determining the chemotherapeutic response of esophageal squamouscell carcinoma [J]. Clin Cancer Res,2011,17(16):5412-5422.
    Petrucci E, Pasquini L, Bernabei M, et al. A small molecule SMAC mimic LBW242potentiates TRAIL-and anticancerdrug-mediated cell death of ovarian cancer cells [J]. PLoS One,2012,7(4):e35073.
    Quast SA, Berger A, Buttst dt N, et al. General sensitization of melanoma cells for TRAIL induced apoptosis by thepotassium channel inhibitor TRAM-34depends on release of SMAC [J]. PLoS One,2012,7(6):e39290
    Sun H, Liu L, Lu J, et al. Design, synthesis and evaluation of monovalent Smac mimetics that bind to the BIR2domainof the anti-apoptotic protein XIAP [J]. J Med Chem,2011,54(9):3306-3318.
    Lin C, Zhao XY, Li L, et al. NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancercells to Cisplatin [J]. PLoS One,2012,7(5):e36722
    Hu W, Wang F, Tang J, et al. Proapoptotic protein Smac mediates apoptosis in cisplatin-resistant ovarian cancer cellswhen treated with the anti-tumor agent AT101[J]. J Biol Chem,2012,287(1):68-80.
    Zhang S, Li G, Zhao Y, et al. Mimetic SM-164potentiates APO2L/TRAIL-and doxorubicin-mediated anticanceractivity in human hepatocellular carcinoma cells [J]. PLoS One,2012,7(12):e51461.
    Ramachandiran S, Cain J, Liao A, et al. The SMAC mimetic RMT5265.2HCL induces apoptosis in EBV and HTLV-Iassociated lymphoma cells by inhibiting XIAP and promoting the mitochondrial release of cytochrome C and Smac9[J].Leuk Res,2012,36(6):784-790
    Vérillaud B, Gressette M, Morel Y, et al. Toll-like receptor3in Epstein-Barr virus-associated nasopharyngealcarcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic1[0J]. Infect Agent Cancer,2012,7(1):36.
    Hui KK, Kanungo AK, Elia AJ, et al. Caspase-3deficiency reveals a physiologic role for Smac/DIABLO in regulatingprogrammed cell death [J]. Cell Death Differ,2011,18(11):1780-90.
    Cheung HH, St Jean M, Beug ST, et al. SMG1and NIK regulate apoptosis induced by Smac mimetic compounds [J].Cell Death Dis,2011,2:e146
    Laukens B, Jennewein C, Schenk B, et al. Smac mimetic bypasses apoptosis resistance in FADD-or caspase-8-deficient cells by priming fortumor necrosis factor α-induced necroptosis [J]. Neoplasia,2011,13(10):971-979.
    1Stadel D, Cristofanon S, Abhari BA, et al. Requirement of nuclear factor κB for Smac mimetic–mediated sensitizationof pancreatic carcinoma cells for gemcitabine-induced apoptosis [J]. Neoplasia,2011,13(12):1162-1170.
    2Bai L, McEachern D, Yang CY, et al. LRIG1modulates cancer cell sensitivity to Smac mimetics by regulatingTNFαexpression and receptor tyrosine kinase signaling [J]. Cancer Res,2012,72(5):1229-1238.
    3Müller-Sienerth N, Dietz L, Holtz P, et al. SMAC mimetic BV6induces cell death in monocytes and maturation ofmonocyte-derived dendritic cells [J]. PLoS One,2011,6(6):e21556.
    4Mehrotra S, Languino LR, Raskett CM, et al. IAP regulation of metastasis [J]. Cancer Cell,2010,17(1):53-64.
    5Vucic D. Targeting IAP(inhibitor of apoptosis) proteins for therapeutic intervention in tumors [J]. Curr Cancer DrugTargets,2008,8(2):110-117.
    6Holt SV, Brookes KE, Dive C, et al. Down-regulation of XIAP by AEG35156in paediatric tumour cells inducesapoptosis and sensitises cells to cytotoxic agents [J]. Oncol Rep,2011,25(4):1177-1181.
    Varfolomeev E, Vucic D. Inhibitor of apoptosis proteins:fascinating biology leads to attractive tumor therapeutictargets [J].Future Oncol,2011,7(5):633-648.
    1Monica CT, Willem MV. Magda MW. et a1. Prevention and curative management of hypertrophic scar formation [J].Bums,2009,35(4):463-475.
    2Huang C, Akaishi S, Hyakusoku H, et al. Are keloid and hypertrophic scar different forms of the same disorder? Afibroproliferative skin disorder hypothesis based on keloid findings [J]. Int Wound J,2012,[Epub ahead of print]
    3Singer AJ, Clark RA. Cutaneous wound healing [J]. N Engl J Med,1999,341(10):738-746
    45Singer AJ, Clark RA. Cutaneous wound healing [J]. N Engl J Med,1999,341(10):738-746
    Sidgwick GP, Bayat A. Extraeellular matrix molecules implicated in hypertrophic and keloid scarring [J]. J Eur AeadDermatol Venereol,2012,26(2):141-152.
    1Haverstock BD. Hypertrophic scars and keloids [J]. Clin Podiatr Med Surg,2001,18(1):147-159.
    2Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burns and trauma: new approaches totreatment [J]. PLoS Med,2007,4(9): e234(1464-1470)
    3王珍祥,吴军,李世荣.增生性瘢痕与正常皮肤差异基因的筛选[J].中华医学美学美容杂志,2004,10(3):155-157
    4Chen W, Fu XB, Ces L, et a1. Development of gene microarry in screening differently expressed genes in keloid andnormal-control skin [J]. Clin Med J (Edg1),2004,117(6):877-881.
    1Clark JA, Cheng JC, Leung KS. Mechanical properties of normal skin and hypertrophic scar [J]. Burns,1996,22(6):443–446.
    2Oliveira GV, Hawkins HK, Chinkes D, et al. Hypertrophic versus non hypertrophic scars compared byimmunohistochemistry and laser confocal microscopy: type I and III collagens [J]. Int Wound J2009,6(6):445–452.
    3Sappino AP, Schurch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteinsas marker of phenotypic modulations [J]. Lab Invest,1990,63(2):144-161.
    4Gross J. Getting to mammalian wound repair and amphibian limb regeneration: a mechanistic link in the early events[J]. Wound Rep Reg,1996,4(2):190-202.
    Lekic PC, Pender N, Mcculloch CA. Is fibroblast heterogeneity relevant to the heath, disease, and treatments ofperiodontal tissues [J]. Crit Rev Oral BiolMed,1997,8(3):253-268.
    1Hakvoort TE, Altun V, Ramnattan RS, et al. Epidermal participation in post-burn hypertrophic scar development [J].Virchows Arch,1999,434(3):221-226.
    2Lin RY, Sullivan KM, Argenta PA, et al. Exogenous transforming growth factors-beta amplifies its own expressionand induces scar formation in a model of human fetal skin repair [J]. Ann surg,1995,222(2):146-154.
    3Zhu Z, Ding J, Shankowsky HA, et al. The molecular mechanism of hypertrophic scar [J]. J Cell Commun Signal,2013,[Epub ahead of print]
    4Hermes B, Welker P, Feldmann-Boddeker I, et al. Expression of mast cell growth modulating and chemotactic factorsand their receptors in human cutaneous scars [J]. J Invest Dermatol,2001,116(3):387-393
    Moyer KE, Saggers GC, Ehrlich HP. Mast cells promote fibroblast populated collagen lattice contraction through gapjunction intercellular communication [J]. Wound Repair Regen,2004,12(3):269-275
    1Haverstock BD. Hypertrophic scars and keloids [J]. Clin Podiatr Med Surg,2001,18(1):147-159.
    2Lee TY. Chin GS, Kim WJ, et a1. Expression of transform in growth factor beta12and3proteins in keloids [J]. AnnPla Surg,1999,43(2):179-184.
    3陈伟,付小兵,葛世丽.增生性瘢痕形成和成熟过程中TGFβ1、TGFβ3及其受体的基因表达变化[J].中华整形外科杂志,2004,20(4):308-309.
    4陈伟,付小兵,孙同柱,等.增生性瘢痕组织中转化生长因子β异构体与受体含量变化及对瘢痕形成的影响[J].中国修复重建外科杂志,2002,16(4):252-255.
    5Xia W, Phan TT, Lim IJ, et a1. Complex epithelial mesenchymal interactions modulate transforming growth factor betaexpression in keloid-derived cells [J]. Wound Repair Regen,2004,12(5):546-556.
    6Wu J, Ma B, Yi S, et a1. Gene expression of early hypertrophic scar tissue screened by means of cDNA microarrays [J].J Trauma,2004,57(6):1276-1286.
    7Redd MJ, Coper L, Wood W, et a1. Wound healing and inflammation: embryos reveal the way to perfect repair [J].Philos Trans R Soc Lond B Biol Sci,2004,359(1445):777-784.
    8李喆,李世荣,刘剑毅,等.结缔组织生长因子体外促进人增生性瘢痕成纤维细胞转分化的研究[J].第三军医大学学报,2006,28(8):775-777.
    1陶灵,李世荣,刘剑毅,等. CTGF刺激人增生性瘢痕成纤维细胞STATs蛋白活化的状况[J].中国美容医学杂志,2008,17(4):521-523.
    2曹川,李世荣,陈艳清,等.三羟基异黄酮对增生性瘢痕成纤维细胞增殖与胶原合成作用的影响[J].中国美容医学杂志,2007, l8(3):220-222.
    3Hu X, Wang H, Liu J, et al. The role of ERK and JNK signaling in connective tissue growth factor inducedextracellular matrix protein production and scar formation [J]. Arch Dermatol Res,2013,305(5):433-445.
    1Hayashida K, Akita S. Quality of pediatric second-degree burn wound scars following the application of basicfibroblast growth factor: results of a randomized, controlled pilot study [J]. Ostomy Wound Manage,2012,58(8):32-6
    李卫华,李德水,刘洪琪.碱性成纤维细胞生长因子对增生性瘢痕成纤维细胞生物学特性的影响[J].中国临床康复,2004,8(8):1484-1485.
    Siwik DA, Chang DL, Colucci WS. Interliukin-1βand tumor necrosis factorαdecrease collagen synthesis andincrease matrix metalloproteinase activity in cardiac fibroblasts in vitro[J]. Circ Res,2000,86(12):1259-1265.
    Scheuerpflug CG, Lichter P, Debatin KM, et a1. Assignment of TRADD to human chromosome band16q22by in situhybridization [J]. Cytogenet Ceil Genet,2001,92(3-4):347-348.
    Crowston JG, Chang LH, Constable PH, et a1. Apoptosis gene expression and death receptor signaling inMitomycin-C-treated human Tenon capsule fibroblast [J]. Invest Ophthalmol Vis Sci,2002,43(3):692-699.
    Yang H, Hu C, Li F, et al. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblastsand hypertrophic scartissue formation [J]. IUBMB Life,2013,65(6):526-532
    Deng C, Zheng J, Wan W, et al. Suppression of cell proliferation and collagen production in culturedhuman hypertrophic scar fibroblasts by Sp1decoy oligodeoxynucleotide [J]. Mol Med Rep.2013,7(3):785-790
    Kim JS, Choi IG, Lee BC, et al. Neuregulin induces CTGF expression in hypertrophic scarring fibroblasts [J]. Mol CellBiochem,2012,365(1-2):181-189.
    1Ray S, Ju X, Sun H, et al. The IL-6trans-signaling-STAT3pathway mediates ECM and cellular proliferation infibroblasts from hypertrophic scar [J]. J Invest Dermatol,2013,133(5):1212-1220
    2Zhang Q, Tao K, Huang W, et al. Elevated expression of pleiotrophin in human hypertrophic scars [J].J MolHistol,2013,44(1):91-96.
    du Roure O, Saez A, Buguin A, et al. Force mapping in epithelial cell migration [J]. Proc Natl Acad Sci USA,2005,102(7):2390-2395
    4Nho RS, Xia H, Kahm J, et al. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblastsurvival in type I collagen matrices through a beta1integrin viability signaling pathway [J]. J Biol Chem,2005,280(28):26630-26639
    5Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways andcellular proliferation in human epidermal keratinocytes [J]. J Invest Dermatol,2004,122(3):783-790
    6Takahashi Y, Takahashi S, Shiga Y, et al. Hypoxic induction of proly4-hydroxylase alpha (I) in cultured cells [J]. JBiol Chem,2000,275(19):14139
    7Kim JH, Sung JY, Kim YH, et al. Risk factors for hypertrophic surgical scar development after thyroidectomy [J].Wound Repair Regen,2012,20(3):304-310
    Liu XJ, Xu MJ, Fan ST, et al. Xiamenmycin attenuates hypertrophic scars by suppressing local inflammation and theeffects of mechanical stress[J]. J Invest Dermatol.2013,133(5):1351-1360.
    9Foley TT, Ehrlich HP. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblastactivities allied with hypertrophic scarring [J]. Plast Reconstr Surg,2013,131(5):1036-44.
    10张强,邵家松,岳毅刚,等.高压氧对兔耳创面模型早期瘢痕组织形成的影响[J].中华整形外科杂志,2013,29(1):55-58.
    1Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory to migration and decorin-induced apoptosiscontribute to hypertrophic scarring[J]. J Burn Care Res,2012,33(5):668-677.
    2赵雪莲,郑宝恒,苏晓光,等.病理性瘢痕增生的手术治疗进展[J].山东医药,2012,52(2):97-98
    3Yang JY, Yang SY. Are auricular keloids and persistent hypertrophic scars resectable? The role of intrascar excision[J]. Ann Plast Surg,2012,69(6):637-642.
    4Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management [J]. PlastReconstr Surg,2002,110(2):560–571.
    5Mutalik S. Treatment of keloids and hypertrophic scars[J]. Indian J Dermatol Venereol Leprol,2005,71(1):3–8
    6Ogawa R, Akaishi S, Huang C, et al. Clinical applications of basic research that shows reducing skin tension couldprevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery forkeloid and hypertrophic scar reconstruction[J]. J Nippon Med Sch,2011,78(2):68–76.
    78Reish RG, Eriksson E. Scar treatments: preclinical and clinical studies[J]. J Am Coll Surg,2008,206(4):719–730Leventhal D, Furr M, Reiter D. Treatment of keloids and hypertrophic scars: a meta-analysis and review of theliterature [J]. Arch Facial Plast Surg,2006,8(6):362–368.
    1Nast A, Eming S, Fluhr J, et al. German S2k guidelines for the therapy of pathological scars (hypertrophic scars andkeloids)[J]. J Dtsch Dermatol Ges,2012,10(10):747–762.
    2Akaishi S, Koike S, Dohi T, et al. Nd:YAG Laser treatment of keloids and hypertrophic scars [J]. Eplasty,2012,12:e1
    3Durani P, Bayat A. Levels of evidence for the treatment of keloid disease [J]. J Plast Reconstr Aesthet Surg,2008,61(1):4–17
    4Shih PY, Chen HH, Chen CH, et al. Rapid recurrence of keloid after pulse dye laser treatment [J]. Dermatol Surg,2008,34(8):1124–1127
    Cho SB, Lee JH, Lee SH, et al. Efficacy and safety of1064-nm Q-switched Nd:YAG laser with low fluence for keloidsand hypertrophic scars [J]. J Eur Acad Dermatol Venereol,2010,24(9):1070–1074.
    1Choi JE, Oh GN, Kim JY, et al. Ablative fractional laser treatment for hypertrophic scars: comparison betweenEr:YAG and CO2fractional lasers[J]. J Dermatolog Treat,2013,[Epub ahead of print]
    2Hultman CS, Edkins RE, Wu C, et al. Prospective, before-after cohort study to assess the efficacy of laser therapyon hypertrophic burn scars [J]. Ann Plast Surg,2013,70(5):521-526
    3Scrimali L, Lomeo G, Nolfo C. Treatment of hypertrophic scars and keloids with a fractional CO2laser: A personalexperience [J]. Cosmet Laser Ther,2010,12(5):218-221.
    4Shu B, Ni GX, Zhang LY, et al. High-power helium-neon laser irradiation inhibits the growth of traumatic scars invitro and in vivo [J]. Lasers Med Sci,2013,28(3):693-700
    5Alexiades-Armenakas MR, Dover JS, Amdt KA. The spectrum of laser skin resurfacing: Nonablative fractional, andablative laser resurfacing[J]. Am Acad Dermatol,2008,58(5):719-737
    6Tiemey EP, Kouba DJ, Hanke CW. Review of fractional photothermolysis: Treatment indications and efficacy [J].Dermatol Surg,2009,35(10):1445-1461.
    7Emily Tierney, Bassel H. Treatment of surgical scars with nonablative fractional laser versus pulsed dye laser: Arandomized controlled trial [J]. Dermatol Surg,2009,35(8):1172-1180.
    8Garg GA, Sao PP, Khopkar US. Effect of carbon dioxide laser ablation followed by intralesional steroids on keloids[J].J Cutan Aesthet Surg,2011,4(1):2–6.
    9de las Alas JM, Siripunvarapon AH, Dofitas BL. Pulsed dye laser for the treatment of keloid and hypertrophic scars: asystematic revie [J]. Expert Rev Med Devices,2012,9(6):641-50.
    10洪艳玲,潘宁.光动力治疗防治增生性瘢痕的研究进展[J].实用皮肤病学杂志,2012,5(1):32-34
    11Chiu LL, Sun CH, Yeh A, et a1. Photodynamic therapy on keloid fibroblasts in tissue-engineeredkeratinocyte-fibroblast CO-culture [J]. Laser Surg Med,2005,37(3):231-244.
    1蔡宏,顾瑛,曾晶,等. HMME-PDT对兔耳增生性瘢痕块成纤维细胞增殖能力及其超微结构的影像[J].中国激光医学杂志,2008, l7(3):157-161.
    2孙晓燕,王星武,郭党学,等. ALA光动力治疗兔耳增生性瘢痕模型的实验研究[J].中国美容医学,2009,18(7):973-976.
    3Li X, Zhou ZP, Hu L,et al. Apoptotic cell death induced by5-aminolaevulinic acid-mediated photodynamic therapyof hypertrophic scar-derived fibroblasts [J].J Dermatolog Treat,2013,[Epub ahead of print]
    4钟俊波,岑瑛,刘全. ALA-PDT对瘢痕疙瘩成纤维细胞增殖抑制作用的研究[J].四川大学学报(医学版),2010,41(2):222-225
    5Taheri A, Mansoori P, Al-Dabagh A, et al. Are corticosteroids effective for prevention of scar formation aftersecond-degree skin burn?[J]. J Dermatolog Treat,2013,[Epub ahead of print]
    6Jalali M, Bayat A. Current use of steroids in management of abnormal raised skin scars [J]. Surg.2007,5(3):175–180.
    1Zhang H, Zhang Y, Jiang YP, et al. Curative effects of oleanolic Acid on formed hypertrophic scars in the rabbit earmodel [J]. Evid Based Complement Alternat Med,2012,2012:837581
    2Xiao Z, Xi C. Hepatocyte growth factor reduces hypertrophy of skin scar: in vivo study [J]. Adv Skin WoundCare,2013,26(6):266-270
    3ZhiYong W, Fei S, LianJu X, et al. Endostar injection inhibits rabbit ear hypertrophic scar formation [J].Int J LowExtrem Wounds,2012,11(4):271-276.
    4杜金,马少林.中药防治增生性瘢痕研究进展[J].新疆医学,2012,42(9):1-6
    5刘燕,傅跃先,唐开勇,等.红花对兔耳增生性瘢痕CTGF表达的影响[J].第四军医大学学报,2009,30(18):1640-1644.
    6张艳,邱林,吴清华,等.黄芪对家兔增生性瘢痕转化生长因子βl表达及其Smad3信号途径的影响[J].中华烧伤杂志,2010,26(5):366-370.
    7李旋,刘迭恩,欧增达,等.丹参总酮对体外模拟人增生性瘢痕的作用[J].中华烧伤杂志,2009,25(1):62-63.
    8Tang B, Zhu B, Liang Y. Bi L, et a1. Asiaticoside suppresses collagen expression and TGF-β/Smad signaling throughinducing Smad7and inhibiting TGF-β RI and TGF-β RⅡ in keloid fibroblasts[J]. Archives of dermatological research,2011;303(8):563-635
    9张诺.雷公藤甲素对瘢痕成纤维细胞增殖的影响[J].医学信息,2010,5(4):753-754.
    10闫宏山,吕润华,王吉昌,等.“促愈瘢痕消”对兔耳增生性瘢痕作用的实验研究[J].山东大学学报(医学版),2007,1415(9):914-918.
    Grella R, Nicoletti G, D'Ari A, et a1. A useful method to overcome the difficulties of applying silicone gel sheet onirregular surfaces[J]. Int Wound J,2013,[Epub ahead of print]
    1Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management [J]. Aesthetic Plast Surg,2008,32(1):82–92.
    2Chittoria RK, Padi TR. et al. A prospective, randomized, placebo controlled,double blind study of silicone gel in prevention of hypertrophic scar at donor site of skin grafting [J]. J Cutan AesthetSurg,2013,6(1):12-16
    3O’Brien L, Pandit A. Silicon gel sheeting for preventing and treating hypertrophic and keloid scars [J]. CochraneDatabase Syst Rev,2006,25;(1): CD003826
    4Steinstraesser L, Flak E, Witte B, et al. Pressure garment therapy alone and in combination with silicone for theprevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison [J]. Plast ReconstrSurg,2011,128(4):306e–313e.
    5Macintyre L, Baird M. Pressure garments for use in the treatment of hypertrophic scars–a review of the problemsassociated with their use [J]. Burns,2006,32(1):10–15
    6Van den Kerckhove E, Stappaerts K, Fieuws S, et al. The assessment of erythema and thickness on burn related scarsduring pressure gar ment therapy as a preventive measure for hypertrophic scarring [J]. Burns,2005,31(6):696–702
    7Candy LH, Cecilia LT, Ping ZY. Effect of different pressure magnitudes on hypertrophic scar in a Chinese population[J]. Burns,2010,36(8):1234–1241
    Anzarut A, Olson J, Singh P, et al. The effectiveness of pressure garment therapy for the prevention of abnormalscarring after burn injury: a meta-analysis [J]. J Plast Reconstr Aesthet Surg,2009,62(1):77–84
    1Rei Ogawa. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids [J]. PlastReconstr Surg,2010,125(2):557-568.
    2刘宁,朱金土.增生性瘢痕联合治疗研究进展[J].浙江临床医学,2012,14(7):884-886
    3Barara M, Mendiratta V, Chander R. Cryotherapy in treatment of keloids: evaluation of factors affecting treatmentoutcome [J]. J Cutan Aesthet Surg,2012,5(3):185–189
    4Weshahy AH, Abdel HR. Intralesional cryosurgery and intralesional steroid injection: a good combination therapy fortreatment of keloids and hypertrophic scars [J]. Dermatol Ther,2012,25(3):273-276.
    5Waibel JS, Wulkan AJ, Shumaker PR. Treatment of hypertrophic scars using laser and laser assisted corticosteroiddelivery [J]. Lasers Surg Med,2013,45(3):135-140.
    6Issa MC, Kassuga LE, Chevrand NS, et al. Topical delivery of triamcinolone via skin pretreated with ablativeradiofrequency: a new method in hypertrophic scar treatment [J]. Int J Dermatol,2013,52(3):367-370.
    Bailey JK, Burkes SA, Visscher MO, et al. Multimodal quantitative analysis of early pulsed-dye laser treatment ofscars at a pediatric burn hospital [J]. Dermatol Surg,2012,38(9):1490-1496.
    1Hu X, Ran H, Dechang W, et al. Absence of the adenosine A2A receptor attenuates hypertrophic scarring in mice [J]. JBurn Care Res,2013,34(3):e161-167.
    Xu Y, Huang S, Fu X. Autologous transplantation of bone marrow-derived mesenchymal stem cells: a promisingtherapeutic strategy for prevention of skin-graft contraction [J]. Clin Exp Dermatol,2012,37(5):497-500
    [1] Gauglitz GG, Pavicic T. Emerging strategies for the prevention and therapy ofexcessive scars [J]. MMW Fortschr Med,2012,154(15):55–58.
    [2] Bond JS, Duncan JA, Mason T, et al. Scar redness in humans: how long does it persistafter incisional and excisional wounding?[J]. Plast Reconstr Surg,2008,121(2):487–496.
    [3] Monica CT, Willem MV, Magda MW, et a1. Prevention and curative management ofhypertrophic scar formation[J]. Bums,2009,35(4):463-475.
    [4] Sun Z, Li S, Cao C, et al. shRNA targeting SFRP2promotes the apoptosis ofhypertrophic scar fibroblast [J]. Mol Cell Biochem,2011,352(1-2):25–33.
    [5] Du C, FangM, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome cdependent caspase activation by eliminating IAP inhibition[J]. Cell,2000,102(1):33-42.
    [6] Sun HY, Liu L, Lu JF, et al. Potent bivalent Smac mimetics: effect of the linker onbinding to inhibitor of apoptosis proteins(IAPs)and anticancer activity [J]. Med Chem,2011,54(9):3306-3318.
    [7] Jack W P, Adriaan O G, Kerstin J R. The role of the TGF-β family in wound healing,burns and scarring: a review [J]. Int J Burns Trauma,2012,2(1):18–28.
    [8] Sheridan RL. Burn Care: Results of technical and organizational progress[J]. JAMA,2003,290(6):719–722.
    [9] Ehrlich HP, Kelley SF. Hypertrophic Scar: An interruption in the remodelling ofrepair-a laser Doppler blood flow study [J].Plast Reconstr Surg,1992,90(6):993–998.
    [10] Gangemi EN, Gregori D, Berchialla P, et al. Epidemiology and risk factors forpathologic scarring after burn wounds [J]. Arch Facial Plast Surg,2008,10(2):93–102.
    [11] Herndon DN, Lemaster J, Beard S, et al. The quality of life after a major thermalinjury in children: an analysis of12survivors with greater than or equal to80%totalbody,70%third-degree burns [J]. J Trauma,1986,26(7):609–619.
    [12] Robert R, Meyer W, Bishop S, et al. Disfiguring burn scars and adolescentself-esteem [J]. Burns,1999,25(7):581–585.
    [13] Bayat A, McGrouther DA, Ferguson MWJ. Skin scarring [J]. BMJ,2003,326(7380):88–92.
    [14] Wang J, Dodd C, Shankowsky HA, et al. Deep dermal fibroblasts contribute tohypertrophic scarring [J]. Lab Invest,2008,88(12):1278–1290.
    [15] Bombaro KM, Engrav LH, Carrougher GJ, et al. What is the prevalence ofhypertrophic scarring following burns?[J]. Burns,2003,29(4):299–302.
    [16] Rowlatt U. Intrauterine wound healing in a20week human fetus [J]. Virchows ArchA Pathol Anat Histol,1979,381(3):353–361.
    [17] Singer AJ, Clark RA. Cutaneous wound healing [J]. N Engl J Med,1999,341():738-746
    [18] Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burnsand trauma: new approaches to treatment [J]. PLoS Med,2007,4(9):234-256
    [19] De Felice B, Garbi C, Santoriello M, et al. Differential apoptosis markers in humankeloids and hypertrophic scar fibroblasts [J]. Mol Cell Biochem,2009,327(1-2):191–201.
    [20] Wang J, Hori K, Ding J, et al. Toll-like receptors expressed by dermal fibroblastscontributes to hypertrophic scarring [J]. J Cell Physiol.2011,226(5):1265–1273.
    [21] Wu J, Ma B, Yi S, et a1. Gene expression of early hypertrophic scar tissue screenedby means of cDNA microarrays [J]. J Trauma,2004,57(6):1276-1286.
    [22] Hakvoot T, Altun V, van Zuijlen PP, et al. Transforming growth factor beta (1)-beta(2)-beta (3), basic fibroblast growth factor and vascular endothelial growth factorexpression in keratinocytes of burns scars [J]. Eur Cytokine Netw,2000,11(2):233–239.
    [23] Van der Veer WM, Niessen FB, Ferreira JA, et al. Time course of the angiogenicresponse during normotrophic and hypertrophic scar formation in humans [J]. WoundRepair Regen,2011,19(3):292–301.
    [24]陶灵,李世荣,刘剑毅,等. CTGF刺激人增生性瘢痕成纤维细胞STATs蛋白活化的状况[J].中国美容医学杂志,2008,17(4):521-523.
    [25] Hayashida K, Akita S. Quality of pediatric second-degree burn wound scars followingthe application of basic fibroblast growth factor: results of a randomized, controlledpilot study [J]. Ostomy Wound Manage,2012,58(8):32-36
    [26] Siwik DA, Chang DL, Colucci WS. Interliukin-1βand tumor necrosis factorαdecreasecollagen synthesis and increase matrix metalloproteinase activity in cardiacfibroblasts in vitro[J]. Circ Res,2000,86(12):1259-1265.
    [27] Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signaltransduction pathways and cellular proliferation in human epidermal keratinocytes [J].J Invest Dermatol,2004,122(3):783-790
    [28] Ogawa R, Akaishi S, Huang C, et al. Clinical applications of basic research thatshows reducing skin tension could prevent and treat abnormal scarring, theimportance of fascial/subcutaneous tensile reduction sutures and flap surgery forkeloid and hypertrophic scar reconstruction [J]. J Nippon Med Sch,2011,78(2):68–76.
    [29] Ulrich D, Ulrich F, Unglaub F, et al. Matrix metalloproteinases and tissue inhibitorsof metalloprotienases in patients with different types of scars and keloids [J]. J PlastReconstr Aesthet Surg,2010,63(6):1015–1021.
    [30] Sidgwick GP, Bayat A. Extraeellular matrix molecules implicated in hypertrophic andkeloid scarring [J]. J Eur Aead Dermatol Venereol,2012,26(2):141-152.
    [31] Thornberry NA, Lazebnik Y. Caspases: Enemies within [J]. Science,1998,281(5381):1312-1316.
    [32] Salvesen GS, Duckett CS. IAP proteins:Blocking the road to death’s door [J]. NatRev Mol Cell Biol,2002,3(6):401-410.
    [33] Takahashi R, Deveraux Q, Tamm I, et al. A single BIR domain of XIAP sufficient forinhibiting caspases[J]. J Biol Chem,1998,273(14):7787-7790.
    [34] Jia L, Patwari Y, Kelsey SM, et al. Role of Smac in human leukaemic cell apoptosisand proliferation [J]. Oncogene,2003,22(11):1589-1599
    [35] Verhagen AM, Ekert PG, PakuschM, et al. Identification of DIABLO, a mammalianprotein that promotes apoptosis by binding to and antagonizing IAP proteins[J]. Cell,2000,102(1):43-53.
    [36] Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspasepromoting activity of Smac/DIABLO and its role in the death receptor pathway [J].Biol Chem,2000,275(46):36152-36157.
    [37] Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer [J].Nat Rev Drug Discov,2012,11(2):109-124.
    [38] Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptosis activationby Smac/DIABLO [J]. Nature,2000,406(6798):855-863.
    [39] Filipovich AH, Zhang KJ, Snow AL, et al. X-linked lymphoproliferative syndromes:brothers or distant cousins?[J].Blood,2010,116(18):3398-3408
    [40] Guo F,Nimmanapalli R, Paranawthana S, et al. Ectopic over expression of secondmitochondria derived activator of caspases (Smac/DIABLO) or cotreatment withN-terminals of Smac/DIABLO peptide potentiates epothilone B derivative (BMS247550) and apo-2L/TRA L induced apoptosis[J]. Blood,2002,99(9):3419-34297.
    [41] Jia L, Patwaari Y, Kelsey SM, et al. Role of Smac in human leukemic cell apoptosisand proliferation [J]. Oncogene,2003,22(11):1589-1599.
    [42] Mizukawa K, Kawamura A, Sasayama T, et al. Synthetic Smac peptide enhances theeffect of etoposide-induced apoptosis in human glioblastoma cell lines [J]. J NeuroOncol,2006,77(3):247-255.
    [43] Sun H, Nikolovska-Coleska Z, Lu J, et al. Design, synthesis, and evaluation of apotent, cell-permeable, conformationally constrained second mitochondria derivedactivator of caspase(Smac) mimetic [J]. Med Chem,2006,49(26):7916-7920.
    [44] Morizane Y, Honda R, Fukami K, et al. X-linked inhibitor of apoptosis functions asubiquitin ligase toward mature Caspase9and cytosolic Smac/DIABLO.[J]. Biochem,2005,137(2):125-132.
    [45] Feltham R, Bettjeman B, Budhidarmo R, et al. Smac-mimetics activate the E3ligaseactivity of cIAP1by promoting RING dimerisation.[J]. Biochem,2011,286(19):17015-17028.
    [46] Darding M, Feltham R, Tenev T, et al. Molecular determinants of Smac mimeticinduced degradation of cIAP1and cIAP2[J]. Cell Death Differ,2011,18(8):1376-1386.
    [47] Zarnegar BJ, Wang YY, Mahoney DJ, et al. Noncanonical NF-kappa B activationrequires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2,TRAF2and TRAF3and the kinase NIK [J]. Nat Immunol,2008,9(12):1371-1378.
    [48] Vince JE, Wong WW, Khan N, et al. IAP antagonists target cIAP1to induce TNFalpha-dependent apoptosis [J]. Cell,2007,131(4):682-693.
    [49] Gaither A, Porter D, Yao Y, et al. A Smac mimetic rescue screen reveals roles forinhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling [J]. CancerRes,2007,67(24):11493-11498.
    [50] Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF alpha signaling rendershuman cancer cells susceptible to Smac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    [51] Haverstock BD. Hypertrophic scars and keloids [J]. Clin Podiatr Med Surg,2001,18(1):147-159.
    [52]王珍祥,李世荣.病理性瘢痕研究的进展[J].中华整形外科杂志,2008,24(5):405-408
    [53] Dolores W, Alexandar T, Petra P, et a1.Hypertrophic scars and keloids-review oftheir pathophysioIogy, risk factors, and therapeutic management[J]. Dermatol Surg,2009,35(2):171-181.
    [54] Yoo NJ, Kim HS, Kim SY, et al. Immunohistochemical analysis of Smac/DIABLOexpression in human carcinomas and sarcomas [J]. APMIS,2003,111(3):382-388.
    [55]张曦.角质形成细胞源性蛋白因子在增生性瘢痕形成中的作用研究[D].西安:第四军医大学,2008:
    [56]陶灵.JAK-STATs通路对CTGF调控人增生性瘢痕成纤维细胞增殖分化作用的研究[D].重庆:第三军医大学,2008:
    [57]郭亮.PTEN调控增生性瘢痕成纤维细胞凋亡及相关功能的机制研究[D].重庆:第三军医大学,2012:
    [58]郑丽端,吴翠环,童强松,等.稳定过表达Smac基因对胃癌细胞株凋亡活性的调控作用[J].中华病理学杂志,2005,34(2):92-96.
    [59]时鹏,王明明,侯连泽,等. XIAP和Smac/DIABLO在乳腺癌发生、发展中的表达及意义[J].中国现代普通外科进展,2010,13(6):430-433
    [60] Peter ME, Heufelder HE, Hengartner MO. Advances in apoptosis research [J]. ProNatl Acad Sci USA,1997,94(24):12736-12737
    [61] Yang J, Liu X, Bhalla K, et al. Prevention of paoptoses by bcl-2: relase ofcytochromeC from mitochondria [J]. Science,1997,275(5303):1129-1132
    [62] Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activationduring apoptosis [J]. Annu Rev Cell Del Bio,1999,15:269-290
    [63] Li H, Zhu H, Xu C J. et al. Cleavage of Bid by caspase8mediates themitochondrialdamage in the Fas pathway of apoptosis [J]. Cell,1998,94(4):491-501
    [64] Rammohan VR, Evan H, Susana CO, et al. Coupling endoplasmic reticulumstress tothe cell death program [J]. J Biol Chem,2001,276(36):3869-3874
    [65] Shi YG. Mechenisms of caspase activation and inhibition during apoptosis [J].MolCell,2002,9(3):459-470
    [66] Chai J, Shiozaki E, Srinivasula SM, et al. Structural basis of Caspase7inhibition byXIAP[J]. Cell,2001,104(5):769-780.
    [67] Lin JH, Deng G, Huang Q, et al. KIAP, a novel member of the inhibitor of apoptosisprotein family[J]. Biochem Biophys Res Commun,2000,279(3):820-831.
    [68] Schimmer AD, Dalil IS, Batey RA, et al. Targeting XIAP for treatment ofmalignancy[J]. Cell Death Differ,2006,13(2):179-188.
    [69] Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins [J].BiochemBiophys Res Commun,2003,304(3):499-504.
    [70] Ashhab Y, Alian A, Polliack A, et al. Two splicing variants of a new in hibitor ofapoptosisgene with different biological properties and tissue distribution pattern[J].FEBS Lett,2001,495(1-2):56-60.
    [71] Vucic D, Stennicke HR, Pisabarro MT, et al. ML-IAP, a novel inhibitor ofapoptosisthat is preferentially expressed in human melanomas [J]. Curr Biol,2000,10(21):1359-1366.
    [72] Sanna MG, da Silva Correia J, Ducrev O, et al. IAP suppression of apoptosis involvesdistinct mechanisms: the TAK1/JNK1signaling cascade and caspase inhibition [J].Mol Cell Biol,2002,22(6):1754-1766.
    [73] Vucic D, Franklin MC, Wallweber HJ, et al. Engineering ML-IAP to produce anextraordinarily potent caspase9inhibitor: implications o f Smacdependentanti-apoptotic activity of ML-IAP [J]. Biochem J,2005,385(Pt1):11-20.
    [74] Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activationby Smac/DIABLO[J]. Nature,2000,406(6798):855-862.
    [75] Ng H, Smith DJ, Nagley P. Application of flow cytometry to determine differentialredistribution of cytochrome c and Smac/DIABLO from mitochondria during celldeath signaling. PLoS One,2012,7(7):e42298.
    [76] Mizutani Y, Katsuoka Y, Bonavida B. Low circulating serum levels of secondmitochondria-derived activator of caspase (Smac/DIABLO) in patients with bladdercancer. Int J Oncol,2012,40(4):1246-1250.
    [77] Hu HY, Liu H, Zhang JW,et al. Clinical significance of Smac and Ki-67expression inpancreatic cancer. Hepatogastroenterology,2012,59(120):2640-2643
    [78] DA Silva LC, Forones NM, Ribeiro DA, et al. Immunoexpression of DIABLO, AIFand cytochrome C in gastric adenocarcinoma assessed by tissue Microarray.Anticancer Res,2013,33(2):647-653.
    [79] Adrain C, Emma MC,Seamos JM. Apoptosis associated release of Smac/DIABLOfrom mitochondria requires active caspases and is blocked by Bcl-2[J]. Embo J,2001,20(23):6627-6636.
    [80] Yan Y, Mahotka C, Heikaus S, et al. Disturbed balance of expression between XIAPand Smac/DIABLO during tumor progression in renal cell carcinomas[J]. Br J ofCancer,2004,91(7):1349-1357.
    [81]周孝亮,刘德伍,毛远桂.增生性瘢痕成纤维细胞生物学行为及其影响因素[J].中华医学美学美容杂志,2012,18(2):154-157
    [82] Ladak A, Tredget EE. Pathophysiology and management of the burn scar [J].ClinPlast Surg,2009,36(4):661-674
    [83] Guo L, Chen L, Bi S, et al. PTEN inhibits proliferation and functions of hypertrophicscar fibroblasts [J]. Mol Cell Biochem,2012,361(1-2):161-168.
    [84] Mahdavian Delavary B, van der Veer WM, van Egmond M, et al. Macrophages inskin injury and repair[J]. Immunobiology,2011,216(7):753-762.
    [85] Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory tomigration and decorin-induced apoptosis contribute to hypertrophic scarring[J]. JBurn Care Res,2012,33(5):668-677.
    [86] Jiang L, Zhang E, Yang Y, et al. Effectiveness of apoptotic factors expressed on thewounds of patients with stage III pressure ulcers[J]. J Wound Ostomy ContinenceNurs,2012,39(4):391-396.
    [87] Kempkensteffen C, Hinz S, Christoph F, et al. Expression levels of the mitochondrialIAP antagonists Smac/DIABLO and Omi/HtrA2in clear-cell renal cell carcinomasand their prognostic value[J]. J Cancer Res Clin Oncol,2008,134(5):543-550.
    [88] Chen DJ, Huerta S. Smac mimetics as new cancer therapeutics [J]. Anti-Cancer Drugs,2009,20(8):646–658.
    [89] Gao Z, Tian Y, Wang J, et al. A dimeric Smac/diablo peptide directly relievesCaspase3inhibition by XIAP. Dynamic and cooperative regulation of XIAP bySmac/Diablo [J]. J Biol Chem,2007,282(42):30718-30727.
    [90] Clark JA, Cheng JC, Leung KS. Mechanical properties of normal skin andhypertrophic scar [J]. Burns,1996,22(6):443–446.
    [91]刘英琦,曹莫.增生性瘢痕治疗靶点的回顾性分析[J].中国美容医学,2013,22(9):1005-1008
    [92] Qu L, Liu A, Zhou L, et a1. Clinical and molecular effects on mature burn scars aftertreatment with a fractional CO2laser [J]. Laser Surg Med,2012,44(7):517-524.
    [93] Yan G, Sun H, Wang F, et al. Topical application of hPDGF-A-modified porcineBMSC and keratinocytes loaded on acellular HAM promotes the healing of combinedradiation-wound skin injury in minipigs [J]. Int J Radiat Biol,2011,87(6):591-600.
    [94] Weshahy AH, Abdel Hay R. Intralesional cryosurgery and intralesional steroidinjection: a good combination therapy for treatment of keloids and hypertrophic scars[J]. Dermatol Ther,2012,25(3):273-276.
    [95] Morin C, Roumegous A, Carpentier G, et al. Modulation of inflammation bycicaderma ointment accelerates skin wound healing [J]. J Pharmacol Exp Ther,2012,343(1):115-124.
    [1] Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochromec–dependent caspase activation by eliminating IAP inhibition[J]. Cell,2000,102(1):33–42.
    [2] Anne M. Verhagen, Paul G, et al. Identification of DIABLO, a Mammalian Proteinthat Promotes Apoptosis by Binding to and Antagonizing IAP Proteins[J]. Cell,2000,102(1):43–53.
    [3] Srinivasa MS, Datta P, Xun JU, et al. Molecular determinants of the caspasepromoting activity of Smac/DIABLO and its role in the death receptor pathway [J].Biol Chem,2000,275(46):36152-36157.
    [4] Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activationby Smac/DIABLO[J]. Nature,2000,406(6798):855-862.
    [5] Ng H, Smith DJ, Nagley P. Application of flow cytometry to determine differentialredistribution of cytochrome c and Smac/DIABLO from mitochondria during celldeath signaling [J]. PLoS One,2012,7(7):e42298.
    [6]童强松,郑丽端,阮庆兰,等. Smac和Caspase-3基因在神经母细胞瘤中的表达及其临床意义[J].中国癌症杂志,2004,14(1):90-91.
    [7]林木生,缪辉来,桂水清,等.肝癌中Smac和Caspase-3的表达及在细胞凋亡中的关系[J].中华肝胆外科杂志,2006,12(2):105-107.
    [8] Yan Y, Mahotka C, Heikaus S, et al. Disturbed balance of exp ression between XIAPand smac/DIABLO during tumour p rogression in renal cell carcinomas [J]. Br J ofCancer,2004,91(7):1349-1357.
    [9] Mizutani Y, Katsuoka Y, Bonavida B. Low circulating serum levels of secondmitochondria-derived activator of caspase (Smac/DIABLO) in patients with bladdercancer [J]. Int J Oncol,2012,40(4):1246-1250.
    [10] Hu HY, Liu H, Zhang JW, et al. Clinical significance of Smac and Ki-67expressionin pancreatic cancer [J]. Hepatogastroenterology,2012,59(120):2640-2643
    [11] DA Silva LC, Forones NM, Ribeiro DA, et al. Immunoexpression of DIABLO, AIFand cytochrome C in gastric adenocarcinoma assessed by tissue microarray [J].Anticancer Res,2013,33(2):647-653.
    [12] Adrain C, Emma MC, Seamos JM. Apoptosis associated release of Smac/DIABLOfrom mitochondria requires active caspases and is blocked by Bcl-2[J]. Embo J,2001,20(23):6627-6636.
    [13] Guo F, Nimmanapalli R, Paranawthana S, et al. Ectopic over expression of secondmitochondria derived activator of caspases (Smac/DIABLO) or cotreatment withN-terminals of Smac/DIABLO peptide potentiates epothilone B derivative (BMS247550) and apo-2L/TRIAL induced apoptosis [J]. Blood,2002,99(9):3419-3427.
    [14] Jia L, Patwaari Y, Kelsey SM, et al. Role of Smac in human leukemic cell apoptosisand proliferation[J]. Oncogene,2003,22(11):1589-1599.
    [15] Vucic D, Deshayes K, Ackerly H, et al. SMAC negatively regulates the anti-apoptoticactivity of melanoma inhibitor of apoptosis (ML-IAP)[J]. J Biol Chem,2002,277(14):12275-12279.
    [16] Li L, Thomas R M, Suzuki H, et a1. A smal1molecule Smac mimic potentiatesTRAIL-and TNFalpha-mediated cel1death [J]. Science,2004,305(5689):1471—1474.
    [17] Cossu F, Milani M, Vachette P, et al. Structural Insight into Inhibitor of ApoptosisProteins Recognition by a Potent Divalent Smac-Mimetic [J]. PLoS One,2012,7(11):e49527.
    [18] Oost TK, Sun C, Armstrong RC, et al. Discovery of potent antagonists of theantiapoptotic protein XIAP for the treatment of cancer.[J]. Med Chem,2004,47(18):4417-4426.
    [19] Kashkar H, Seeger JM, Hombach A, et al. XIAP targeting sensitizes Hodgkinlymphoma cells for cytolytic T-cell attack [J]. Blood,2006,108(10):3434-3440.
    [20] Yang QH, Du CY. Smac/DIABLO selectively reduces the levels of c-IAP1andc-IAP2but not that of XIAP and livin in HeLa cells [J]. Biol Chem,2004,279(17):16963-16970.
    [21] Sun H, Liu L, Lu J, et al. Potent Bivalent Smac Mimetics: Effect of the Linker onBinding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity [J]. J MedChem,2011,54(9):3306-3318.
    [22] Elsawy MA, Martin L, Tikhonova IG, et al. Solid phase synthesisof Smac/DIABLO-derived peptides using a 'Safety-Catch' resin: Identification ofpotent XIAP BIR3antagonists [J]. Bioorg Med Chem,2013,21(17):5004-5011
    [23] Sun H, Zaneta NC, Yang CY, et al. Design of small-molecule peptidic andnon-peptidic Smac mimetics [J]. Acc Chem Res,2008,41(10):1264-1277.
    [24] Sun H, Liu L, Lu J, et al. Design, synthesis and evaluation of monovalent Smacmimetics that bind to the BIR2domain of the anti-apoptotic protein XIAP [J]. J MedChem,2011,54(9):3306-3318.
    [25] Xu Y, Zhou L, Huang J, et al. Role of Smac in determining the chemotherapeuticresponse of esophageal squamous cell carcinoma [J]. Clin Cancer Res,2011,17(16):5412-5422.
    [26] Ziegler DS, Keating J, Kesari S, et al, A small-molecule IAP inhibitor overcomesresistance to cytotoxic310therapies in malignant gliomas in vitro and in vivo [J].Neuro Oncol,2011,13(8):820-829.
    [27] Yang J, McEachern D, Li W, et al. Radiosensitization of head and neck squamous cellcarcinoma by a SMAC-mimetic compound, SM-164, requires activation of caspases[J]. Mol Cancer Ther,2011,10(4):658-669.
    [28] Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif incaspase-9and Smac/DIABLO regulates caspase activity and apoptosis [J]. Nature,2001,410(6824):112-116.
    [29] Filipovich AH, Zhang K, Snow AL, et al. X-linked lymphoproliferative syndromes:brothers or distant cousins?[J].Blood,2010,116(18):3398-3408
    [30] Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induceautoubiquitination of c-IAPs, NF-kappa B activation, and TNF alpha-dependentapoptosis [J]. Cell,2007,131(4):669-681.
    [31] Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF alpha signaling rendershuman cancer cells susceptible to Smac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    [32] Morizane Y, Honda R, Fukami K, et al. X-linked inhibitor of apoptosis functions asubiquitin ligase toward mature caspase-9and cytosolic Smac/DIABLO.[J]. Biochem,2005,137(2):125-132.
    [33] Rebecca F, Bodhi B, Rhesa B, et al. Smac-mimetics activate the E3ligase activity ofcIAP1by promoting RING dimerisation.[J]. Biochem,2011,286(19):17015-17028.
    [34] Darding M, Feltham R, Tenev T, et al. Molecular determinants of Smac mimeticinduced degradation of cIAP1and cIAP2[J]. Cell Death Differ,2011,18(8):1376-1386.
    [35] Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappa B activationrequires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2,TRAF2and TRAF3and the kinase NIK [J]. Nat Immunol,2008,9(12):1371-1378.
    [36] Vince JE, Wong WW, Khan N, et al. IAP antagonists target cIAP1to induce TNFalpha-dependent apoptosis [J]. Cell,2007,131(4):682-693.
    [37] Gaither A, Porter D, Yao Y, et al. A Smac mimetic rescue screen reveals roles forinhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling [J]. CancerRes,2007,67(24):11493-11498.
    [38]夏开来,黄书岚,孙建波,等. Smac蛋白对C6胶质瘤细胞的影响[J].中华实验外科杂志,2009,26(5):621-623.
    [39] Emeagi PU, Thielemans K, Breckpot K. The role of SMAC mimetics in regulation oftumor cell death and immunity [J]. Oncoimmunology,2012,1(6):965-967.
    [40] Melcher A, Gough M, Todryk S, et al. Apoptosis or necrosis for tumorimmunotherapy: what’s in a name?[J]. J Mol Med (Berl),1999,77(12):824–833.
    [41] Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation andimmunity [J]. Cell,2010,140(6):798–804.
    [42] Emeagi PU, Van Lint S, Goyvaerts C, et al. Proinflammatory characteristics ofSMAC/DIABLO-induced cell death in antitumor therapy [J]. Cancer Res,2012,72(6):1342–1352.
    [43] Breckpot K, Escors D, Arce F, et al. HIV-1lentiviral vector immunogenicity ismediated by Toll-like receptor3(TLR3) and TLR7[J]. J Virol,2010,84(11):5627–5636
    [44] Friboulet L, Gourzones C, Tsao SW, et al. Poly(I:C) induces intense expression ofc-IAP2and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells[J]. BMC Cancer,2010,10:327.
    [45] Breckpot K, Emeagi P, Dullaers M, et al. Activation of immature monocyte-deriveddendritic cells after transduction with high doses of lentiviral vectors [J]. Hum GeneTher,2007,18(6):536–546.
    [46] Müller-Sienerth N, Dietz L, Holtz P, et al. SMAC mimetic BV6induces cell death inmonocytes and maturation of monocyte-derived dendritic cells [J]. PLoS One,2011,6(6):e21556.
    [47] Wang RF. Regulatory T cells and toll-like receptors in cancer therapy [J]. CancerRes,2006,66(10):4987–4990.
    [48] Berger R, Jennewein C, Marschall V, et al. NF-kB is required for Smacmimetic-mediated sensitization of glioblastoma cells for γ-irradiation–inducedapoptosis [J]. Mol Cancer Ther,2011,10(10):1867–1875.
    [49] Tchoghandjian A, Jennewein C, Eckhardt I, et al. Identification of non-canonicalNF-κB signaling as a critical mediator of Smac mimetic-stimulated migration andinvasion of glioblastoma cells [J]. Cell Death Dis,2013,4:e564.
    [50] Jinesh GG, Chunduru S, Kamat AM. Smac mimetic enables the anticancer action ofBCG-stimulated neutrophils through TNF-α but not through TRAIL and FasL [J]. JLeukoc Biol,2012,92(1):233-44
    [51] Cheng J, Zhu YH, He SD, et al. Functional mutation of SMAC/DIABLO, encoding amitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64[J]. Am J Hum Genet,2011,89(1):56–66.
    [52] Yoo NJ,Kim HS,Kim SY,et al. Immunohistochemical analysis of Smac/DIABLOexpression in human carcinomas and sarcomas [J]. APMIS,2003,111(3):382.
    [53] Fulda S, Wick W, Weller M, et al. Smac agonist sensitizes for Apo-2/TRAIL oranticancer drug induced apoptosis and induces regression of malignant gliamain invivo [J]. Nat Med,2007,8:808-815.
    [54] Lu J, Bai L, Sun H, et al. SM-164: a novel, bivalent Smac mimetic that inducesapoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2and XIAP [J].Cancer Res,2008,68(22):9384-9393.
    [55] Li W, Li B, Giacalone NJ, et al. BV6, an IAP antagonist, activates apoptosis andenhances radiosensitization of non-small cell lung carcinoma in vitro [J]. J ThoracOncol,2011,6(11):1801-1809.
    [56] Lopes RB, Gangeswaran R, McNeish IA, et al. Expression of the IAP protein familyis dysregulated in pancreatic cancer cells and is important for resistance tochemotherapy [J]. Int J Cancer,2007,120(11):2344-2352.
    [57] Dineen SP, Roland CL, Greer R, et al. Smac mimetic increases chemotherapyresponse and improves survival in mice with pancreatic cancer [J]. Cancer Res,2010,70(7):2852-2861.
    [58] Petersen SL, Wang L, Yalcin-Chin A, et al. Autocrine TNF-αsignaling renders humancancer cells susceptible to Smac-mimetic-induced apoptosis [J]. Cancer Cell,2007,12(5):445-456.
    [59] Fingas CD, Blechacz BR, Smoot RL, et al. A smac mimetic reduces TNF relatedapoptosis inducing ligand (TRAIL)-induced invasion and metastasis ofcholangiocarcinoma cells [J]. Hepatology,2010,52(2):550-561.
    [60] Tamer EF, Sharmila S, Rakesh KS. Smac/DIABLO enhances the therapeutic potentialof chemotherapeutic drugs and irradiation and sensitizes TRAIL-resistant breastcancer cells [J]. Molecular Cancer,2008,7:60-69
    [61] Eschenburg G, Eggert A, Schramm A, et al. Smac mimetic LBW242sensitizesXIAP-overexpressing neuroblastoma cells for TNF-α-independent apoptosis [J].Cancer Res,2012,72(10):2645-2656
    [62] Brinkmann K, Hombach A, Michael SJ, et al. SMAC mimetic potentiates tumorsusceptibility towards natural killer cell-mediated killing [J]. Leuk Lymphoma,2013May23.[Epub ahead of print]
    [63] Scavullo C, Servida F, Lecis D, et al. Single-agent Smac-mimetic compounds induceapoptosis in B chronic lymphocytic leukaemia (B-CLL)[J]. Leuk Res,2013,37(7):809-815.
    [64] Sheng R, Sun H, Liu L, et al. A potent bivalent Smac mimetic (SM-1200) achievingrapid, complete, and durable tumor regression in mice [J]. J Med Chem,2013,56(10):3969-3979.
    [65] Krepler C, Chunduru SK, Halloran MB, et al. The novel SMAC mimetic birinapantexhibits potent activity against human melanoma cells [J]. Clin Cancer Res,2013,19(7):1784-1794.
    [66] Chen F, Xu C, Du L, et al. Tat-SmacN7induces radiosensitization in cancer cellsthrough the activation of caspases and induction of apoptosis [J]. Int J Oncol,2013,42(3):985-992
    [67] Qin S, Yang C, Wang X, et al. Overexpression of Smac promotes Cisplatin-inducedapoptosis by activating caspase-3and caspase-9in lung cancer A549cells [J]. CancerBiother Radiopharm,2013,28(2):177-182.
    [68] Edison N, Zuri D, Maniv I, et al. The IAP-antagonist ARTS initiates caspaseactivation upstream of cytochrome C and SMAC/Diablo [J]. Cell Death Differ,2012,19(2):356-68
    [69] Petrucci E, Pasquini L, Bernabei M, et al. A small molecule SMAC mimic LBW242potentiates TRAIL-and anticancer drug-mediated cell death of ovarian cancer cells[J]. PLoS One,2012,7(4):e35073.
    [70] Quast SA, Berger A, Buttst dt N, et al. General sensitization of melanoma cells forTRAIL induced apoptosis by the potassium channel inhibitor TRAM-34depends onrelease of SMAC [J]. PLoS One,2012,7(6):e39290
    [71] Lin C, Zhao XY, Li L, et al. NOXA-induced alterations in the Bax/Smac axis enhancesensitivity of ovarian cancer cells to Cisplatin [J]. PLoS One,2012,7(5):e36722
    [72] Hu W, Wang F, Tang J, et al. Proapoptotic protein Smac mediates apoptosis incisplatin-resistant ovarian cancer cells when treated with the anti-tumor agent AT101[J]. J Biol Chem,2012,287(1):68-80.
    [73] Zhang S, Li G, Zhao Y, et al. Mimetic SM-164potentiates APO2L/TRAIL-anddoxorubicin-mediated anticancer activity in human hepatocellular carcinoma cells [J].PLoS One,2012,7(12):e51461.
    [74] Ramachandiran S, Cain J, Liao A, et al. The SMAC mimetic RMT5265.2HCLinduces apoptosis in EBV and HTLV-I associated lymphoma cells by inhibiting XIAPand promoting the mitochondrial release of cytochrome C and Smac [J].LeukRes,2012,36(6):784-790
    [75] Vérillaud B, Gressette M, Morel Y, et al. Toll-like receptor3in Epstein-Barrvirus-associated nasopharyngeal carcinomas: consistent expression and cytotoxiceffects of its synthetic ligand poly(A:U) combined to a Smac-mimetic [J]. InfectAgent Cancer,2012,7(1):36.
    [76] Hui KK, Kanungo AK, Elia AJ, et al. Caspase-3deficiency reveals a physiologic rolefor Smac/DIABLO in regulating programmed cell death [J]. Cell Death Differ,2011,18(11):1780-90.
    [77] Cheung HH, St Jean M, Beug ST, et al. SMG1and NIK regulate apoptosis induced bySmac mimetic compounds [J]. Cell Death Dis,2011,2:e146
    [78] Laukens B, Jennewein C, Schenk B, et al. Smac mimetic bypasses apoptosisresistance in FADD-or caspase-8-deficient cells by priming for tumor necrosis factorα-induced necroptosis [J]. Neoplasia,2011,13(10):971-979.
    [79] Stadel D, Cristofanon S, Abhari BA, et al. Requirement of nuclear factor κB for Smacmimetic–mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis [J]. Neoplasia,2011,13(12):1162-1170.
    [80] Bai L, McEachern D, Yang CY, et al. LRIG1modulates cancer cell sensitivity toSmac mimetics by regulating TNFαexpression and receptor tyrosine kinase signaling[J]. Cancer Res,2012,72(5):1229-1238.
    [81] Mehrotra S, Languino LR, Raskett CM, et al. IAP regulation of metastasis [J]. CancerCell,2010,17(1):53-64.
    [82] Vucic D. Targeting IAP(inhibitor of apoptosis) proteins for therapeutic intervention intumors [J]. Curr Cancer Drug Targets,2008,8(2):110-117.
    [83] Holt SV, Brookes KE, Dive C, et al. Down-regulation of XIAP by AEG35156inpaediatric tumour cells induces apoptosis and sensitises cells to cytotoxic agents [J].Oncol Rep,2011,25(4):1177-1181.
    [84] Varfolomeev E, Vucic D. Inhibitor of apoptosis proteins:fascinating biology leads toattractive tumor therapeutic targets [J].Future Oncol,2011,7(5):633-648.
    [1] Monica CT, Willem MV. Magda MW. et a1. Prevention and curative management ofhypertrophic scar formation [J]. Bums,2009,35(4):463-475.
    [2] Huang C, Akaishi S, Hyakusoku H, et al. Are keloid and hypertrophic scar differentforms of the same disorder? A fibroproliferative skin disorder hypothesis based onkeloid findings [J]. Int Wound J,2012,[Epub ahead of print]
    [3] Singer AJ, Clark RA. Cutaneous wound healing [J]. N Engl J Med,1999,341(10):738-746
    [4] Sidgwick GP, Bayat A. Extraeellular matrix molecules implicated in hypertrophic andkeloid scarring [J]. J Eur Aead Dermatol Venereol,2012,26(2):141-152.
    [5] Haverstock BD. Hypertrophic scars and keloids [J]. Clin Podiatr Med Surg,2001,18(1):147-159.
    [6] Aarabi S, Longaker MT, Gurtner GC. Hypertrophic scar formation following burnsand trauma: new approaches to treatment [J]. PLoS Med,2007,4(9):e234(1464-1470)
    [7]王珍祥,吴军,李世荣.增生性瘢痕与正常皮肤差异基因的筛选[J].中华医学美学美容杂志,2004,10(3):155-157
    [8] Chen W, Fu XB, Ces L, et a1. Development of gene microarry in screeningdifferently expressed genes in keloid and normal-control skin [J]. Clin Med J (Edg1),2004,117(6):877-881.
    [9] Clark JA, Cheng JC, Leung KS. Mechanical properties of normal skin andhypertrophic scar [J]. Burns,1996,22(6):443–446.
    [10] Oliveira GV, Hawkins HK, Chinkes D, et al. Hypertrophic versus non hypertrophicscars compared by immunohistochemistry and laser confocal microscopy: type I andIII collagens [J]. Int Wound J2009,6(6):445–452.
    [11] Sappino AP, Schurch W, Gabbiani G. Differentiation repertoire of fibroblastic cells:expression of cytoskeletal proteins as marker of phenotypic modulations [J]. LabInvest,1990,63(2):144-161.
    [12] Gross J. Getting to mammalian wound repair and amphibian limb regeneration: amechanistic link in the early events [J]. Wound Rep Reg,1996,4(2):190-202.
    [13] Lekic PC, Pender N, Mcculloch CA. Is fibroblast heterogeneity relevant to the heath,disease, and treatments of periodontal tissues [J]. Crit Rev Oral BiolMed,1997,8(3):253-268.
    [14] Hakvoort TE, Altun V, Ramnattan RS, et al. Epidermal participation in post-burnhypertrophic scar development [J]. Virchows Arch,1999,434(3):221-226.
    [15] Lin RY, Sullivan KM, Argenta PA, et al. Exogenous transforming growth factors-beta amplifies its own expression and induces scar formation in a model of humanfetal skin repair [J]. Ann surg,1995,222(2):146-154.
    [16] Zhu Z, Ding J, Shankowsky HA, et al. The molecular mechanism of hypertrophic scar[J]. J Cell Commun Signal,2013,[Epub ahead of print]
    [17] Hermes B, Welker P, Feldmann-Boddeker I, et al. Expression of mast cell growthmodulating and chemotactic factors and their receptors in human cutaneous scars [J].J Invest Dermatol,2001,116(3):387-393
    [18] Moyer KE, Saggers GC, Ehrlich HP. Mast cells promote fibroblast populated collagenlattice contraction through gap junction intercellular communication [J]. WoundRepair Regen,2004,12(3):269-275
    [19] Lee TY. Chin GS, Kim WJ, et a1. Expression of transform in growth factor beta12and3proteins in keloids [J]. Ann Pla Surg,1999,43(2):179-184.
    [20]陈伟,付小兵,葛世丽.增生性瘢痕形成和成熟过程中TGFβ1、TGFβ3及其受体的基因表达变化[J].中华整形外科杂志,2004,20(4):308-309.
    [21]陈伟,付小兵,孙同柱,等.增生性瘢痕组织中转化生长因子β异构体与受体含量变化及对瘢痕形成的影响[J].中国修复重建外科杂志,2002,16(4):252-255.
    [22] Xia W, Phan TT, Lim IJ, et a1. Complex epithelial mesenchymal interactionsmodulate transforming growth factor beta expression in keloid-derived cells [J].Wound Repair Regen,2004,12(5):546-556.
    [23] Wu J, Ma B, Yi S, et a1. Gene expression of early hypertrophic scar tissue screenedby means of cDNA microarrays [J]. J Trauma,2004,57(6):1276-1286.
    [24] Redd MJ, Coper L, Wood W, et a1. Wound healing and inflammation: embryos revealthe way to perfect repair [J]. Philos Trans R Soc Lond B Biol Sci,2004,359(1445):777-784.
    [25]李喆,李世荣,刘剑毅,等.结缔组织生长因子体外促进人增生性瘢痕成纤维细胞转分化的研究[J].第三军医大学学报,2006,28(8):775-777.
    [26]陶灵,李世荣,刘剑毅,等. CTGF刺激人增生性瘢痕成纤维细胞STATs蛋白活化的状况[J].中国美容医学杂志,2008,17(4):521-523.
    [27]曹川,李世荣,陈艳清,等.三羟基异黄酮对增生性瘢痕成纤维细胞增殖与胶原合成作用的影响[J].中国美容医学杂志,2007, l8(3):220-222.
    [28] Hu X, Wang H, Liu J, et al. The role of ERK and JNK signaling in connective tissuegrowth factor induced extracellular matrix protein production and scar formation [J].Arch Dermatol Res,2013,305(5):433-445.
    [29] Hayashida K, Akita S. Quality of pediatric second-degree burn wound scars followingthe application of basic fibroblast growth factor: results of a randomized, controlledpilot study [J]. Ostomy Wound Manage,2012,58(8):32-6
    [30]李卫华,李德水,刘洪琪.碱性成纤维细胞生长因子对增生性瘢痕成纤维细胞生物学特性的影响[J].中国临床康复,2004,8(8):1484-1485.
    [31] Siwik DA, Chang DL, Colucci WS. Interliukin-1βand tumor necrosis factorαdecrease collagen synthesis and increase matrix metalloproteinase activity in cardiacfibroblasts in vitro[J]. Circ Res,2000,86(12):1259-1265.
    [32] Scheuerpflug CG, Lichter P, Debatin KM, et a1. Assignment of TRADD to humanchromosome band16q22by in situ hybridization [J]. Cytogenet Ceil Genet,2001,92(3-4):347-348.
    [33] Crowston JG, Chang LH, Constable PH, et a1. Apoptosis gene expression and deathreceptor signaling in Mitomycin-C-treated human Tenon capsule fibroblast [J]. InvestOphthalmol Vis Sci,2002,43(3):692-699.
    [34] Yang H, Hu C, Li F, et al. Effect of lipopolysaccharide on the biologicalcharacteristics of human skin fibroblasts and hypertrophic scartissue formation [J].IUBMB Life,2013,65(6):526-532
    [35] Deng C, Zheng J, Wan W, et al. Suppression of cell proliferation and collagenproduction in cultured human hypertrophic scar fibroblasts by Sp1decoyoligodeoxynucleotide [J]. Mol Med Rep.2013,7(3):785-790
    [36] Kim JS, Choi IG, Lee BC, et al. Neuregulin induces CTGF expressionin hypertrophic scarring fibroblasts [J]. Mol Cell Biochem,2012,365(1-2):181-189.
    [37] Ray S, Ju X, Sun H, et al. The IL-6trans-signaling-STAT3pathway mediates ECMand cellular proliferation in fibroblasts from hypertrophic scar [J]. J InvestDermatol,2013,133(5):1212-1220
    [38] Zhang Q, Tao K, Huang W, et al. Elevated expression of pleiotrophin inhuman hypertrophic scars [J].J Mol Histol,2013,44(1):91-96.
    [39] du Roure O, Saez A, Buguin A, et al. Force mapping in epithelial cell migration [J].Proc Natl Acad Sci USA,2005,102(7):2390-2395
    [40] Nho RS, Xia H, Kahm J, et al. Role of integrin-linked kinase in regulatingphosphorylation of Akt and fibroblast survival in type I collagen matrices through abeta1integrin viability signaling pathway [J]. J Biol Chem,2005,280(28):26630-26639
    [41] Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signaltransduction pathways and cellular proliferation in human epidermal keratinocytes [J].J Invest Dermatol,2004,122(3):783-790
    [42] Takahashi Y, Takahashi S, Shiga Y, et al. Hypoxic induction of proly4-hydroxylasealpha (I) in cultured cells [J]. J Biol Chem,2000,275(19):14139
    [43] Kim JH, Sung JY, Kim YH, et al. Risk factors for hypertrophic surgicalscar development after thyroidectomy [J]. Wound Repair Regen,2012,20(3):304-310.
    [44] Liu XJ, Xu MJ, Fan ST, et al. Xiamenmycin attenuates hypertrophic scars bysuppressing local inflammation and the effects of mechanical stress[J]. J InvestDermatol.2013,133(5):1351-1360.
    [45] Foley TT, Ehrlich HP. Through gap junction communications, co-cultured mast cellsand fibroblasts generate fibroblast activities allied with hypertrophic scarring [J].Plast Reconstr Surg,2013,131(5):1036-44.
    [46]张强,邵家松,岳毅刚,等.高压氧对兔耳创面模型早期瘢痕组织形成的影响[J].中华整形外科杂志,2013,29(1):55-58.
    [47] Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory tomigration and decorin-induced apoptosis contribute to hypertrophic scarring[J]. JBurn Care Res,2012,33(5):668-677.
    [48]赵雪莲,郑宝恒,苏晓光,等.病理性瘢痕增生的手术治疗进展[J].山东医药,2012,52(2):97-98
    [49] Yang JY, Yang SY. Are auricular keloids and persistent hypertrophic scars resectable?The role of intrascar excision [J]. Ann Plast Surg,2012,69(6):637-642.
    [50] Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations onscar management [J]. Plast Reconstr Surg,2002,110(2):560–571.
    [51] Mutalik S. Treatment of keloids and hypertrophic scars[J]. Indian J DermatolVenereol Leprol,2005,71(1):3–8
    [52] Ogawa R, Akaishi S, Huang C, et al. Clinical applications of basic research thatshows reducing skin tension could prevent and treat abnormal scarring: theimportance of fascial/subcutaneous tensile reduction sutures and flap surgery forkeloid and hypertrophic scar reconstruction[J]. J Nippon Med Sch,2011,78(2):68–76.
    [53] Reish RG, Eriksson E. Scar treatments: preclinical and clinical studies[J]. J Am CollSurg,2008,206(4):719–730
    [54] Leventhal D, Furr M, Reiter D. Treatment of keloids and hypertrophic scars: ameta-analysis and review of the literature [J]. Arch Facial Plast Surg,2006,8(6):362–368.
    [55] Nast A, Eming S, Fluhr J, et al. German S2k guidelines for the therapy of pathologicalscars (hypertrophic scars and keloids)[J]. J Dtsch Dermatol Ges,2012,10(10):747–762.
    [56] Akaishi S, Koike S, Dohi T, et al. Nd:YAG Laser treatment of keloids andhypertrophic scars [J]. Eplasty,2012,12:e1
    [57] Durani P, Bayat A. Levels of evidence for the treatment of keloid disease [J]. J PlastReconstr Aesthet Surg,2008,61(1):4–17
    [58] Shih PY, Chen HH, Chen CH, et al. Rapid recurrence of keloid after pulse dye lasertreatment [J]. Dermatol Surg,2008,34(8):1124–1127
    [59] Cho SB, Lee JH, Lee SH, et al. Efficacy and safety of1064-nm Q-switched Nd:YAGlaser with low fluence for keloids and hypertrophic scars [J]. J Eur Acad DermatolVenereol,2010,24(9):1070–1074.
    [60] Choi JE, Oh GN, Kim JY, et al. Ablative fractional laser treatmentfor hypertrophic scars: comparison between Er:YAG and CO2fractional lasers[J]. JDermatolog Treat,2013,[Epub ahead of print]
    [61] Hultman CS, Edkins RE, Wu C, et al. Prospective, before-after cohort study to assessthe efficacy of laser therapy on hypertrophic burn scars [J]. Ann Plast Surg,2013,70(5):521-526
    [62] Scrimali L, Lomeo G, Nolfo C. Treatment of hypertrophic scars and keloids with afractional CO2laser: A personal experience [J]. Cosmet Laser Ther,2010,12(5):218-221.
    [63] Shu B, Ni GX, Zhang LY, et al. High-power helium-neon laser irradiation inhibits thegrowth of traumatic scars in vitro and in vivo [J]. Lasers Med Sci,2013,28(3):693-700
    [64] Alexiades-Armenakas MR, Dover JS, Amdt KA. The spectrum of laser skinresurfacing: Nonablative fractional, and ablative laser resurfacing[J]. Am AcadDermatol,2008,58(5):719-737.
    [65] Tiemey EP, Kouba DJ, Hanke CW. Review of fractional photothermolysis: Treatmentindications and efficacy [J]. Dermatol Surg,2009,35(10):1445-1461.
    [66] Emily Tierney, Bassel H. Treatment of surgical scars with nonablative fractional laserversus pulsed dye laser: A randomized controlled trial [J]. Dermatol Surg,2009,35(8):1172-1180.
    [67] Garg GA, Sao PP, Khopkar US. Effect of carbon dioxide laser ablation followed byintralesional steroids on keloids [J].J Cutan Aesthet Surg,2011,4(1):2–6.
    [68] de las Alas JM, Siripunvarapon AH, Dofitas BL. Pulsed dye laser for the treatment ofkeloid and hypertrophic scars: a systematic revie [J]. Expert Rev Med Devices,2012,9(6):641-50.
    [69]洪艳玲,潘宁.光动力治疗防治增生性瘢痕的研究进展[J].实用皮肤病学杂志,2012,5(1):32-34
    [70] Chiu LL, Sun CH, Yeh A, et a1. Photodynamic therapy on keloid fibroblasts intissue-engineered keratinocyte-fibroblast CO-culture [J]. Laser Surg Med,2005,37(3):231-244.
    [71]蔡宏,顾瑛,曾晶,等. HMME-PDT对兔耳增生性瘢痕块成纤维细胞增殖能力及其超微结构的影像[J].中国激光医学杂志,2008, l7(3):157-161.
    [72]孙晓燕,王星武,郭党学,等. ALA光动力治疗兔耳增生性瘢痕模型的实验研究[J].中国美容医学,2009,18(7):973-976.
    [73] Li X, Zhou ZP, Hu L,et al. Apoptotic cell death induced by5-aminolaevulinicacid-mediated photodynamic therapy of hypertrophic scar-derived fibroblasts [J].JDermatolog Treat,2013,[Epub ahead of print]
    [74]钟俊波,岑瑛,刘全. ALA-PDT对瘢痕疙瘩成纤维细胞增殖抑制作用的研究[J].四川大学学报(医学版),2010,41(2):222-225
    [75] Taheri A, Mansoori P, Al-Dabagh A, et al. Are corticosteroids effective forprevention of scar formation after second-degree skin burn?[J]. J DermatologTreat,2013,[Epub ahead of print]
    [76] Jalali M, Bayat A. Current use of steroids in management of abnormal raised skinscars [J]. Surg.2007,5(3):175–180.
    [77] Zhang H, Zhang Y, Jiang YP, et al. Curative effects of oleanolic Acid on formedhypertrophic scars in the rabbit ear model [J]. Evid Based Complement AlternatMed,2012,2012:837581
    [78] Xiao Z, Xi C. Hepatocyte growth factor reduces hypertrophy of skin scar: in vivostudy [J]. Adv Skin Wound Care,2013,26(6):266-270
    [79] ZhiYong W, Fei S, LianJu X, et al. Endostar injection inhibits rabbit ear hypertrophicscar formation [J].Int J Low Extrem Wounds,2012,11(4):271-276.
    [80]杜金,马少林.中药防治增生性瘢痕研究进展[J].新疆医学,2012,42(9):1-6
    [81]刘燕,傅跃先,唐开勇,等.红花对兔耳增生性瘢痕CTGF表达的影响[J].第四军医大学学报,2009,30(18):1640-1644.
    [82]张艳,邱林,吴清华,等.黄芪对家兔增生性瘢痕转化生长因子βl表达及其Smad3信号途径的影响[J].中华烧伤杂志,2010,26(5):366-370.
    [83]李旋,刘迭恩,欧增达,等.丹参总酮对体外模拟人增生性瘢痕的作用[J].中华烧伤杂志,2009,25(1):62-63.
    [84] Tang B, Zhu B, Liang Y. Bi L, et a1. Asiaticoside suppresses collagen expression andTGF-β/Smad signaling through inducing Smad7and inhibiting TGF-β RI and TGF-βR Ⅱ in keloid fibroblasts[J]. Archives of dermatological research,2011;303(8):563-635
    [85]张诺.雷公藤甲素对瘢痕成纤维细胞增殖的影响[J].医学信息,2010,5(4):753-754.
    [86]闫宏山,吕润华,王吉昌,等.“促愈瘢痕消”对兔耳增生性瘢痕作用的实验研究[J].山东大学学报(医学版),2007,45(9):914-918.
    [87] Grella R, Nicoletti G, D'Ari A, et a1. A useful method to overcome the difficulties ofapplying silicone gel sheet on irregular surfaces[J]. Int Wound J,2013,[Epub aheadof print]
    [88] Mustoe TA. Evolution of silicone therapy and mechanism of action in scarmanagement [J]. Aesthetic Plast Surg,2008,32(1):82–92.
    [89] Chittoria RK, Padi TR. et al. A prospective, randomized, placebo controlled,double blind study of silicone gel in prevention of hypertrophic scar at donor siteof skin grafting [J]. J Cutan Aesthet Surg,2013,6(1):12-16
    [90] O’Brien L, Pandit A. Silicon gel sheeting for preventing and treating hypertrophic andkeloid scars [J]. Cochrane Database Syst Rev,2006,25;(1): CD003826
    [91] Steinstraesser L, Flak E, Witte B, et al. Pressure garment therapy alone and incombination with silicone for the prevention of hypertrophic scarring: randomizedcontrolled trial with intraindividual comparison [J]. Plast Reconstr Surg,2011,128(4):306e–313e.
    [92] Macintyre L, Baird M. Pressure garments for use in the treatment of hypertrophicscars–a review of the problems associated with their use [J]. Burns,2006,32(1):10–15
    [93] Van den Kerckhove E, Stappaerts K, Fieuws S, et al. The assessment of erythema andthickness on burn related scars during pressure gar ment therapy as a preventivemeasure for hypertrophic scarring [J]. Burns,2005,31(6):696–702
    [94] Candy LH, Cecilia LT, Ping ZY. Effect of different pressure magnitudes onhypertrophic scar in a Chinese population [J]. Burns,2010,36(8):1234–1241
    [95] Anzarut A, Olson J, Singh P, et al. The effectiveness of pressure garment therapy forthe prevention of abnormal scarring after burn injury: a meta-analysis [J]. J PlastReconstr Aesthet Surg,2009,62(1):77–84
    [96] Rei Ogawa. The most current algorithms for the treatment and prevention ofhypertrophic scars and keloids [J]. Plast Reconstr Surg,2010,125(2):557-568.
    [97]刘宁,朱金土.增生性瘢痕联合治疗研究进展[J].浙江临床医学,2012,14(7):884-886
    [98] Barara M, Mendiratta V, Chander R. Cryotherapy in treatment of keloids: evaluationof factors affecting treatment outcome [J]. J Cutan Aesthet Surg,2012,5(3):185–189
    [99] Weshahy AH, Abdel HR. Intralesional cryosurgery and intralesional steroid injection:a good combination therapy for treatment of keloids and hypertrophic scars [J].Dermatol Ther,2012,25(3):273-276.
    [100] Waibel JS, Wulkan AJ, Shumaker PR. Treatment of hypertrophic scars using laserand laser assisted corticosteroid delivery [J]. Lasers Surg Med,2013,45(3):135-140.
    [101] Issa MC, Kassuga LE, Chevrand NS, et al. Topical delivery of triamcinolone via skinpretreated with ablative radiofrequency: a new method in hypertrophic scar treatment[J]. Int J Dermatol,2013,52(3):367-370.
    [102] Bailey JK, Burkes SA, Visscher MO, et al. Multimodal quantitative analysis of earlypulsed-dye laser treatment of scars at a pediatric burn hospital [J]. DermatolSurg,2012,38(9):1490-1496.
    [103] Hu X, Ran H, Dechang W, et al. Absence of the adenosine A2A receptorattenuates hypertrophic scarring in mice [J]. J Burn Care Res,2013,34(3):e161-167.
    [104] Xu Y, Huang S, Fu X. Autologous transplantation of bone marrow-derivedmesenchymal stem cells: a promising therapeutic strategy for prevention of skin-graftcontraction [J]. Clin Exp Dermatol,2012,37(5):497-500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700